Kislaya Ravi, M.Sc.

Technische Universität München

TUM School of CIT
Department of Computer Science
Boltzmannstrasse 3
85748 Garching
Germany

Office: MI 02.05.057
Mail: kislaya@in.tum.de 

Tel: +49-89-289-18630
Fax: +49-89-289-18607
Office Hours: by arrangement

 

Background

  • Doctoral Candidate, Chair of Scientific Computing, Technical University Munich, Munich, Germany
  • Master in Science (MSc), Computational Science and Engineering, Technical University Munich, Munich, Germany
  • Master in Technology (MTech.), Machine Design, Indian Institute of Technology (BHU), Varanasi, India
  • Bachelor in Technology (BTech.), Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, India

Research interests

  • Multifidelity
  • Uncertainity Quantification
  • Gaussian Process
  • Sparse Grids Methods
  • Machine Learning
  • Stochastic Optimization

Projects

Teaching

  • Scientific Computing II (IN2141)SS20
  • Algorithms for Uncertainty Quantifications (IN2345) SS20, SS21, SS22, SS23
  • Scientific Computing I (IN2005) WS20, WS21, WS22, WS23
  • Master-Praktikum - Machine Learning in Crowd Modeling & Simulation (IN2106, IN4267) WS20, SS21, WS21
  • Seminar High Dimensional Methods in Scientific Computing (IN2107,IN0014,IN2183) SS22
  • Seminar Data Mining (IN0014, IN4927) SS22, SS24

Open and Running Student Projects

Open Student Projects

  • Multi-fidelity bayesian inverse using hamilton markov chain monte carlo
  • Multi-fidelity dyanamic systems

Running Student Projects

  • Adaptive multi-fidelity gaussian process

Finished Student Projects

2024

  • Mohammad Anas Khan: Black-Box Optimization for Engineering Systems with Score-Function Estimator. , 2024 mehr…
  • Mostafa ElHayani: Real-Time Object Detection Uncertainty Quantification using Augmented Images for Autonomous Vehicles. Masterarbeit, 2024 mehr…
  • Thiago Lima Carneiro: Efficient Uncertainty Quantification for Power Networks. Masterarbeit, 2024 mehr…
  • Vaishali Ravishankar: Exploratory Analysis of Turbulent Flow Data using GNN-based Surrogate Model. Masterarbeit, 2024 mehr…
  • Zhang, Chengye: Portfolio Optimization Using Multi-Fidelity Gaussian Process. Masterarbeit, 2024 mehr…

2021

  • Aurangzeb Ali Rathore: Adaptive Multifidelity Deep Gaussian Process for Uncertainty Quantification. Masterarbeit, 2021 mehr…
  • Martin Klapacz: Multifidelity Gaussian Processes for Uncertainty Quantification. Bachelorarbeit, 2021 mehr…

Publications

2023

  • Kislaya Ravi; Tobias Neckel; Hans-Joachim Bungartz: Multi-fidelity No-U-Turn Sampling. To appear in: Monte Carlo and Quasi-Monte Carlo Methods 2022, Springer, 2023 mehr…

2019

  • Kislaya Ravi: Neural Network Hyperparameter Optimization using SNOWPAC. Masterarbeit, 2019 mehr…

Talks

  • Kislaya Ravi: Dimension adaptive Multi-fidelity Polynomial Chaos Expansion using Leja points. Sparse Grids and Applications Seminar 2024, 2024 mehr…
  • Kislaya Ravi: Multi-fidelity No-U-Turn Sampling. SIAM CSE 2023, 2023 mehr…
  • Kislaya Ravi: Multifidelity Polynomial Chaos Expansion Using Leja Grid Points. SIAM UQ 2022, 2022 mehr…
  • Kislaya Ravi: Multi-fidelity No-U-Turn Sampling. MCQMC 2022, 2022 mehr…
  • Kislaya Ravi: MULTI-FIDELITY DIMENSION-ADAPTIVE POLYNOMIAL CHAOS EXPANSION FOR PLASMA MICRO-INSTABILITY ANALYSIS. CSAI 2021, 2021 mehr…

Posters