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Abstract

We consider the general dimensionality reduction problem of locating in a high-dimensional
data cloud, a k-dimensional non-Gaussian subspace of interesting features. We use a projection
pursuit approach—we search for mutually orthogonal unit directions which maximise the q-
Wasserstein distance of the empirical distribution of data-projections along these directions
from a standard Gaussian. Under a generative model, where there is a underlying (unknown)
low-dimensional non-Gaussian subspace, we prove rigorous statistical guarantees on the accuracy
of approximating this unknown subspace by the directions found by our projection pursuit
approach. Our results operate in the regime where the data dimensionality is comparable to the
sample size, and thus supplement the recent literature on the non-feasibility of locating interesting
directions via projection pursuit in the complementary regime where the data dimensionality is
much larger than the sample size.

1 Introduction

A central question in statistics and machine learning concerns the recovery of useful or interesting
features from data. A huge body of literature exists that focuses on such feature extraction tasks.
Often the statistician encounters high-dimensional data of which only a relatively low-dimensional
subspace is of interest. A family of algorithms, often described by the umbrella term projection
pursuit (Friedman and Tukey (1974); Huber (1985)), are particularly well-suited for such tasks.
By restricting attention to low-dimensional subspaces, projection pursuit allows the statistician to
evade the so-called “curse-of-dimensionality”, which plagues most classical learning algorithms in
high-dimensional settings. Furthermore, projection pursuit helps the statistician to discard noisy and
information-poor features. Some prominent members of this family of techniques include Principal
Component Analysis (PCA), Independent Component Analysis (ICA), matching pursuit, etc.

Perhaps the simplest projection pursuit algorithm is PCA (see, e.g., Jolliffe (2002), Jolliffe and
Cadima (2016)), which considers the subspace generated by the top k eigenvectors of the sample
covariance matrix. In effect, PCA tries to find linear combinations of the original features which
explain the most variability. While very useful in its own regard, PCA is limited by the fact that it
only considers variances. Thus it works very well when the superfluous features have considerably
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lower variance than the signal, e.g., in noise reduction problems. On the other hand, consider a
setup where the interesting components are non-Gaussian, while the rest are Gaussian of comparable
variability. The Gaussian components cannot be treated as noise (in the sense of having smaller
variance than the signal component) but are simply superfluous or “uninteresting”. PCA has
difficulty separating the interesting non-Gaussian components in such scenarios.

To overcome this limitation, various methods conceptually similar to PCA have been proposed.
A broad class of such methods goes by the name of ICA (Lee and Lee (1998)). Broadly speaking,
there are two families of ICA algorithms. One class of algorithms focuses more on ensuring that the
signal directions are statistically independent, thus they minimize mutual information. The other
focuses on finding directions in which the data is the “least Gaussian” (i.e. most interesting). In
this paper, we are also interested in the latter objective.

Many approaches are possible for finding non-Gaussian directions, depending upon our definition
of “non-Gaussian”. A natural way to quantify non-Gaussianity would be to measure the deviation
of some aspect of a probability measure of interest from that of a standard Gaussian. For instance,
one could use measures such as kurtosis (Girolami and Fyfe (1996)) or negentropy (Cao et al.
(2003); Novey and Adali (2008)). Alternatively, one could measure the deviation from a Gaussian
using suitable probability metrics such as the Kolmogorov-Smirnov (KS) distance, the Wasserstein
distance, etc.

We now state the general projection pursuit approach in the context of the problem of identifying
non-Gaussian components with the following simple example. Consider a p-dimensional random
vector X which satisfies the following: there is a unknown direction u∗ such that u⊤∗ X is non-
Gaussian, while (I − u∗u

⊤
∗ )X, the distribution of X in the orthogonal complement of u∗, is

(p− 1)-dimensional standard Gaussian, and, further, the non-Gaussian component u⊤∗ X and the
Gaussian part (I − u∗u

⊤
∗ )X are statistically independent. Suppose ϱ(ν, ν ′) is some measure of

quantifying the distance between two probability measures ν and ν ′. ϱ could be a divergence
between probability measures (e.g., the Kullback-Liebler divergence) or a proper metric (e.g., KS
distance). Suppose we observe a sample X1, . . . , Xn from ν, the distribution of X. Our goal is
to recover the unknown direction u∗. The main idea of projection pursuit is then to find a unit
direction û such that the empirical distribution of the data projected on û (i.e. 1

n

∑n
i=1 δû⊤Xi

) is
the farthest from the standard Gaussian distribution with respect to ϱ, i.e.

û = argmax
v∈Sp−1

ϱ

(
1

n

n∑
i=1

δv⊤Xi
,Φ

)
, (1)

where Φ is the standard Gaussian measure (here Sp−1 denotes the unit sphere in Rp). We will
later formalise a version of this for general k. Our paper is interested in the case when ϱ is the
q-Wasserstein distance (for 1 ≤ q ≤ 2) between probability measures. Specifically, we analyse the
question of whether the recovered directions can be guaranteed (with high probability) to be from
the signal space or not.

Some work in this regard has been done in Bickel et al. (2018) and Montanari and Zhou (2022).
Bickel et al. (2018) use the KS distance for ϱ. They show that if the data is purely Gaussian (i.e.
in a null model with no interesting directions), then two completely different phenomena occur
according as whether the data-dimensionality-to-sample-size ratio p

n goes to zero or infinity. In the
former regime, all projections are Gaussians (in fact, this is known from the earlier work of Diaconis
and Freedman (1984)). On the other hand, in the latter regime, given any arbitrary probability
distribution ν̃, with high probability, one can find a (data-dependent) direction along which the
data set is distributed as ν̃. In other words, one can find directions along which the data is as far
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from Gaussianity (in the KS metric) as one desires. This means that projection-pursuit can spot
fake signal amidst complete noise. When applied to actual data in this regime, there is no way of
knowing if the found direction came from some underlying signal space, or if it is a mirage of signal
in a Gaussian desert!

Montanari and Zhou (2022) prove a similar result for the 2-Wasserstein distance. Both the above
papers argue that under the null model of N(0, Ip), when p/n converges to a sufficiently small
constant, the empirical distributions of projections of the data points in every direction are close to
the standard Gaussian distribution. This obviously begs the question if, under a spiked alternative,
one could find directions along which the data projections are non-Gaussian. (Montanari and Zhou,
2022, Theorem 4.6) study the question of obtaining such a signal direction under a specific model of
supervised learning.

With ϱ as the q-Wasserstein distance (q ≥ 1), the recent work Niles-Weed and Rigollet (2022) has
considered a spike estimation problem. Given two samples from measures µ1, µ2, they consider the
problem of finding a k-dimensional subspace U which maximizes the q-Wasserstein distance (for
1 ≤ q ≤ 2) between the empirical measures of µ̂1 and µ̂2 restricted to the subspace U . For instance,
their main result shows for q = 2 that their estimator achieves an error of

O

(√
kmax{n−1/k, n−1/2q(log n)1/q}+

√
p log n

n

)
. (2)

In comparison, we assume that µ2 is Gaussian and µ1 is mostly non-Gaussian in the spiked
directions, with its (signal) orthogonal directions also being Gaussian. Using a more careful analysis,
we are able to remove the

√
log n factor from the second term in (2) (see Theorem 3.1). While the

setup of Niles-Weed and Rigollet (2022) does not require the non-signal direction to be Gaussian,
our concentration bounds, i.e. Proposition 3.1 along with Theorem 10 in Niles-Weed and Rigollet
(2022) can be used to extend our results to their setting thereby removing the log n factor in general.
On the other hand, in the special case that the non-signal direction of the data is not exactly
Gaussian, but close enough, we can still use Theorem 3.2 to prove error bounds on the estimator (in
terms of a measure of closeness to Guassian for the non-signal direction).

Our contributions. Our analysis is done in the context of an alternative model of unsupervised
learning. We suppose that the sample comes from a spiked Gaussian model, i.e. there is a k-
dimensional subspace in which the distribution is decidedly not Gaussian. We first show that
under sub-Gaussian tail assumptions, in every direction, the empirical distribution formed by the
data-projections and the true marginal distribution in the same direction are uniformly close. This
result is a substantial extension of similar results in Bickel et al. (2018) and Montanari and Zhou
(2022) to a more general setting. Further, we also show that one can recover an orthonormal set of
vectors which form an approximate basis of the signal space. (This can be thought of as an instance
of the general strategy of matching pursuit.) In particular, each recovered vector’s component in
the independent Gaussian space is inversely proportional to the signal-to-noise ratio. Finally, if the
signal-to-noise ratio is sufficiently large, then we give a methodology to accurately estimate k, i.e.
the dimension of the signal space. This allows one to use our sequential procedure even in cases
where very little is known about the signal space.
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2 Set-up

Given a probability measure µ in Rp, and a vector v ∈ Rp, we define the action of v on µ, v♯µ to be
the marginal density of µ in the direction v. In particular,

Definition 2.1. If X is a random variable in Rp having distribution µ and v⊤X is the dot product
of v and X, then v♯µ is defined to be the density function of the real-valued random variable v⊤X.

For q > 1, the q-Wasserstein distance dWq(µ, ν) between two probability measures µ and ν is
defined as

dWq(µ, ν) := inf
all couplings π of X,Y

X∼µ,Y∼ν

[
Eπ∥X − Y ∥q

]1/q
.

We now introduce a formal set-up for the non-Gaussian component recovery problem which we
will analyse.

Assumption 1. Suppose that we have data X1, . . . , Xn i.i.d. from a σ-sub-Gaussian distribution ν
on Rp,1 where Ψ has the following structure: Suppose X ∼ Ψ.

1. EX = 0; var(X) = Ip
2.

2. There is a (unknown) k-dimensional subspace U such that ΠUX has a sufficiently non-Gaussian
distribution, and ΠU⊥X has a close-to-Gaussian distribution, in the sense that there exists
constants κ1, κ2 with,

inf
v∈U∩Sp−1

dWq(v♯Ψ,Φ) > κ1 > κ2 > sup
v∈U⊥∩Sp−1

dWq(v♯Ψ,Φ).

3. ΠUX and ΠU⊥X are independent.

Given the sample X1, · · · , Xn, our goal is to recover the space U . The quantities κ1 and κ2, as
we will see below, dictate a separation condition necessary to distinguish the non-Gaussian signal
components from the Gaussian part.

To further motivate our setup let us quickly look at a simple distribution satisfying the assumptions
above:

Example 2.1. Let the data X be generated from a mixture of Gaussians i.e.
∑k

i=1
N(ui,Ip)

k , where
ui’s are some vectors in Rp. Note quickly that if v is any norm 1 vector orthogonal to all ui, then
v⊤X follows N(0, 1) and is independent of u⊤i X. Clearly then this is a specific example of our model,
with U = Span{u1, . . . , uk}. In fact the projection of Ψ to the subspace U⊥ is the distribution
N(0, Ip−k).

Before moving onto the technical results we also quickly define the following notations we will be
using throughout.

1A random variable X ∈ Rp with mean µ is sub-Gaussian with parameter σ or the distribution is in SGp(σ) iff

P

(
∥X − µ∥ ≥ t

)
≤ Ce

− t2

2σ2 .

2While for the purposes of our proof, we have assumed that the covariance matrix is identity throughout, this
assumption is heuristically not much different from working with whitened data.
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Definition 2.2. Given a p-dimensional distribution ν and a 1-dimensional distribution µ

d(q)(ν, µ) := sup
v∈Sp−1

dWq(v♯ν, µ).

Note that when p = 1, this is simply the q-Wasserstein distance between the ν and µ. For larger
p, when µ = Φ, our distance d(q) captures how non-Gaussian the distribution ν can become in a
particular direction.

Definition 2.3. Given a p-dimensional distribution ν and a 1-dimensional distribution µ

sep(q)(ν, µ) := inf
v∈Sp−1

dWq(u♯ν, µ).

In essence, when µ = Φ, sep(q) gives a measure of separation from the 1-dimensional Gaussian.

Definition 2.4. For a subspace W of Rp and let Q be a matrix whose columns form an orthonormal
basis of W . For a random variable X ∈ Rp with distribution µ, we define µ|Q to be the distribution

of Q⊤X.

We remark that as the distance d(q)(µ,Φ) is rotationally invariant, i.e. given a fixed subspace
W , d(q)(µ|Q,Φ) is the same regardless of what orthonormal basis one chooses for W . Thus one can
consider the quantity d(q)(µ|W ,Φ) unambiguously.

Finally for the sake of clarity of our conclusion we define a signal to noise ratio for the distribution
Ψ (under the assumption that d(2)(Ψ,Φ) ̸= sep(2)(Ψ|U ,Φ))

3, SNR2 as

SNR2 =

√
d(2)(Ψ,Φ)2 − d(2)(Ψ|U⊥ ,Φ)2

d(2)(Ψ,Φ)2 − sep(2)(Ψ|U ,Φ)2
.

We can also define a signal to noise ratio for a general q. Unfortunately because of technical reasons
this ratio is slightly weaker than the specific case of q = 2. In particular let us define for q ≥ 1, q ̸= 2,
the signal to noise ratio SNRq (under the assumption that d(q)(Ψ,Φ) ̸= sep(q)(Ψ|U ,Φ)) as

SNRq =

√
d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2

d(q)(Ψ,Φ)2 − sep(q)(Ψ|U ,Φ)2 + d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)/4
.

Note that based on our definition of κ1 and κ2, our SNR
2
q is always positive.

We will show that for p/n smaller than a constant and n large enough we can construct with
high probability k orthonormal vectors û1, . . . , ûk such that∥∥ProjU⊥(ûj)

∥∥ ≤ 2

SNRq
.

We also show that we can estimate k if k ≤ SNR2
q

4 .

3If d(2)(Ψ,Φ)2 = sep(2)(Ψ|U ,Φ)
2 , then we can choose any arbitrary δ > 0, and define SNR2 =√

d(2)(Ψ,Φ)2−d(2)(Ψ|U⊥ ,Φ)2

(1−δ2)d(2)(Ψ,Φ)2
. Then for p/n smaller than a constant depending on δ and n large enough we will

again get
∥∥ProjU⊥(v̂j)

∥∥ ≤ 2
SNR

, as in the normal case. A similar equation is true for the general q
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3 Main results

The following proposition is the central pivot granting us leverage to most of our results.

Proposition 3.1. Let X1, . . . , Xn be n data points from Ψ. Let n,p go to infinity in a way such
that p/n → γ. Then given a positive constant ϵ, there exists a positive constant γσ,ϵ depending on σ
and ϵ such that when γ ≤ γσ,ϵ, we have for 1 ≤ q ≤ 2

P
(

sup
v∈Sp−1

∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]∣∣∣∣ > ϵ

)
< D exp(−ncσ,γ,ϵ),

where cσ,γ,ϵ is some positive constant dependent on σ, γ, and ϵ.

Proposition 3.1 uniformly bounds the difference between the data dependent (and thus random)

quantity, dWq

(
1
n

∑n
i=1 δv⊤Xi

, v♯Ψ

)
, and the deterministic quantity E

[
dWq

(
1
n

∑n
i=1 δv⊤Xi

, v♯Ψ

)]
,

dependent only on v.

Then given our assumptions 1 on the distribution Ψ above, we will state the following theorem
(proved in Section 5):

Theorem 3.1 (Empirical non-Gaussianity implies true non-Gaussianity). Let X1, . . . , Xn be n
data points from Ψ. Let n,p go to infinity in a way such that p/n → γ and let 1 ≤ q ≤ 2. Then
given an ϵ > 0, there exists a constants γσ,ϵ dependent on σ and ϵ and Cσ depending on σ such
that if γ ≤ γσ,ϵ, the following statement is true with high probability for all unit vectors v in Rp

simultaneously. ∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
,Φ

)
− dWq

(
v♯Ψ,Φ

)∣∣∣∣ ≤ ϵ+
Cσ
2q
√
n
.

We note that Theorem 3.1 needs very little assumptions on the distribution Ψ. We only need Ψ to
be σ-sub-Gaussian. The main upshot of the theorem is that it implies with uniform high probability
that in every direction the empirical distribution of the projection is as far away from Gaussian, as
the true marginal distribution in that direction. Thus heuristically if we want to find directions
in which Ψ is not Gaussian it makes sense to maximise the quantity dWq

(
1
n

∑n
i=1 δv⊤Xi

,Φ
)
. We

can also derive a version of the above theorem which shows that in the proportional asymptotic
setting (i.e. p/n → γ), the error of the estimate is relatively small. A proof of Theorem 3.1 (and
Corollary 3.1) is written in Section 5.

Corollary 3.1. Let X1, . . . , Xn be n data points from Ψ. Let n, p go to infinity in a way such that
p/n → γ < 1 and let 1 ≤ q ≤ 2. Then there exists a constants γσ dependent on σ and Cσ depending
on σ such that if γ ≤ γσ, then the following is true with high probability simultaneously for all unit
vectors v in Rp: ∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
,Φ

)
− dWq

(
v♯Ψ,Φ

)∣∣∣∣ ≤ √
γ log

1

γ
+

Cσ
2q
√
n
.

We can now proceed to state conditions under which the recovered directions have a very small
component in the Gaussian subspace U⊥.
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Theorem 3.2 (Recovered direction is almost orthogonal to the Gaussian subspace). Let U⊥ be
the Gaussian subspace of Ψ. Let X1, . . . , Xn be n data points from Ψ. Let n,p go to infinity in a
way such that p/n → γ. Given ϵ > 0, there exists a constant γσ,ϵ dependent on σ and ϵ such that if
γ ≤ γσ,ϵ, then with asymptotic high probability for any v ∈ Sp−1 such that dWq

(
1
n

∑n
i=1 δv⊤Xi

,Φ
)
≥√

1− δ2d(Ψ,Φ) + ϵ+ Cσ
2q√n

, we have that for 1 ≤ q ≤ 2

∥∥ProjU⊥(v)
∥∥2
2
≤ δ2

d(q)(Ψ,Φ)2

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
+

d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
.

For q = 2 we have the sharper bound:

∥∥ProjU⊥(v)
∥∥2
2
≤ δ2

d(2)(Ψ,Φ)2

d(2)(Ψ,Φ)2 − d(2)(Ψ|U⊥ ,Φ)2
.

Now that we have introduced most of our bulky technology, we can use it to prove the following
simple Corollary. In the interest of space we have moved a detailed proof of the Corollary to the
Appendix in Section A. This in turn allows us to argue the validity of a procedure in the vein of the
general idea of matching pursuit.

Corollary 3.2 (Guarantee that recovery is possible). Let U be a k-dimensional sub-space of Rp,
where k is a constant. Let X1, . . . , Xn be n data points from Ψ. Let l < k be some integer. Let
v1, . . . , vl be some vectors in Rp. Then there exists some constant Cσ, depending on σ such that
given ϵ > 0 there exists with high probability a unit vector û which is orthonormal to all vi such that
for 1 ≤ q ≤ 2

dWq

(
1

n

n∑
i=1

δû⊤Xi
,Φ

)
≥ sep(q)(Ψ|U ,Φ)− ϵ− Cσ

2q
√
n
.

Suppose now that the distribution Ψ is such that there is a k dimensional subspace U such that
there exists a δ with sep(2)(Ψ|U ,Φ) ≥

√
1− δ2d(2)(Ψ,Φ). (If sep(2)(Ψ|U ,Φ) = d(2)(Ψ,Φ) , then we

can choose any δ > 0. We discuss this case in Remark 3.1.) That is the “top k directions” are a
constant factor far from Gaussian as the maximum possible. Then using Corollary 3.2 we can with
high probability sequentially construct vectors û1, . . . , ûk such that for every 1 ≤ j ≤ k,

dWq

(
1

n

n∑
i=1

δû⊤
j Xi

,Φ

)
≥

√
1− δ2d(q)(Ψ,Φ)− ϵ− Cσ

2q
√
n
.

Then setting ϵ =
δ2d(q)(Ψ,Φ)

2 , and n large enough such that 4Cσ
2q√n

≤ δ2d(Ψ,Φ), we have that

dWq

(
1

n

n∑
i=1

δû⊤
j Xi

,Φ

)
≥

√
1− δ2d(q)(Ψ,Φ)− ϵ− Cσ

2q
√
n
≥

√
1− 4δ2d(2)(Ψ,Φ) + ϵ+

Cσ
2q
√
n
.

Now we can use Theorem 3.2 with ϵ set as above. Thus if p/n converges to a sufficiently small
constant γ depending on δ and σ, then for large enough n with high probability we have that for
every j, ∥∥ProjU⊥(ûj)

∥∥ ≤ 2δ
d(2)(Ψ,Φ)√

d(2)(Ψ,Φ)2 − d(2)(Ψ|U⊥ ,Φ)2
.
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By a similar argument for a general q we get,∥∥ProjU⊥(ûj)
∥∥2 ≤ 4δ2

d(q)(Ψ,Φ)2

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
+

d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
.

In other words the k-space that we found (i.e. the one spanned by û1, . . . , ûk) is approximately
orthogonal to U⊥, the subspace where the distribution is close to Gaussian. Thus we have the
following natural method to estimate k vectors which are almost orthogonal to U⊥. For 1 ≤ j ≤ k,
let

ûj = argmax
v∈Sp−1 and

v⊤ût=0 ∀t<j

dW2

(
1

n

n∑
i=1

δv⊤Xi
,Φ

)
.

By invoking Theorem 3.2 with δ such that sep(2)(Ψ|U ,Φ) =
√
1− δ2d(2)(Ψ,Φ), (Assuming sep(q)(Ψ|U ,Φ) ̸=

d(q)(Ψ,Φ). We discuss the equality case in Remark 3.1) the above discussion then implies that, with
high probability for large enough n we have that:

∥∥ProjU⊥(ûj)
∥∥ ≤ 2

√
d(2)(Ψ,Φ)2 − sep(2)(Ψ|U ,Φ)2

d(2)(Ψ,Φ)2 − d(2)(Ψ|U⊥ ,Φ)2
=

2

SNR2
.

Similarly for a general q we have that

∥∥ProjU⊥(ûj)
∥∥ ≤

√
4
d(q)(Ψ,Φ)2 − sep(q)(Ψ|U ,Φ)2

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
+

d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
=

2

SNRq
.

Remark 3.1. When sep(2)(Ψ|U ,Φ) =
√
1− δ2d(2)(Ψ,Φ), we can in fact choose an arbitrary δ > 0.

We choose an apropriate ϵ as before and apply Theorem 3.2 along with Corollary 3.2. Thus, if p/n
is smaller than a constant depending upon δ, with high probability for a large enough n we have
that for every j, ∥∥ProjU⊥(ûj)

∥∥ ≤ 2δ
d(2)(Ψ,Φ)√

d(2)(Ψ,Φ)2 − d(2)(Ψ|U⊥ ,Φ)2
.

Similarly for q ≥ 3 we have, under similar conditions, that:∥∥ProjU⊥(ûj)
∥∥2 ≤ 4δ2

d(q)(Ψ,Φ)2

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
+

d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
.

A common problem that often occurs in such problems is that k is unknown. To give some answer
to this question we first consider the following corollary which is proved in detail in the Appendix
in Section B.

Corollary 3.3. Given integers m > k + 1, let δ be a positive real number such that 4δ2 <

1
m

(
1−

d(2)(Ψ|U⊥ ,Φ)2

d(2)(Ψ,Φ)2

)
. Let X1, . . . , Xn be n data points from Ψ. Let n,p go to infinity in a way such

that p/n → γ Given ϵ > 0 there is a γσ,ϵ, where γσ,ϵ is a constant depending on σ, ϵ, such that if
γ ≤ γσ,ϵ then with high probability there does not exist a set of k + 1 orthonormal unit vectors
û1, . . . , ûk+1 such that

dW2

(
1

n

n∑
i=1

δû⊤
j Xi

,Φ

)
≥

√
1− 4δ2d(2)(Ψ,Φ) + ϵ+

Cσ
4
√
n
,

for all 1 ≤ j ≤ k + 1.
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Remark 3.2. For a general q ̸= 2, we can get a similar result but with δ such that

4δ2 <
1

m

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2 − d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

d(q)(Ψ,Φ)2
.

Continuing the discussion prior to the corollary, we consider δ such that sep(2)(Ψ|U ,Φ) ≥
√
1− δ2 d(2)(Ψ,Φ). Note that when k + 1 < 1

4

d(2)(Ψ,Φ)2−d(2)(Ψ|U⊥ ,Φ)2

d(2)(Ψ,Φ)2−sep(2)(Ψ|U ,Φ)2
=

SNR2
2

4 the hypothesis of

Corollary 3.3 is true. This gives us a natural cutoff point for our sequential algorithm. We can stop

at k̂, if for ϵ =
δ2d(2)(Ψ,Φ)

2 , and n large enough such that 4Cσ
4√n

≤ δ2d(2)(Ψ,Φ) we have that

dW2

(
1

n

n∑
i=1

δû⊤
k̂+1

Xi
,Φ

)
<

√
1− 4δ2d(2)(Ψ,Φ) + ϵ+

Cσ
4
√
n
.

Corollary 3.3 then implies that this stopping rule ensures with high probability that k̂ ≤ k. On the
other hand, the discussion following Corollary 3.2 means that the same stopping rule ensures that

k̂ ≥ k. In effect we have that if k + 1 <
SNR2

2
4 , then with high probability k̂ = k.

4 Conclusion

In this article, we have considered the problem of isolating a non-Gaussian independent component
from a Gaussian counterpart under certain separability assumptions. We have theoretically analysed
the approximation accuracy of a projection pursuit procedure. In contrast to more traditional
procedures like PCA, we do not need the variances of the superfluous feature directions to be small.
We only need a distributional gap between directions which are Gaussian and those which are not.

Since the proposed method involves optimisation of the objective function dW2

(
1
n

∑n
i=1 δv⊤Xi

,Φ
)

as v varies over the unit sphere, two natural questions immediately come to mind. First of all,
since our objective function is markedly non-convex, designing an efficient algorithm that can find a
global minimum (or even good local minima) would be a significant addition to present work.

Secondly, it needs to be investigated if similar results are true for distances other than the
2-Wasserstein distance. It is plausible that some distances would be more suitable both from a
theoretical perspective and also the practical optimisation aspect. We leave the investigation of
these questions for future work.

5 Proofs

5.1 Proof of Proposition 3.1

Quickly noting that for any vector v ∈ Rp, with ∥v∥ = 1 we have,

P
(∣∣v⊤(X − µ)

∣∣ ≥ t
)
≤ P

(
∥X − µ∥ ≥ t

)
,

we obtain the following simple proposition.

Proposition 5.1. If X ∈ Rp is in SGp(σ) and v ∈ Rp be any unit norm vector (i.e. ∥v∥ = 1), then
v⊤X ∈ SG1(σ).
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The following simple proposition bounds the operator norm of the sample covariance matrix of
i.i.d. sub-Gaussian random vectors. It is a slightly reworded version of Theorem 6.5 of Wainwright
(2019).

Proposition 5.2. Let X1, . . . , Xn be an i.i.d. sample from a σ-sub-Gaussian distribution in Rp

with covariance matrix I. Then there exist universal constants c1, c2, c3 such that we have for all
δ > 0 that

P
(∥∥∥∥ 1n ∑

XiX
⊤
i

∥∥∥∥
2

≥ 1 + σ2

(
c1

(√
p

n
+

p

n

)
+ δ

))
≤ c2e

−nc3 min(δ,δ2).

We will also use the following result on Wasserstein distances and sample convergences found in
Bobkov and Ledoux (2019) as Corollary 7.17.

Proposition 5.3. Let q ≥ 1. Let µ be some distribution such that for some s > 2q its s-th moment
exists and is bounded. Then given v such that ∥v∥ = 1, if X1, . . . , Xn are iid random variables
sampled from µ, we have

E
[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, µ

)q]
≤ C√

n
,

where C is some absolute constant dependent upon the upper bound of the s-th moment.

To prove Proposition 3.1, we will finally be needing the following lemma (proved in the Appendix
in Section C,) on the concentration of the q-Wasserstein distance between a sub-Gaussian measure µ
and the empirical measure µn = 1

n

∑n
i=1 δXi of an i.i.d. sample X1, . . . , Xn from µ (a similar result

with a log-Sobolev assumption on µ appears as Theorem 7.1 in Bobkov and Ledoux (2019)).

Lemma 5.1. Let µ be a σ-sub-Gaussian measure. Let µn be the empirical measure formed from an
i.i.d. sample of size n from µ. Then

P
(
|dWq(µn, µ)− EdWq(µn, µ)| ≥ t

)
≤ C exp

(
− c n2/max{q,2}t2

σ2

)
.

for some absolute constants C, c > 0.

Now armed with the above preliminaries we can move onto proving our central results:

Proof of Proposition 3.1. As mentioned before we begin by using Lemma 5.1 and the hypothesis
that v⊤X is σ-sub-Gaussian to get that for any fixed v (with ∥v∥ = 1) we have

P
(∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]∣∣∣∣ ≥ t

)
≤ A′ exp

(
− c n2/max{q,2}ϵ2

σ2

)
,

where the constants A′, c are absolute constants

Let Ep,δ be a smallest δ-net on the unit sphere in Rp, i.e. given any v ∈ Sp−1, ∃ a w ∈ Ep,δ such
that ∥v − w∥ ≤ δ. It is known that there exists such a net for any p such that |Ep,δ| ≤ A′′ 1

δp . Then
we have that

P
(

sup
w∈Ep,δ

∣∣∣∣dWq

(
1

n

n∑
i=1

δw⊤Xi
, w♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δw⊤Xi
, w♯Ψ

)]∣∣∣∣ ≥ ϵ

)
≤

(
1

δ

)p

A exp

(
− c n2/max{q,2}ϵ2

σ2

)
.
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To go from taking the supremum over the net to that on the entire sphere then we would have
to control how small changes in v affect the quantity of interest. To that end let v ∈ Sp−1. Let
w ∈ Ep,δ such that ∥w − v∥ ≤ δ. Then we have∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− dWq

(
1

n

n∑
i=1

δw⊤Xi
, w♯Ψ

)∣∣∣∣
≤

∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− dWq

(
1

n

n∑
i=1

δw⊤Xi
, v♯Ψ

)∣∣∣∣
+

∣∣∣∣dWq

(
1

n

n∑
i=1

δw⊤Xi
, v♯Ψ

)
− dWq

(
1

n

n∑
i=1

δw⊤Xi
, w♯Ψ

)∣∣∣∣
≤

∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
,
1

n

n∑
i=1

δw⊤Xi

)∣∣∣∣+ ∣∣dWq

(
v♯Ψ, w♯Ψ

)∣∣.
We now upper bound each of the two terms above. The second term can be upper bounded for
1 ≤ q ≤ 2 as follows:∣∣dWq

(
v♯Ψ, w♯Ψ

)∣∣q = inf
(X,X′): the marginals

X and X′ are distributed as Ψ

E[|v⊤X − w⊤X ′|q]

≤ EX∼Ψ[|(v − w)⊤X|q] (considering the coupling X = X ′)

= EX∼Ψ[(v
⊤X − w⊤X)2]q/2

≤
(
(v − w)⊤EX∼Ψ[XX⊤](v − w)

)q/2
(by concavity of x 7→ xq/2 for 0 ≤ q/2 ≤ 1)

≤ δq. (as E[XX⊤] = Ip)

Similarly, for the first term we note that∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
,
1

n

n∑
i=1

δw⊤Xi

)∣∣∣∣q = (
(v − w)⊤

(
1

n

n∑
i=1

XiX
⊤
i

)
(v − w)

)q/2

≤
(
δ
∥∥∥Σ̂n

∥∥∥
2

)q
,

where Σ̂n is the sample covariance matrix and ∥·∥2 denotes the operator norm. We will now use a
result that the operator norm of the sample covariance matrix is with high probability smaller than

2 + C ′σ2

(√
p
n + p

n

)
, for some universal constant C ′ (see Proposition 5.2).

Then we can condition on this event as this is true with high probability (1− e−θn). Thus we
have w.h.p. ∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
,
1

n

n∑
i=1

δw⊤Xi

)∣∣∣∣ ≤ δ

(
3 + C ′σ2

(√
p

n
+

p

n

))
.

Combining everything then we have w.h.p.∣∣∣∣dWq

(∑n
i=1 δv⊤Xi

n
, v♯Ψ

)
− dWq

(∑n
i=1 δw⊤Xi

n
,w♯Ψ

)∣∣∣∣ ≤ δ

(
3 + C ′σ2

(√
p

n
+

p

n

))
.

We then have that whenever there exists an v ∈ Sp−1 with∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]∣∣∣∣ ≥ ϵ+ 2δ

(
3 + C ′σ2

(√
p

n
+

p

n

))
,
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there exists a v ∈ Ep,δ whp (with the property that ∥v − w∥ ≤ δ) such that∣∣∣∣dWq

(
1

n

n∑
i=1

δw⊤Xi
, v♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]∣∣∣∣ ≥ ϵ.

Thus using the probability bound on the δ-net gives us

P
(

sup
v∈Sp−1

∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]∣∣∣∣ ≥ ϵ+ 2δ

(
3 + C ′σ2

√
p

n
+ C ′σ2 p

n

))

≤ P
(

sup
w∈Ep,δ

∣∣∣∣dWq

(
1

n

n∑
i=1

δw⊤Xi
, w♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δw⊤Xi
, w♯Ψ

)]∣∣∣∣ ≥ ϵ

)
+ e−θn

≤
(
1

δ

)p

Ae−
cnϵ2

σ2 + e−θn = Ae−
cnϵ2

σ2 −p log δ + e−θn,

where we get the extra p
n term as it is no longer true that p

n ≪
√

p
n (and from invoking Proposi-

tion 5.2). Using the hypothesis that p
n → γ and choosing a δ such that

δ =
ϵ

2

(
3 + C ′σ2√γ + C ′σ2γ

) ,

we get

P
(

sup
v∈Sp−1

∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]∣∣∣∣ ≥ 2ϵ

)
≤ A exp

(
− cnϵ2

σ2
− p log

ϵ

6 + 2C ′σ2√γ + 2C ′σ2γ

)
+ e−θn

= A exp

(
− n

(
cϵ2

σ2
+ (1 + o(1))γ log

ϵ

6 + 2C ′σ2√γ + 2C ′σ2γ

))
+ e−θn. (3)

As there is some constant γσ,ϵ such that for all γ ≤ γσ,ϵ,
cϵ2

σ2 + γ log ϵ
6+2C′σ2√γ+2C′σ2γ

is positive and

lower bounded, the proof follows.

5.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Note that Proposition 3.1 probabilistically bounds the difference between
dWq

(
1
n

∑n
i=1 δv⊤Xi

, v♯Ψ
)
and the its expectation as v varies over all possible unit vectors. Define

γσ,ϵ as in Proposition 3.1. Thus when γ ≤ γσ,ϵ we have with high probability for all unit vectors
u ∈ Rp simultaneously that∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]∣∣∣∣ ≤ ϵ. (4)

Since v♯Ψ is σ-sub-Gaussian we can conclude that all its moments are upper bounded (by a suitable
function of σ). Choose any s > 4 and combine the upper bound on s’th moment of v⊤X with
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Proposition 5.3 (Corollary 7.17 of Bobkov and Ledoux (2019)). We then get that there is a constant
Cσ, dependent on σ, such that

E
[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]q
≤ E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)q]
≤ C2

σ√
n
, (5)

using the convexity of x 7→ xq for q ≥ 1.

Combining Equations (4) and (5) with the triangle inequality, we have with high probability that∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
,Φ

)
− dWq

(
v♯Ψ,Φ

)∣∣∣∣ ≤ dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)

≤ ϵ+ E
[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯Ψ

)]
≤ ϵ+

C2
σ

n1/2q
.

This completes the proof.

5.3 Proof of Corollary 3.1

We note from proof of Theorem 3.1 and equation 3 of the proof of Proposition 3.1 that for the
upperbound to hold we can choose ϵ, γ (for γ < 1) such that cϵ2

σ2 + γ log ϵ
6+2C′σ2√γ+2C′σ2γ

is positive.

In particular then if we choose ϵ = −√
γ log γ, our quantity of interest becomes

cϵ2

σ2
+ γ log

ϵ

6 + 2C ′σ2√γ + 2C ′σ2γ
=

cγ| log γ|2

σ2
+ γ log

√
γ| log γ|

6 + 2C ′σ2√γ + 2C ′σ2γ

= γ

[
c| log γ|2

σ2
+ log

√
γ| log γ|

6 + 2C ′σ2√γ + 2C ′σ2γ

]
.

Thus for small enough γ (depending on σ) this quantity is always positive and our upper bound
holds. Plugging in the value of this ϵ in Theorem 3.1 gives us with high probability that∣∣∣∣dW2

(
1

n

n∑
i=1

δv⊤Xi
,Φ

)
− dW2

(
v♯Ψ,Φ

)∣∣∣∣ ≤ √
γ log

1

γ
+

Cσ
4
√
n
.

5.4 Proof of Theorem 3.2

We first prove a lemma.

Lemma 5.2. Let β =
∥∥ProjW (v)

∥∥, then for any q ≥ 1,

dWq

(
v♯Ψ,Φ

)
≤

√
1− β2 d(Ψ,Φ) + β d(Ψ|U⊥ ,Φ).

Further, for q = 2, we have the sharper inequality

dW2

(
v♯Ψ,Φ

)2 ≤ (1− β2) d(Ψ,Φ)2 + β2 d(Ψ|U⊥ ,Φ)2.
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Proof. Let v =
√

1− β2u + βw, where u ∈ U , w ∈ U⊥, and ∥w∥ = ∥u∥ = 1. Let X be a
random variable distributed as Ψ. Thus v⊤X =

√
1− β2u⊤X + βw⊤X, where u⊤X and w⊤X are

independent random variables following the distributions u♯Ψ and w♯Ψ respectively. In other words
if Y1 and Y2 are two independent random variables from the distributions u♯Ψ and w♯Ψ respectively
we can write

u⊤X
d
=

√
1− β2Y1 + βY2, (6)

where
d
= means equal in distribution. Note then that if Z is a random variable distributed as Φ(i.e.

N(0, 1)), and Z2, Z3 are two iid copies distributed as Φ, we can also write

Z
d
=

√
1− β2Z1 + βZ2. (7)

Let Ω, be the set of all possible couplings of the distributions of v♯Ψ and Φ. Similarly, let Ω1

(resp. Ω2) be the set of all possible couplings of the distributions of u♯Ψ and Φ (resp. w♯Ψ and Φ).
Then there is a natural way to construct a coupling in Ω given a coupling in Ω1 and another in
Ω2. That given any joint distribution µ in Ω1 whose marginals are u♯Ψ and Φ respectively, define
Y1 and Z1 be the corresponding marginal random variables i.e. (Y1, Z1) ∼ µ. Similarly given any
joint distribution ν in Ω2, we can define random variables Y2, Z2 where (Y2, Z2) ∼ ν. Note that by
construction we can keep the pair (Y1, Z1) independent of (Y2, Z2). Then equations 6 and 7 can be
used to define a joint distribution in Ω. We then derive the following inequality,

dWq

(
v♯Ψ,Φ

)
= inf

(v⊤X,Z)∈Ω
E
[
|v⊤X − Z|q

]1/q
≤ inf

(Y1,Z1)∈Ω1

(Y2,Z2)∈Ω2

E
[∣∣√1− β2Y1 + βY2 −

√
1− β2Z1 − βZ2

∣∣q]1/q
= inf

(Y1,Z1)∈Ω1

(Y2,Z2)∈Ω2

E
[∣∣√1− β2(Y1 − Z1) + β(Y2 − Z2)

∣∣q]1/q
≤ inf

(Y1,Z1)∈Ω1

(Y2,Z2)∈Ω2

√
1− β2E

[
|Y1 − Z1|q

]1/q
+ βE

[
|Y2 − Z2|q

]1/q
(by Minkowski’s inequality)

=
√
1− β2 dWq(u♯Ψ,Φ) + β dWq(w♯Ψ,Φ).

≤
√
1− β2 d(q)(Ψ,Φ) + β d(q)(Ψ|W ,Φ).

For the case q = 2, we get a stronger inequality by carefully expanding the square instead of using
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Minkowski’s inequality. In particular,

dW2

(
v♯Ψ,Φ

)2
= inf

(v⊤X,Z)∈Ω
E
[
(v⊤X − Z)2

]
≤ inf

(Y1,Z1)∈Ω1

(Y2,Z2)∈Ω2

E
[
(
√

1− β2Y1 + βY2 −
√
1− β2Z1 − βZ2)

2

]

= inf
(Y1,Z1)∈Ω1

(Y2,Z2)∈Ω2

(1− β2)E
[
(Y1 − Z1)

2

]
+ β2E

[
(Y2 − Z2)

2

]

+ 2β
√
1− β2E

[
(Y1 − Z1)(Y2 − Z2)

]
= inf

(Y1,Z1)∈Ω1

(Y2,Z2)∈Ω2

(1− β2)E
[
(Y1 − Z1)

2

]
+ β2E

[
(Y2 − Z2)

2

]

= (1− β2) inf
(Y1,Z1)∈Ω1

E
[
(Y1 − Z1)

2

]
+ β2 inf (Y2, Z2) ∈ Ω2E

[
(Y2 − Z2)

2

]
= (1− β2)dW2(u♯Ψ,Φ)2 + β2dW2(w♯Ψ,Φ)2

≤ (1− β2)d(2)(Ψ,Φ)2 + β2d(2)(Ψ|U⊥ ,Φ)2.

This completes the proof.

Proof of Theorem 3.2. We begin by using Lemma 5.2 to get

dWq

(
v♯Ψ,Φ

)
≤

√
1− β2 d(q)(Ψ,Φ) + β d(q)(Ψ|U⊥ ,Φ).

Squaring both sides,

dWq

(
v♯Ψ,Φ

)2 ≤ (1− β2) d(q)(Ψ,Φ)2 + β2 d(q)(Ψ|U⊥ ,Φ)2 + 2β
√

(1− β2)d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

≤ (1− β2) d(q)(Ψ,Φ)2 + β2 d(q)(Ψ|U⊥ ,Φ)2 + d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ),

where the last line follows by using the AM-GM inequality to get
√
β2(1− β2) ≤ 1/2. Now using

Theorem 3.1 and the hypothesis, we have for an appropriate γσ,ϵ and Cσ that dWq(v♯Ψ,Φ) ≥√
1− δ2d(q)(Ψ,Φ). Thus

(1− δ2)d(q)(Ψ,Φ)2 ≤ (1− β2) d(q)(Ψ,Φ)2 + β2 d(q)(Ψ|U⊥ ,Φ)2 + d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

=⇒
∥∥ProjU⊥(v)

∥∥2 = β2 ≤ δ2
d(q)(Ψ,Φ)2

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2
+

d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ)

d(q)(Ψ,Φ)2 − d(q)(Ψ|U⊥ ,Φ)2

For q = 2, we can use the sharper upper bound in Lemma 5.2, i.e.

dW2

(
v♯Ψ,Φ

)2 ≤ (1− β2) d(2)(Ψ,Φ)2 + β2 d(2)(Ψ|U⊥ ,Φ)2.

As before using Theorem 3.1 and the hypothesis, we have for an appropriate γσ,ϵ and Cσ that
dW2(v♯Ψ,Φ) ≥

√
1− δ2d(Ψ,Φ). Using this and rewriting the inequality we get

∥∥ProjU⊥(v)
∥∥2 = β2 ≤ δ2

d(2)(Ψ,Φ)2

d(2)(Ψ,Φ)2 − d(2)(Ψ|U⊥ ,Φ)2
.
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Remark 5.1. Instead of bounding
√

β2(1− β2) by 1/2, we could get a sharper inequality by instead
doing the following. We note that if (1− δ2)d(q)(Ψ,Φ)2 − (1− β2) d(q)(Ψ,Φ)2 − β2 d(q)(Ψ|U⊥ ,Φ)2

is negative then we already get the bound β2 ≤ δ2
d(q)(Ψ,Φ)2

d(q)(Ψ,Φ)2−d(q)(Ψ|U⊥ ,Φ)2
. Otherwise we can square

both sides to get(
(1−δ2)d(q)(Ψ,Φ)2−(1−β2) d(q)(Ψ,Φ)2−β2 d(q)(Ψ|U⊥ ,Φ)2

)2 ≤ 4β2(1−β2)d(q)(Ψ,Φ)d(q)(Ψ|U⊥ ,Φ).

On expansion we note that this is a quadratic in β2. Thus if ∆ is its discriminant and we write
x = d(q)(Ψ,Φ), y = d(q)(Ψ|U⊥ ,Φ), we get the bound

β2 ≤ 2δ2x2(x2 − y2) + 4x2y2 +
√
∆

2(x2 + y2)2
≤ 2δ2x2(x2 − y2) + 4x2y2

(x2 + y2)2
,

where the last inequality follows from the fact that the quadratics leading and constant terms are
positive and hence

√
∆ ≤ 2δ2x2(x2 − y2) + 4x2y2.
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A Proof of Corollary 3.2

Proof of Corollary 3.2. As l < k and dim(U) = k, by rank nullity theorem, there exists a unit
vector û in U which is orthogonal to all the vectors {v1, . . . , vl}. As k is constant. k ≪ n thus we
can invoke Proposition 3.1 with p = k to get that with high probability

sup
v∈U∩Sp−1

∣∣∣∣dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯ΨΦ

)
− E

[
dWq

(
1

n

n∑
i=1

δv⊤Xi
, v♯ΨΦ

)]∣∣∣∣ < ϵ.

In particular, then∣∣∣∣dWq

(
1

n

n∑
i=1

δû⊤Xi
, û♯ΨΦ

)
− E

[
dWq

(
1

n

n∑
i=1

δû⊤Xi
, û♯ΨΦ

)]∣∣∣∣ < ϵ.

Finally similar to the proof of Theorem 3.1, invoking Proposition 5.3 gives us

E
[
dWq

(
1

n

n∑
i=1

δû⊤Xi
, û♯ΨΦ

)]
≤ Cσ

2q
√
n
.

Therefore we have

dWq

(
1

n

n∑
i=1

δû⊤Xi
,Φ

)
≥ dWq

(
û♯Ψ,Φ

)
− dWq

(
1

n

n∑
i=1

δû⊤Xi
, û♯Ψ

)

≥ sepq(Ψ|U ,Φ)− ϵ− E
[
dWq

(
1

n

n∑
i=1

δû⊤Xi
, û♯Ψ

)]
≥ sepq(Ψ|U ,Φ)− ϵ− Cσ

2q
√
n
.
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B Proof of Corollary 3.3

We will need the following simple linear algebraic lemma.

Lemma B.1. Let v1, . . . , vk be a set of orthonormal vectors in a vector space Rp. Let G be the
subspace spanned by v1, . . . , vk. Let H be a subspace of Rp. Then ∀g ∈ G and h ∈ H such that
∥g∥ =∥h∥ = 1, we have that (

g⊤h
)2 ≤ k∑

j=1

∥∥ProjH(vj)
∥∥2 .

Proof. We first remember from basic linear algebra that for any unit vectors v ∈ Rp and h ∈ H,
we have |v⊤h| ≤ |ProjH(v)|. Then we can write g =

∑k
j=1 αjvj , where

∑
j α

2
j = 1 as ∥g∥ = 1 and

v1, . . . , vk form an orthonormal basis of G. Combining these we get

(g⊤h)2 =

( k∑
j=1

αjv
⊤
j h

)2

≤
( k∑

j=1

α2
i

)( k∑
j=1

(v⊤j h)
2

)
(by Cauchy-Schwartz)

≤
k∑

j=1

∥∥ProjH(vj)
∥∥2 .

This completes the proof.

We can now prove Corollary 3.3.

Proof of Corollary 3.3. To prove this we will use Theorem 3.2 along with the trivial linear algebraic
Lemma B.1. We prove by contradiction. Suppose a orthonormal set û1, . . . , ûk+1 exists satisfying
the hypothesis:

dW2

(
1

n

n∑
i=1

δû⊤
j Xi

,Φ

)
≥

√
1− 4δ2d(2)(Ψ,Φ) + ϵ+

Cσ
4
√
n
.

We can invoke Theorem 3.2 to get with high probability,

∥∥ProjU⊥(ûj)
∥∥ ≤ 2δ

d(2)(Ψ,Φ)√
d(2)(Ψ,Φ)2 − d(2)(Ψ|U⊥ ,Φ)2

.

Then let G = Span{û1, . . . , ûk+1}. As As dim(G) + dim(U⊥) = p+ 1, there exists a non-zero vector
s ∈ G ∩H = U⊥ such that ∥s∥ = 1. Invoking Lemma B.1 with H = U⊥ and g = h = s, we get the
contradiction

1 =
(
s⊤s

)2 ≤ k+1∑
j=1

∥∥ProjH(ûj)
∥∥2 ≤ 4(k + 1)δ2d(2)(Ψ,Φ)2

d(2)(Ψ,Φ)2 − d(2)(Ψ|W ,Φ)2
< 1.

This completes the proof.
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C Proof of Lemma 5.1

To prove Lemma 5.1, we need a bound on the concentration function of sub-Gaussian random
variables. For a Borel set A, let Ar denote the r-fattening of A:

Ar = {x : d(x,A) < r}.

Let µ be a probability measure on R. Let

αµ(r) = sup
A:µ(A)≥1/2

1− µ(Ar), r > 0,

denote the concentration function of µ.

Lemma C.1. Let µ be a σ-sub-Gaussian probability measure. Then there exist absolute constants

C, c > 0 such that αµ(r) ≤ Ce−
cr2

σ2 for all r > 0.

Proof. Without loss of generality, we may assume that σ = 1. Choose r0 such that µ((−r0, r0)
c) < 1

2 .
Then any A such that µ(A) > 1

2 must intersect (−r0, r0), for otherwise one would get µ(A) ≤
µ((−r0, r0)

c) < 1
2 . Take x0 ∈ A ∩ (−r0, r0). Then one must have

(−r, r) ⊆ x0 + (−(r0 + r), r0 + r) ⊆ Ar0+r.

Now, by sub-Gaussianity, there exist constants C1, c1 > 0 such that µ((−r, r)c) ≤ C1e
−c1r2 for all

r > 0. Therefore
1− µ(Ar+r0) ≤ µ((−r, r)c) ≤ C1e

−c1r2 ≤ Ce−c(r+r0)2 ,

where the last inequality holds for some constants C, c > 0 for all large enough r, say r > r1. (For

example, one can take c = 1
2c1, C = C1e

1
2
Br20 and r1 = 2r0.) Thus for all r > r0 + r1, we have that

αµ(r) ≤ Ce−cr2 .

We can always increase the constant C so that one has supr∈(0,r0+r1] αµ(r) ≤ Ce−c(r0+r1)2 . Then
for any r ≤ r0 + r1,

αµ(r) ≤ sup
r∈(0,r0+r1]

αµ(r) ≤ Ce−c(r0+r1)2 ≤ Ce−cr2 .

We conclude that there exist absolute constants C, c > 0 such that αµ(r) ≤ Ce−cr2 for all r > 0.

We are now ready to prove Lemma 5.1.

Proof of Lemma 5.1. The proof is the same as the proof of Theorem 7.1 in Bobkov and Ledoux
(2019), except that we replace their log-Sobolev assumption on µ with a sub-Gaussianity assumption,
which yields a stronger bound on the concentration function as in Lemma C.1, which in turns gives
us a tail bound of the form

P
(
|dWq(µn, µ)− EdWq(µn, µ)| ≥ t

)
≤ C exp

(
− c n2/max{q,2}t2

σ2

)
for some absolute constants C, c > 0.
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