
Recovering Imbalanced Clusters via Gradient-Based Projection Pursuit

Martin Epperta,⇤, Satyaki Mukherjeeb, Debarghya Ghoshdastidara

a Technical University of Munich School of Computation, Information and Technology - I7 Boltzmannstr. 3 85748 Garching b. München Germany
b National University of Singapore Level 4, Block S17 10 Lower Kent Ridge Road Singapore 119076

Abstract

Projection Pursuit is a classic exploratory technique for finding ”interesting” projections of a dataset. We propose
a method for recovering projections containing either Imbalanced Clusters or a Bernoulli-Rademacher distribution
using a gradient-based technique to optimize the projection index. As sample complexity is a major limiting factor in
Projection Pursuit, we analyze our algorithm’s sample complexity within a Planted Vector setting where we can ob-
serve that Imbalanced Clusters can be recovered more easily than balanced ones. Additionally, we give a generalized
result that works for a variety of data distributions and projection indices. We compare these results to computa-
tional lower bounds in the Low-Degree-Polynomial Framework. Finally, we experimentally evaluate our method’s
applicability to real-world data on FashionMNIST.

Keywords: Gradient-Based Methods, Projection Pursuit, Optimization, Statistical Computational Gap
2020 MSC: Primary 62H12, Secondary 62F12

1. Introduction

Projection Pursuit was introduced in Friedman and Tukey [6] as a method for finding maximally interesting pro-
jections, as determined by the histogram of the projected data. The measure of ”interestingness” is assessed by a
function called the projection index of the data projected onto a subspace. A subspace is then obtained for which
the projection index is maximized. One example of such a function would be Kurtosis, as maximizing excess Kur-
tosis can be a good way of finding non-Gaussian components [9]. The recovery of projections with large Kurtosis is
commonplace in Projection Pursuit and related methods [3, 9, 15, 27]. Also, recovery of projections with minimal
Kurtosis is common for finding bounded projections, for example, containing two evenly sized clusters [4].

A menagerie of projection indices is commonly used as presented in [10, 13, 14, 20, 21]. The choice of the index
depends on multiple considerations. Ideally, we would want an index that is simultaneously considered relevant in
the specific domain (e.g. finds subspaces where the data is bimodal) and is also easily optimizable. In the interest
of practical problems related to optimization, a common choice is to use a di↵erentiable projection index, which
can be optimized using o↵-the-shelf iterative gradient-based optimization techniques. For example, in the setting of
Independent Component Analysis(ICA), the gradient-based FastICA algorithm is commonly used to find maximizers
of certain projection indices [26]. ICA is a related method to Projection Pursuit with the goal of identifying a set
of independent random variables from a linear combination [9]. Even with this assumption, however, it cannot be
guaranteed that a global maximizer of the projection index is recovered within polynomial time. Frequently, it can
be observed that a minimum amount of samples is required for algorithms to recover a maximizer of the Projection
Index. For instance, Davis et al. [4] considers a model where the generated dataset has a su�ciently ”interesting”
subspace, i.e., the projection index of the data projected to the signal subspace is su�ciently larger than the same
projected to any orthogonal subspace, even just with a limited amount of samples. However, in practice, the landscape
of the loss function prevents gradient ascent and other methods, such as spectral methods, from finding the correct
subspace in polynomial time if too few samples are present. This is commonly called a statistical-computational
gap [5, 8, 15]. This means that there are regimes where the amount of data (n), with respect to the dimension (d), is

⇤Corresponding author. Email address:martin.eppert@tum.de

Preprint submitted to Journal of Multivariate Analysis August 31, 2024

Manuscript File Click here to view linked References

martin.eppert@tum.de
https://www2.cloud.editorialmanager.com/jmva/viewRCResults.aspx?pdf=1&docID=6088&rev=0&fileID=78677&msid=3d8712fd-e10c-4366-a498-f96cd96107db
https://www2.cloud.editorialmanager.com/jmva/viewRCResults.aspx?pdf=1&docID=6088&rev=0&fileID=78677&msid=3d8712fd-e10c-4366-a498-f96cd96107db

statistically enough for Projection Pursuit to work, yet in practice, the subspace is not recoverable using polynomial
time algorithms. In Projection Pursuit, this generally manifests in a way where it is possible to certify that a given
projection possesses an interesting structure using a small amount of samples (usually n = eO(d)) but a significantly
larger amount of samples are needed to recover a projection (in polynomial time) which reveals the structure. Beyond
this statistical-computational gap, as the number of samples becomes much larger than the ambient dimension, it
becomes possible to do Projection Pursuit again. For example, in Davis et al. [4], n = ⌦(d2) is needed for Projection
Pursuit to be usable.

However, in practice, the number of samples available frequently is in a significantly smaller order, thus severely
limiting the applicability of Projection Pursuit. Thus, it is crucial to design sample-e�cient methods for Projection
Pursuit. We consider this problem under the context of recovering a planted vector (”signal”) from an otherwise
Gaussian subspace. This manifests in a way where if the data is projected in a direction, which we will call the ”signal
direction,” the planted vector is revealed, while in all orthogonal directions, the data follows a Gaussian distribution.
In this paper, we consider a setting where the variance is unhelpful for recovering the planted vector, i.e., the planted
vector has unit variance. Recovering a planted vector is a generic task related to many problems in machine learning
and statistics. For example, recovering a planted vector is a subproblem in recovering sparsely used dictionaries.
Here, it is generally assumed that an (ortho-normal) basis exists such that the data represented in this basis is sparse.
Projection Pursuit is used to identify projections, which correspond to elements in the dictionary. Bai et al. [1] explores
the recovery of an orthogonal dictionary using gradient descent on the `1-norm. Zhai et al. [27] explores the recovery
of an orthogonal dictionary using a generalized power method by optimizing the Kurtosis.

This paper focuses on the performance of gradient-based algorithms for recovering planted vectors. As there has
already been a significant e↵ort in the literature to find sample-e�cient algorithms for recovering planted vectors that
match computational lower bounds, it is also of interest if gradient-based methods are also able to match computational
lower bounds. Spectral methods can approximately find projections with either large [7, 15] or small [4] Kurtosis.
Davis et al. [4] apply spectral methods to recover a planted vector when it is a balanced mixture of Gaussians and Hop-
kins et al. [7] consider a spectral method to recover a planted vector which follows a Bernoulli-Gaussian/Rademacher
distribution. Gradient-based methods are more commonly used in practice as they are both easier to implement and
easier to generalize to other projection indices. Additionally, gradient-based algorithms scale well computationally in
terms of the number of samples and dimensionality. Typically, gradient ascent runs in O(nd) steps per iteration. Naive
spectral methods based on singular-value or eigenvalue decompositions need at least O(nd2) steps.1 Additionally, it is
often not easy to extend to more complicated settings such as dictionary learning.

We present a general gradient-based Projection Pursuit algorithm, which we apply to the recovery of Imbalanced
Clusters in the planted vector setting, where we use p to denote the probability of a sample being in one cluster over
the other. A related setting in which Imbalanced Clusters have already been studied is outlier detection. Loperfido
[14] considers an imbalanced mixture of Gaussians, which can be recovered by maximizing Kurtosis. We use the
projection index �(x) = max{0, x}2 (ReLU2) for which we prove that n = eO(d2 p2) samples are su�cient for gradient
ascent to recover the signal direction. In this setting, as the cluster imbalance becomes larger, the smaller one of the
two clusters moves further away from the origin, with the larger one approaching zero. This assumption on the data is
similar to the assumptions made in dictionary learning [18, 22] where the distribution of the data on optimal projection
is assumed sparse (i.e. is zero with a large probability). This is usually modeled using a Bernoulli-Rademacher and
Bernoulli-Gaussian distribution, which are constructed by the product of a Bernoulli random variable with another
independent random variable to obtain a distribution that is zero with some fixed probability. Thus, we also apply the
algorithm to the recovery of a Bernoulli-Rademacher planted vector using Kurtosis as a Projection Index for which
n = e⌦(d3 p4) are su�cient. To our knowledge, the best-known algorithm, which uses exclusively gradient-based
methods to recover a planted sparse vector, has a sample complexity of n = e⌦

⇣
d4

⌘
[21].

In the planted vector setting, we analyze what changes to the gradient ascent algorithm can be applied to improve
its sample complexity. First, we propose using fresh mini-batches in each iteration of gradient ascent [2]. Suppose
we reuse the same dataset for each step of gradient ascent. In that case, more samples are necessary to ensure that the
optimization problem is smooth enough so that gradient ascent does not get stuck in local maxima. Using minibatches
mitigates this problem but comes at a significant cost, as we require new samples in each iteration. However, we prove

1Although in some cases it is possible to improve upon the time complexity of the algorithm by computing eigenvalues using power iteration [7].

2

that only a few steps are necessary to converge, and thus, the impact of resampling on the sample complexity is small.
Additionally, we suggest initializing gradient ascent with normalized samples from the dataset, similar to a tech-

nique used in Spielman et al. [22], where linear programs are used to recover projections that follow a very sparse
Bernoulli-Gaussian distribution. Many planted vectors, such as Imbalanced Clusters, have longer tails than the stan-
dard Gaussian distribution. Exploiting this, we demonstrate that with reasonable probability, it is possible to find an
initialization closer to the signal direction than what could be found using a random initialization. As estimating the
gradient for a direction closer to the signal directions generally becomes easier, we require fewer samples to estimate
the gradient accurately. Additionally, it is possible to reuse the minibatches for multiple initializations simultaneously.

To study the setting of planted Imbalanced Clusters, we study lower bounds on the sample complexity of recover-
ing the planted vector using any polynomial time algorithm. Our study of the setting where the planted vector contains
two clusters, with one being significantly larger than the other, di↵ers from commonly studied planted vector settings
in which the planted vector is symmetric, such as the Bernoulli-Rademacher in Mao and Wein [15] and Qu et al. [21].
We prove a computational lower bound close to the sample complexity required for the gradient-based algorithm. For
this lower bound in the setting of Imbalanced Clusters, we extend Mao and Wein [15], which uses the framework of
Low-Degree-Polynomials [8, 12]. Here, we obtain a lower bound on the sample complexity of n = e⌦(d1.5 p). While
the number of samples required by our method is not optimal, it is su�ciently close.

Finally, to motivate the pursuit of imbalanced projections, we show that by applying our algorithm to the Fash-
ionMNIST dataset [24], we obtain directions that reveal clusters in the data that correspond to their labels. The utility
of these projections is measured by how much information they provide on the classes that are present in the dataset.
Especially with the projection index �(x) = max{0, x}2, we observe that even with very few samples, it is possible to
find projections that reveal the class structure of the dataset by separating one class from the others.

2. Main Results

We use standard asymptotic notation o(·), O(·), ⇥(·), ⌦(·) and eO(·), e⌦(·) hides logarithmic factors. Sd�1 denotes
the d-dimensional unit sphere. U(·) denotes the uniform distribution and N(µ,�2) denotes the standard normal
distribution with mean µ and standard deviation �.

2.1. Setup
We follow the literature on recovery of planted vectors [5, 7, 15], which gives a simplified formulation of the

data assumption in Projection Pursuit. Throughout the paper we use n as the number of samples present and d as the
dimensionality of the data. In the Planted Vector Setting the model is constructed as follows:

Definition 1 (Planted Vector Setting). We say x ⇠ DF if,

x ⇠ N(⌫ u⇤, Id � u⇤u⇤>)

Given the random variable ⌫ ⇠ F for some distribution F and a fixed but unknown direction u⇤.

The distribution of ⌫ is generally defined to follow a non-gaussian distribution with unit variance. Later on, we will
consider the setting where ⌫ follows a distribution containing either two Imbalanced Clusters or a sparse distribution.
If d is large, then if the data is projected in a random direction, it will be approximately Gaussian, but if projected in
the direction u⇤, the structure of ⌫ can be observed.

2.2. Gradient-Based Algorithm
This section describes Algorithm 1, which is a gradient-based algorithm for optimizing di↵erentiable projection

indices. Here, we assume that we are given access to a dataset containing a planted vector as defined in Definition 1.
The recovery of the signal direction (u⇤) is done by finding an (approximate) solution to the following optimization
problem where is the projection index.

û = max
u2Sd�1

nX

i=1

 (hXi,ui)
n

3

This will be done by performing gradient ascent using a di↵erent projection index � using multiple initializations.
Then is used to pick the best direction û.

Two key ideas are used in the design of the algorithm. The first idea is to use multiple initializations from the
dataset by using ui =

Xi
kXk2 as initialization inspired by Qu et al. [21], Spielman et al. [22] Intuitively, initializing

closer to the planted vector allows for a more accurate estimation of the gradient, which allows a decrease in sample
complexity. If the distribution of the planted vector takes on larger values, it is possible to find an initialization with a
larger inner product to the signal direction than by using uniformly random samples. For example if P


⌫ =

q
1
p

�
= p

then with probability p we have an initialization for which hu,u⇤i ⇡
q

1
dp . Instead of choosing u uniformly at random,

we only have hu,u⇤i ⇡
q

1
d , which can be much worse in the case when p is su�ciently small. Without knowing

which samples have large values in the signal direction, this method comes at the price of having to guess many
samples as initialization. This initialization scheme is shown in Algorithm 1.

The second idea is to use minibatches to avoid overfitting. As previously noted, this comes at the cost of needing
new samples for each step of gradient ascent. Thus speeding up convergence is necessary to decrease the sample
complexity of the algorithm. We do this by using the Riemannian gradient

�
Id � uu>

� @
@u

⇣Pn
i=1

�(hXi,ui)
n

⌘
instead of the

gradient itself, which allows us to decrease the number of steps needed to converge.
Using the Riemannian gradient itself also has a downside. If hu,u⇤i becomes su�ciently large, we cannot guar-

antee that a gradient step does not degrade the current estimate of the direction. Thus, we use a schedule for the
learning rate ⌘, decreasing ⌘ once we are close to convergence. The algorithm is presented in Algorithm 1, which
calls a subroutine described in Algorithm 2. Algorithm 2 runs Riemannian gradient ascent with a large learning rate
⌘1 and then extracts the solution with the largest value for the projection index, ensuring that a good solution is found.
A second run of Algorithm 2 with a smaller learning rate ⌘2 is used to fine-tune the projection to find a close estimate
of the signal direction u⇤. As we use multiple initializations, we end up with multiple estimates of the signal direc-
tion. Additionally, we are unsure if an estimate may have diverged during gradient ascent. Thus, we use the second
projection index (·) to pick the best estimate of the signal direction.

Algorithm 1 Two-Step Gradient Ascent Algorithm
1: function two step gradient ascent(X, n, ninit, s, ⌘1, ⌘2)
2: for j = 1...ninit do
3: u j X j

kX jk2
4: end for
5: û gradient ascent({Xi}ninit+ns

i=ninit+1,u, ⌘1, s)

6: û gradient ascent({Xi}ninit+2ns
i=ninit+ns+1, û, ⌘2, s)

7: return arg maxû2{û j | j2[ninit]}
Pn

k=1
 (hXk ,ûi)

n
8: end function

4

Algorithm 2 Gradient Ascent
1: function gradient ascent(X,u, ⌘, s)
2: for i = 0...(s � 1) do
3: Choose X̄ {Xk}n(i+1)

k=ni
4: for j = 1...ninit do
5: Calculate g

⇣
Id � ui, ju>i, j

⌘
@

@ui, j

✓Pn
k=1

�(hX̄k ,ui, ji)
n

◆

6: Update ūi, j ui, j + ⌘g
7: Renormalize ui+1, j ūi+1, j

kūi+1, jk2
8: end for
9: end for

10: for j = 1...ninit do
11: î arg maxi2[s]

Pn
k=1

 (hXk ,ui, ji)
n

12: û j uî, j
13: end for
14: return û
15: end function

2.3. Sample Complexity Bounds
Next, we will highlight a method of studying the sample complexity of the Gradient Ascent Subroutine (Algo-

rithm 2) when specified towards a planted vector distribution and a projection index. We state three assumptions that
have to be fulfilled by the setting and the projection index to demonstrate convergence. This analysis can then be ap-
plied to both uses of Algorithm 2 to complete the analysis of Algorithm 1. Later, in Subection 2.4 and Subection 2.5,
we show that Algorithm 1 can recover planted vectors with close to optimal sample complexity.

Lemma 1 gives a convergence result for arbitrary �(·), (·) and a planted vector distribution. In order to apply
Lemma 1, we have to demonstrate the following Preconditions hold.

Precondition 1 of Lemma 1 guarantees that at least one initialization is close enough to the signal direction,
providing a good starting point for our algorithm. Precondition 2 ensures that the gradient estimates are su�ciently
accurate for each step. This also ensures that renormalization does not decrease hu,u⇤i. Finally, Precondition 3
ensures that the projection index (·) can be used to (sample-)e�ciently test if an initialization has converged. In
most cases, choosing = � is completely su�cient, but choosing a convenient can oftentimes drastically ease the
analysis. This is necessary in the last step of the algorithm to select a converged estimate.

In the following we will use gu(x) := (I � uu>) @�(hx,ui)
@u for simplicity.

Lemma 1. Let X ⇠ Dn. For s = ⌦
�
log(d)

�
steps, � � 0, 1 > b > b � � > a > 0, � > 0 and n > 0, if

1. Given u0,i for i 2 [ninit] then with probability at least 1 � o (1)

max
i
hui,u⇤i � a

2. For an arbitrary constant c0 > 0, if hu,u⇤i 2 (a, b) then

hu,u⇤i + ⌘
DPn

i=1 gu(Xi)
n ,u⇤

E

q
1 + ⌘2

Pn
i=1 gu(Xi)

n

� (1 + c0)hu,u⇤i

with probability at least 1 � O
⇣

1
s

⌘
.

3. There exists a threshold t where for all u 2 Sd�1 if hu⇤,ui � b then
Pn

i=1
 (hXi,ui)

n � t and if hu,u⇤i  b � � then
Pn

i=1
 (hXi,ui)

n  t, with probability at least 1 � o (1).

Then, Algorithm 2 returns û such that maxi2[ninit] hûi,u⇤i � b� � with a total of eO(n) samples steps with probability
at least 1 � o (1).

The proof of Lemma 1 can be found in Appendix A. Thus, to analyze the performance of Algorithm 1, we apply
Lemma 1 once for each execution of Algorithm 2.

5

2.4. Application of Lemma 1 to Imbalanced Clusters
Here we will focus on a distribution B(p) containing two Imbalanced Clusters with an imbalance parameter p.

Definition 2 (Imbalanced Clusters). We say ⌫ ⇠ B(p), with p 2 (0, 1), if

⌫ =

8>><
>>:

p
(1 � p)/p, with probability p
�

p
p/(1 � p), with probability (1 � p)

The cluster centers are chosen so that the mean is zero and the variance is one. Due to the data having unit
variance, methods such as PCA cannot recover the planted vector and need Projection Pursuit methods. Note that for
smaller p, the first cluster moves further away from the origin, and the second cluster shifts closer to the origin. This
behaves similarly to the Bernoulli-Rademacher distribution. Here, we will be interested in the parameter p 2 (1p

d
, 1

2).
For larger p > 1

2 , the same results follow by symmetry with the notable exception of p = 1
2 where the clusters are

perfectly balanced. We choose to use the projection index �(x) = max{0, x}2. In Theorem 1 we demonstrate bounds
on the sample complexity of Algorithm 1 using �(x) = (x) = max{0, x}2.

Theorem 1. For arbitrary � > 0 and p 2
✓

1
2 ,

1p
d

◆
there exist ⌘1 = ⌦

⇣p
dp

⌘
, ⌘2 = ⇥ (1), s = ⇥(log(d)), ninit = ⌦ (1/p)

and n = e⇥
⇣
d2 p2

⌘
such that for su�ciently large d and su�ciently small p, Projection Pursuit using Algorithm 1 with

X ⇠ Dn
B(p) and a Projection Index �(x) = max{0, x}2 will output û such that hû,u⇤i � 1 � � with probability at least

1 � o (1) utilizing a total of e⇥
⇣
d2 p2

⌘
samples.

The proof of Theorem 1 can be found in Appendix B.

2.5. Application of Lemma 1 to Bernoulli-Rademacher Planted Vectors
Other commonly studied settings are the Bernoulli-Rademacher and Bernoulli-Gaussian settings [7, 15, 27]. These

are both sparse distributions, i.e., are 0 with probability 1� p, thus are of particular interest in compressed sensing [22,
27]. We will prove that a Bernoulli-Rademacher planted vector can be recovered using gradient-based techniques.

Definition 3 (Bernoulli-Rademacher [22]). We say ⌫ ⇠ BR(p), with p 2 (0, 1), if

⌫ =

8>>>>><
>>>>>:

p
1/p, with probability p/2
�

p
1/p, with probability p/2

0, with probability (1 � p)

We demonstrate, that Algorithm 1 using the projection index �(x) = x4 can recover the planted vector using
n = eO(d3 p4) samples.

Theorem 2. For arbitrary � > 0 there exist ⌘1 = ⌦
⇣
dp2

⌘
, ⌘2 = ⇥ (1) , s = ⌦

�
log(d)

�
, ninit = ⇥ (1/p) and

n = e⇥
⇣
d3 p4

⌘
such that for su�ciently large d > 0 and su�ciently small p > 0, Projection Pursuit using Algorithm 1

with X ⇠ Dn
BR(p), �(x) = x4 and (x) = �|x| will output û such that hû,u⇤i � 1 � � with probability at least 1 � o (1)

utilizing a total of e⇥
⇣
d3 p4

⌘
samples.

The proof can be found in Appendix C.

3. Statistical Computational Lower Bounds of the Planted Vector Setting

Here, we study whether gradient-based methods are optimal in the sense of matching computational lower bounds.
For this, we compare the sample complexity of gradient-based methods to computational lower bounds, which assess
the minimum sample complexity required in order for any computationally e�cient algorithm (i.e. computable in
polynomial time) to recover the planted vector, as defined in Definition 1. As this is not tractable for such a general
class of algorithm, there have been rigorous results in more limited settings such as lower bounds for the statistical

6

query model [11], sum of squares hierarchies [16] and the Low Degree Polynomial Framework [8, 12]. Here, we will
focus on the framework of Low Degree Polynomials.

Generally, the Low Degree Polynomial Framework uses Low Degree Polynomials as a surrogate for e�ciently
computable algorithms to determine whether an e�cient algorithm exists for deciding a hypothesis testing problem.
We will utilize this to obtain lower bounds on the sample complexity of e�ciently computable tests. Bounds can
be obtained using the optimality of the likelihood ratio test [12]. Let L := dH1

dH0
be the likelihood ratio. Neyman

and Pearson [17] shows that thresholding the likelihood ratio L is an optimal test and thus allows reasoning about
computational lower bounds. The Low Degree Polynomial Framework focuses on the degree-D likelihood ratio LD

d
which is defined as the likelihood ratio projected onto the subspace of polynomials of degree at most D, where D
is low, i.e. logarithmic in the size of the problem. By demonstrating that a likelihood ratio test using LD

d fails, we
can demonstrate that no polynomial of degree  D can be used to construct a test to distinguish H1 and H0. This is
summarized in the following conjecture.

Conjecture (Low Degree Conjecture [8]). For ”su�ciently nice” sequences of probability measures H0 and H1, if
there exists ✏ > 0 and degree D � log(d)1+✏ for which kLD

d k remains bounded as d ! 1, then there is no polynomial-
time algorithm f for which if X ⇠ H0 then f (X) = H0 and if X ⇠ H1 then f (X) = H1 with high probability.

3.1. Planted Vectors with Imbalanced Clusters
To our knowledge, computational lower bounds have not been studied for the planted vector with Imbalanced

Clusters setting. To obtain lower bounds on the sample complexity needed to recover a close estimate of the planted
vector in polynomial time, we follow a three-step procedure following the method used in Mao and Wein [15]. First,
we formulate a hypothesis testing problem in Problem 1, which tests between a Gaussian distribution and the Planted
Vector distribution as defined in Definition 1. Then, we demonstrate computational lower bounds on Problem 1 in the
Low Degree Polynomial Framework. Finally, we extend the computational lower bounds to the estimation problem of
finding a direction û close to the signal direction u⇤ such that hû,u⇤i � 1 � �. This is done by reducing the estimation
problem to Problem 1.

Problem 1. Let ⌫ be a distribution over R. Define the following null and planted distributions:

• UnderH0, observe i.i.d. samples X1, . . . ,Xn ⇠ N(0, Id)n.

• UnderH1, first draw u⇤ uniformly from Sd�1 and i.i.d. ⌫1, · · · , ⌫n. Conditional on u⇤ and {xi}, draw independent
samples X1, . . . ,Xn 2 Rd where Xi ⇠ N(⌫iu⇤, In � u⇤u⇤>). Note that this is equivalent toDF in Definition 1.

Suppose that we observe the matrix X 2 Rn⇥d with rows X>1 , . . . ,X
>
n . We aim to test between the hypotheses H0 and

H1.

In the following, we will show evidence of a computational statistical gap in the Planted Vector Setting Defini-
tion 1. Specifically, we will demonstrate that for n = eO(d1.5 p) the Low Degree Likelihood ratio stays bounded and
thus, according to the Low Degree Conjecture , no polynomial time algorithm can test Problem 1.

Theorem 3. For an instance of Problem 1 with ⌫ ⇠ B(p)n and n = eO(d1.5 p) the Low Degree Likelihood Ratio stays
bounded for degree D = log(d)1+✏ for ✏ > 0. ���LD

d

���2
2  2

Finally, we reduce the estimation problem to Problem 1. To do this, we have to demonstrate that it is possible to
construct a test for Problem 1 if we have access to an estimate û for u⇤ such that hû,u⇤i � 1 � �. Corollary 1 shows it
is possible to construct such a test for Problem 1 if n = ⌦(d).

Corollary 1. For all û for which hû,u⇤i � 1 � � for su�ciently small � > 0 and 1p
d
 p < 1

2 . Define the test :

 :=

8>><
>>:
H0 if

Pn
i=1

�(hXi,ûi)
n < t

H1 if
Pn

i=1
�(hXi,ûi)

n � t

With �(x) = max{0, x}2. There exists a threshold t such that

PH0 { = H1} + PH1 { = H0}  exp
✓
�⇥

✓n
d

◆◆

7

In the regime where n < d+1, we refer to Zadik et al. [25], demonstrating the statistical impossibility of estimation
in this regime. Thus, combining Corollary 1 and Theorem 3 yields the result that if the Low Degree Conjecture is
true, no polynomial time can estimate the planted vector. To our knowledge, currently, no e�cient algorithm exists
which can recover the signal direction with n = o(d2 p2) samples.

Remark 1. Dudeja and Hsu [5] gives results on the failure of Low-Degree Polynomials in the Planted Vector Setting.
If for i 2 1, · · · , k � 1 the moments of ⌫ and the standard normal distribution match a bound of n ⌧ dk/2��2, where �
is the signal to noise ratio defined as

���E[⌫k] � E[Zk]
��� = � Z ⇠ N(0, 1).

In the case of ⌫ ⇠ B(p) for k = 3 we obtain � � 2pp . Here, we note that the bound is not applicable to our setting as
by choosing p su�ciently small, Assumption 2 cannot be fulfilled anymore. Thus, for completeness, we give the same
bound of n = eO(d1.5 p) which is valid for p 2

✓
1pp ,

1
2

◆
.

3.2. Bernoulli Rademacher Planted Vectors
The Bernoulli Rademacher setting has been thoroughly studied in Mao and Wein [15]. Here, the failure of Low

Degree Polynomials when n = eO(d2 p2) is demonstrated. This lower bound is known to be tight, as a spectral algorithm
can recover a Bernoulli-Rademacher planted vector with n = e⇥(d2 p2) samples, which is tight, as there exist spectral
methods which can recover the planted vector when n = e⌦(d2 p2) samples [7, 15]. Our gradient-based method has a
sample complexity of n = eO(d3 p4), which is larger than what can be achieved using spectral methods. In the case
where p = 1p

d
, this matches the bounds obtained using spectral methods.

Remark 2. Zadik et al. [25] gives an algorithm to recover planted vectors using LLL-basis reduction. This algorithm
does not exhibit the statistical to computational gap. This algorithm is only applicable in a very restrictive setting, as
it is required that the planted vector can only take on a set of discrete values. This can be avoided by considering a
setting with a small amount of noise. E.g., considering a hierarchical setting where B(p0) with p0 ⇠ U([p

2 , p]) is a
simple counterexample, in which our analysis still works and where the algorithm discussed in Zadik et al. [25] fails
due to the lack of robustness to noise.

4. Experiments

4.1. Experiments with Synthetic Data
In the following, we will validate the findings in Theorem 1 and Theorem 2 by running Algorithm 1 on synthetic

datasets. In the Imbalanced Clusters setting, we will be choosing the dimension d 2 [16, 512] and the cluster imbalance
for p 2 {d�0.5, d�0.3, 0.3} with n 2 [16, 2048]. The algorithm is executed for s = 2 log2 d steps and ⌘1 =

p
dp and

⌘2 = 0.5. The results are plotted in Figure 1a. In the Bernoulli-Rademacher setting we will be choosing the dimension
d 2 [16, 256] and the cluster imbalance as either p 2 {d�0.5, d�0.5, 0.3} with n 2 [16, 4096]. The algorithm is executed
for s = 2 log2 d steps and ⌘1 =

p
dp and ⌘2 = 0.5. The results are plotted in Figure 1b. To evaluate, we plot the

average value of hû,u⇤i over 30 independently sampled datasets for each d, n, p.

4.2. Comparison to Other Methods
Here, we will apply Algorithm 1 to the dataset with the following projection indices.

Abbreviation �(x) (x)
ReLU2 max{0, x}2 max{0, x}2

Kurtosis x4 �|x|
Abs [21] �|x| �|x|

AbsMax [4] |x| |x|
Skewness [19] x3 x3

8

(a) Projection pursuit of Imbalanced Clusters using Algorithm 1 with �(x) = (x) = max{0, x}2. The red lines of slopes (2, 1.3, 1) roughly highlight the
phase transition.

(b) Projection pursuit of a sparse Bernoulli-Rademacher distribution using Algorithm 1 with �(x) = x4 and (x) = �|x|. The red lines of slopes
(3, 1.8, 1) roughly highlight the phase transition.

Fig. 1: Phase transitions in Projection Pursuit using gradient-based algorithms. The horizontal and vertical axes correspond to log2 d and log2 n.
Each pixel shows the average value of the absolute inner product between the predicted direction and the signal direction, where white corresponds
to 1 and black to 0.

9

(a) Bernoulli-Rademacher (b) Imbalanced Clusters

Fig. 2: Comparison of di↵erent methods in the planted vector setting. We plot the average inner product between the signal direction and the
recovered direction by each algorithm over 30 datasets.

ReLU2 and Kurtosis correspond to the projection indices we study in Theorem 1 and Theorem 2. Additionally,
we test the projection indices Abs, which corresponds to the projection index used in Qu et al. [21], AbsMax, which
corresponds to the objective in Davis et al. [4] and Skewness as proposed in Paajarvi and LeBlanc [19]. Addition-
ally, we compare the gradient-based methods to three spectral methods. Loperfido [13] introduces a method called
MaxSkew for finding directions of large skewness(abbreviated by [Lop18]). Mao and Wein [15] introduces a method
for recovering planted sparse vectors(abbreviated by [MW21]). Davis et al. [4] uses a spectral method for identifying
directions separating two balanced clusters(abbreviated by [DDW21]).

Especially if only a few samples are present, using minibatches seems to restrict the performance of the proposed
algorithm. Thus, choosing to subsample the dataset with replacement tends to be beneficial, which we will do for the
following experiments.

Here, we compare the previously mentioned methods in the planted vector setting with a Bernoulli Rademacher
planted vector in Figure 2a and with an Imbalanced Clusters planted vector in Figure 2b with d = 300, p = 0.1. For
Algorithm 1 we use ninit = 400 initializations. In Figure 2 we can observe that most algorithms only perform well on
one of both settings.

4.3. Experiments with FashionMNIST
We also compare the algorithms by comparing their performance on a small subsample of FashionMNIST [24]

with 600 samples and on the whole training dataset with 60000 samples. We use ninit = 500 initializations and
choose the 30 directions with the largest value for the projection index. For spectral methods, we run the spectral
method 30 times while removing the recovered directions from the dataset. In order to compare the performance of
the di↵erent methods, we evaluate how well a single projection can help to predict the labels of the images. This will
be evaluated using the Information Gain IG(Y, A) = H(Y) � H(Y |A). Where Y are the labels assigned to the instances
in FashionMNIST. Here we choose the indicator A = Ihu,xi>t, where t is an automatically chosen threshold for each
index to empirically maximize information gain on the training dataset. The final information gain is evaluated on a
holdout dataset. In Figure 3, the information gain is plotted for each method. Here, we can observe that the ReLU2
projection index still performs well even if only a few samples(600) are present. For example, AbsMax can only be
optimized reliably with a large amount(60000) of samples. Additionally, it can be observed that the best direction
found by the MaxSkew method([Lop18]) performs well with small and large amounts of data.

For demonstration purposes, we also show histograms of the data projected onto the recovered projections in
Figure 4a and Figure 4b. In Figure 4a, it can be observed that the found projections reveal two Imbalanced Clusters
where the smaller cluster contains samples of mostly one class. Figure 4b shows that the Kurtosis projection index

10

(a) n = 600 (b) n = 60000

Fig. 3: A comparison of projection pursuit approaches on fashionMNIST. We plot the achieved information gain using projections produced by
di↵erent projection indices.

recovers projections for which many samples are projected close to zero while a few are projected away from zero
similar to a Bernoulli-Rademacher distribution.

Figure 4a provides insight into why discovering imbalanced projections e↵ectively recovers label-separating pro-
jections in classification tasks such as Fashion-MNIST. We can reasonably assume that the data of a classification
task follows a cluster structure. If the data is projected in the direction of one cluster center, then we will expect
that the samples from the other clusters will collapse close to 0, while the samples from the chosen cluster will move
out to one side. This e↵ect can also be observed in Figure 4a. Consequently, projecting the data along the direction
of a particular cluster center naturally yields an imbalanced histogram, with samples from the corresponding cluster
positioned towards one extreme.

5. Conclusion

We consider the performance of gradient-based algorithms for projection pursuit in the planted vector setting
where we study their sample complexity. Specifically, we consider the setting where the planted vector follows a
distribution containing two clusters of imbalanced size or a Bernoulli-Rademacher distribution. In the former setting,
Low-Degree Polynomials give a lower bound of n = e⇥(d1.5 p) and gradient-based methods can recover the signal
direction provably with n = e⌦(d2 p2) thus presenting a gap of a factor of p

p
d which increases as p increases. It is

currently unknown whether an algorithm exists which matches the sample complexity of the lower bound in the Low
Degree Polynomial Framework. In the latter setting, n = e⌦(d3 p4) samples are su�cient and there exist spectral algo-
rithms matching the computational lower bounds of n = e⌦(d2 p2) samples. Although there still exists a gap between
gradient-based methods and computational lower bounds, we can observe that in both settings, if the distribution is
very imbalanced/sparse, gradient-based methods match computational lower bounds closely. Finally, we demonstrate
the performance of our gradient-based algorithm on the FashionMNIST dataset.

6. Acknowledgements

This work has been supported by the German Research Foundation (DFG) through DFG-ANR PRCI “ASCAI”
(GH 257/3-1).

11

(a) 4 recovered projection using the ReLU2 projection index

(b) 4 recovered projection using the Kurtosis projection index

Fig. 4: Histograms of projections recovered by Algorithm 1 on FashionMNIST using n = 600 samples. Classes are plotted using di↵erent colors.

References

[1] Y. Bai, Q. Jiang, J. Sun, Subgradient descent learns orthogonal dictionaries, 2019.
[2] D. P. Bertsekas, Incremental least squares methods and the extended kalman filter, SIAM Journal on Optimization 6 (1996) 807–822.
[3] M. Breaban, H. Luchian, Outlier detection with nonlinear projection pursuit, International Journal of Computers Communications and Control

8 (2012) 30.
[4] D. Davis, M. Diaz, K. Wang, Clustering a mixture of gaussians with unknown covariance, arXiv preprint arXiv:2110.01602 (2021).
[5] R. Dudeja, D. Hsu, Statistical-computational trade-o↵s in tensor pca and related problems via communication complexity, 2024.
[6] J. Friedman, J. Tukey, A projection pursuit algorithm for exploratory data analysis, IEEE Transactions on Computers C-23 (1974) 881–890.
[7] S. B. Hopkins, T. Schramm, J. Shi, D. Steurer, Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse

vectors, 2016.
[8] S. B. K. Hopkins, Statistical inference and the sum of squares method, Ph.D. thesis, Cornell University, 2018.
[9] A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis, Neural Computation 9 (1997) 1483–1492.

[10] M. C. Jones, R. Sibson, What is projection pursuit?, Journal of the Royal Statistical Society. Series A (General) 150 (1987) 1–37.
[11] M. Kearns, E�cient noise-tolerant learning from statistical queries, in: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory

of Computing, STOC ’93, Association for Computing Machinery, New York, NY, USA, 1993, p. 392–401.
[12] D. Kunisky, A. S. Wein, A. S. Bandeira, Notes on computational hardness of hypothesis testing: Predictions using the low-degree likelihood

ratio, 2019.
[13] N. Loperfido, Skewness-based projection pursuit: A computational approach, Computational Statistics and Data Analysis 120 (2018) 42–57.
[14] N. Loperfido, Kurtosis-based projection pursuit for outlier detection in financial time series, The European Journal of Finance 26 (2020)

142–164.
[15] C. Mao, A. S. Wein, Optimal spectral recovery of a planted vector in a subspace, 2022.
[16] R. Meka, A. Potechin, A. Wigderson, Sum-of-squares lower bounds for planted clique, in: Proceedings of the Forty-Seventh Annual ACM

Symposium on Theory of Computing, STOC ’15, Association for Computing Machinery, New York, NY, USA, 2015, p. 87–96.
[17] J. Neyman, E. S. Pearson, On the problem of the most e�cient tests of statistical hypotheses, On the Problem of the Most E�cient Tests of

Statistical Hypotheses, Springer New York, New York, NY, 1992, pp. 73–108.
[18] B. Olshausen, D. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature 381 (1996)

607–9.
[19] P. Paajarvi, J. LeBlanc, Skewness maximization for impulsive sources in blind deconvolution, Report - Helsinki University of Technology,

Signal Processing Laboratory, volume 46, pp. 304– 307.
[20] J.-X. Pan, W.-K. Fung, K.-T. Fang, Multiple outlier detection in multivariate data using projection pursuit techniques, Journal of Statistical

Planning and Inference 83 (2000) 153–167.
[21] Q. Qu, J. Sun, J. Wright, Finding a sparse vector in a subspace: Linear sparsity using alternating directions, CoRR abs/1412.4659 (2014).
[22] D. A. Spielman, H. Wang, J. Wright, Exact recovery of sparsely-used dictionaries, 2012.
[23] R. Vershynin, High-Dimensional Probability, 2020.

12

[24] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017.
[25] I. Zadik, M. J. Song, A. S. Wein, J. Bruna, Lattice-based methods surpass sum-of-squares in clustering, 2022.
[26] V. Zarzoso, P. Comon, Comparative speed analysis of fastica, in: M. E. Davies, C. J. James, S. A. Abdallah, M. D. Plumbley (Eds.),

Independent Component Analysis and Signal Separation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 293–300.
[27] Y. Zhai, Z. Yang, Z. Liao, J. Wright, Y. Ma, Complete dictionary learning via l4-norm maximization over the orthogonal group, J. Mach.

Learn. Res. 21 (2020).

Appendix A. Proof of Lemma 1

Proof. Start o↵ by choosing an initialization j 2 [ninit] for which
D
u0, j,u⇤

E
� a which can be assumed to exist

with probability at least 1 � o (1). By Precondition 2 we know that for each step
D
ut+1, j,u⇤

E
� (1 + c0)

D
ut, j,u⇤

E

if
D
ut, j,u⇤

E
< b with proabability at least 1 � o

⇣
1
s

⌘
. By applying the union bound over all steps we can obtain

that s = log1+c0

⇣
b
a

⌘
= O(log(d)) steps are su�cient, such that at least one direction ui, j is encountered for whichD

ui, j,u⇤
E
� b. By Precondition 3 we can observe that û = arg maxu2{ui, j |i2[s], j2[ninit]}

Pn
k=1

�(hXk ,ui)
n has hû,u⇤i � b � �

finishing the proof.

Appendix B. Proofs in Subection 2.4

In this section use �(x) = (x) = max{0, x}2. For simplicity we also define µ1 =
q

1�p
p and µ2 = �

q
p

1�p .

Lemma 2. Given u ⇠ DB(p) for p 2 (1/
p

d, 1/2) with probability at least ⇥ (p)

hu,u⇤i
kuk2

� ⇥
0
BBBBB@

1
p

pd

1
CCCCCA

Proof. We know that hu,u⇤i =
q

1�p
p �

q
1

2p with probability p. Conditioned on hu⇤,ui =
q

1�p
p we have u ⇠

N
✓ q

1�p
p u⇤, In � u⇤u⇤>

◆
. By Markovs inequality we have

���(Id � u⇤u⇤>)u
���

2  ⇥
⇣p

d
⌘

with constant probability. The
lemma follows by combining the previous two results.

Lemma 3. For any � 2 (0, 1) and X ⇠ Dn
B(p) have

P

2
666664

�������

* nX

i=1

gu(Xi)
n
,u⇤

+
� ⌦

E
⇥
gu(X)

⇤
,u⇤

↵
�������
� �

3
777775  exp

�⇥

n�2 min

(
1,

p
hu,u⇤i2

)!!

Proof. For simplicity we will split hgu(x),u⇤i into terms t1, t2 such that

hgu(x),u⇤i = max{0, hx,ui} hx,u⇤i| {z }
=t1(x)

�max{0, hx,ui}hu,u⇤i hx,ui| {z }
=t2(x)

Here we use the Sub-Gaussian norm k · k 2 and Sub-Exponential norm k · k 1 as defined in [23].
Next we will choose a fixed sample ⌫̂ ⇠ B(p) such that hXi,u⇤i = ⌫̂i and define the empirical balance as p̂ =

Pn
i=1

1⌫̂=µ1
n . For now we will assume (1 � �̄)p  p̂  (1 + �̄)p.

Bounding
Pn

i=1 t1(Xi). First note that if the random variable Z is Sub-Gaussian then there exists a constant Ccentering
such that kZ � E[Z]k 2  Ccentering kZk 2 . Also note that kmax{c,Z}k 2  kZk 2 .

Thus
Pn

i=1

���� t1(Xi)
n � E

h
t1(Xi)

n

i����
2

 2
 p̂ µ

2
1

n + (1 � p̂) µ
2
2

n

(1)
 ⇥

⇣
1
n

⌘
. With (1) following from p̂  (1 + �̄)p. Thus

P

2
666664

�������

nX

i=1

t1(Xi)
n
� E

2
666664

nX

i=1

t1(Xi)
n

3
777775

�������
 �

3
777775 � 1 � exp

⇣
�⇥

⇣
n�2

⌘⌘

13

Bounding
Pn

i=1 t2(Xi). Note that if the random variable Z is Sub-Exponential then there exists a constant Ccentering
such that kZ �E[Z]k 1  CcenteringkZk 1 . Additionally note if kZ �E[Z]k 2 = K and E[Z] < 0 then kmax{0,Z}k 2  K.

Thus
Pn

i=1

���� t2(Xi)
n � E

hPn
i=1

t2(Xi)
n

i����
2

 1
 p̂ µ

4
1

n3 + (1 � p̂) µ
4
2

n3  ⇥
⇣

1
n2

⌘
for n > d and maxi2[n] kt2(Xi)k 1  ⇥

⇣
1
n

⌘
. Thus

we can bound by Bernstein’s inequality for su�ciently large n � 1
�

P

2
666664

�������

nX

i=1

t2(Xi)
n
� E

2
666664

nX

i=1

t2(Xi)
n

3
777775

�������
 �

3
777775 � 1 � exp

0
BBBBB@�⇥

0
BBBBB@min

8>><
>>:

�2

Pn
i=1 kt2(Xi)k2 1

,
�

maxi2[n] kt2(Xi)k 1

9>>=
>>;

1
CCCCCA

1
CCCCCA

� 1 � exp {�⇥ (n�)}

Now what is left to do is to bound hgu(x),u⇤i with a change in p̂.
�������
E

2
666664

nX

i=1

hgu(x),u⇤i
3
777775 � E

2
666664

nX

i=1

hgu(x),u⇤i
�����p̂ = (1 � �̄)p

3
777775

�������
 ⇥

⇣
hu,u⇤i�̄

⌘

By applying the Cherno↵ bound for the Binomial distribution we obtain

P
⇥
(1 � �̄)p  p̂  (1 + �̄)p

⇤ � 1 � 2 exp

� �̄

2np
3

!

for all �̄ 2 (0, 1). The lemma follows by choosing �̄ = ⇥
⇣

�
hu,u⇤i

⌘
and applying the union bound.

Lemma 4. For arbitrary � > 0 there exist constants t, p0 > 0 such that with X ⇠ DB(p) for p < p0 we have
for hu,u⇤i(µ1 � µ2) < t

E[hgu(X),u⇤i] � ⇥

hu,u⇤i2
pp

!

and for t
(µ1�µ2)  hu,u⇤i  1 � �

E[hgu(Xi),u⇤i] � ⇥ (hu,u⇤i)

Proof. For simplicity abbreviate a1 = hu,u⇤i and a2 =
p

1 � hu,u⇤i2. Define e2 =
u�a1u⇤

a2
. Since hx, e2i ⇠ N(0, 1)

we know E[max{0, hx, e2i}2] = 1
2 and E[max{0, hx, e2i}] =

q
1

2⇡ by applying the expectation of the half normal
distribution. and fhx,e2i(y) � p for y 2 [�t0, t0].

Abbreviate fi(x) = fhx,e2i
⇣

x�µia1
a2

⌘
= fN(0,1)

⇣
x�µia1

a2

⌘
. By applying Lemma 20 have

Ex⇠Dp [hgu(x),u⇤i] = Ex⇠Dp (hx,ui hx,u⇤i � hx,ui2 a1)

=

1Z

0

p(xµ1 � x2a1) f1(x) + (1 � p)(xµ2 � x2a1) f2(x)dx

=

(µ1�µ2)a1Z

0

pµ1x f1(x)dx +
p

(1 � p)p
1Z

0

(x + (µ1 � µ2)a1 � x) f2(x)dx � a1

1Z

0

x2(p f1(x) + (1 � p) f2(x))dx

We continue by bounding each term.

Case 1. If (µ1 � µ2)a1  t0.

(µ1�µ2)a1Z

0

pµ1x f1(x)dx �
ppµ1

2
((µ1 � µ2)a1)2 �

pa2
1

2

0
BBBBB@

(1 � p)1.5
pp

+
p1.5

p
1 � p

� 2
p

p(1 � p)
1
CCCCCA � ⇥

0
BBBB@

a2
1pp

1
CCCCA

14

Case 2. If (µ1 � µ2)a1 > t0.

pµ1

(µ1�µ2)a1Z

0

x f1(x)dx �
p

(1 � p)p

(µ1�µ2)a1Z

(µ1�µ2)a1�t0

x f1(x)dx

� p
p

(1 � p)p ((µ1 � µ2)a1)2 � ((µ1 � µ2)a1 � t0)2

� p
p

(1 � p)p
⇣
2t0(µ1 � µ2)a1 � t2

0

⌘

� pt0
p

(1 � p)p(µ1 � µ2)a1

� pt0a1

For p < p0 the following terms can be bounded as such

p
(1 � p)p

1Z

0

((µ1 � µ2)a1) f2(x)dx = a1

1Z

0

f2(x)dx � a1 max

8>>>><
>>>>:

0,
1
2
� 2
p
⇡

q
p

1�p a1

a2

9>>>>=
>>>>;

and

a1

1Z

0

x2(p f1(x) + (1 � p) f2(x))dx

a1

✓
p

µ1a1Z

0

x2 f1(x)dx + p
1Z

0

(x + µ1a1)2 fhx,e2i

x

a2

!
dx +

(1 � p)(1 � a2
1)

2

◆

=a1

✓
p

µ1a1Z

0

x2 f1(x)dx + p
1Z

0

x2 fhx,e2i

x

a2

!
dx + p

1Z

0

2xµ1a1 fhx,e2i

x

a2

!
dx + p (µ1a1)2

1Z

0

fhx,e2i

x

a2

!
dx +

(1 � p)(1 � a2
1)

2

◆

a1

"
p
✓2
3

(µ1a1)3 +
(1 � a2

1)
2

+ 2

r
1

2⇡
µ1a1 + (µ1a1)2 1

2

◆
+

(1 � p)(1 � a2
1)

2

#


a1a2

2

2
+ ⇥

⇣p
pa2

1

⌘

Thus in Case 1 have.

E[hgu(x),u⇤i] � ⇥
0
BBBB@

a2
1pp

1
CCCCA +

a1

a2

✓1
2
� 2

q
p

1�p a1

a2

◆
�

a1a2
2

2
� ⇥

⇣p
pa2

1

⌘
� ⇥

0
BBBB@

a2
1pp

1
CCCCA

And analogously in Case 2.

E[hgu(x),u⇤i] � ⇥ (a1)

Lemma 5. For n = ⌦(d) have

P

2
666664 max

û2Sd�1

�������

nX

i=1

 (hXi, ûi)
n

� E[(hX, ûi)]
�������
� �

3
777775  exp

�⇥

n�2

d log(1/�)

!!

15

Proof. First make the distinction into Y j ⇠ Dn j
p, j for j 2 {1, 2}, where

P
j2{1,2} n j = n We will first note that A j(u) =

 (Y ju) � E[(Y ju)] is subexponential and thus
������

P
j2{1,2}

n jP
i=1

A j,i(u)
n j

������
 1

 ⇥
⇣

1
n

⌘
. Thus we can obtain

P

2
66666664

��������

X

j2{1,2}

n jX

i=1

A j,i(u)
n

��������
� �c

3
77777775  exp

⇣
�⇥

⇣
�2

cn
⌘⌘

Let N✏,d be the minimum size ✏-Net of the d-dimensional unit sphere. Thus we know
���N✏,d

��� 
⇣

3
✏

⌘d
.

P

2
66666664max

u2N✏,d

��������

X

j2{1,2}

n jX

i=1

A j,i(u)
n

��������
� �c

3
77777775  2 exp

d log

3
✏

!
� ⇥

⇣
�2

cn
⌘!

Next we bound the maximum deviation for u for ku0 � uk2 < ✏
�������

nX

i=1

 (hXi,ui)
n

�
nX

i=1

 (hXi,u0i)
n

�������


0
BBBBBBB@

vt nX

i=1

 (hXi,ui)
n

+

vt nX

i=1

 (hXi,u0i)
n

1
CCCCCCCA

��������

vt nX

i=1

 (hXi,ui)
n

�

vt nX

i=1

 (hXi,u0i)
n

��������


2 kXkop kX(u � u0)k2

n


2✏kXk2op

n
We continue by bounding for all u 2 Sd�1 by applying the triangle inequality

��������

X

j2{1,2}

n jX

i=1

A j,i(u)
n

��������
 max

u02N✏,d

��������

X

j2{1,2}

n jX

i=1

A j,i(u)
n

��������
+

2✏kXk2op

n

Finally we notice that X can be decomposed into the union of Y1,Y2 with n1+n2 = n, where n1 ⇠ Binomial(n, p).
Thus by the Cherno↵ bound for the Binomial distribution we have

P

2
66666664

��������
E[(hX,ui)] �

X

j2{1,2}

n j

n
E

h

⇣D
Y j,u

E⌘i
��������
� �p

3
77777775  2 exp

⇣
�⇥

⇣
�2

pnp
⌘⌘

Thus we can prove the Theorem by choosing ✏ = ⇥ (�) for n > d > 1 and � < 1. The second to last step follows
bounding kXkop 

���X(u⇤u⇤>)
���

op +
���X(I � u⇤u⇤>)

���
op  ⇥

⇣p
n + t

⌘
with probability 1 � 2 exp(�t2) [23].

P

2
666664 max

u2Sd�1

�������

nX

i=1

 (Xiu)
n

� E[(Xu)]

�������
� �

3
777775

P

2
66666664max

u2N✏,d

��������

X

j2{1,2}

n jX

i=1

A j,i

n

��������
� �

3

3
77777775 + P

"2✏ kXkop

n
� �

3

#
+ P

2
66666664

��������
E[(hX,ui)] �

X

j2{1,2}
E

h

⇣D
Y j,u

E⌘i
��������
� �

3

3
77777775

 exp

d log

3
✏

!
� ⇥

⇣
�2n

⌘!
+ 2 exp(�n) + exp

⇣
�⇥

⇣
�2np

⌘⌘

 exp

�⇥

n�2

d log(1/�)

!!

Lemma 6 (Testing). For any hu,u⇤i > hu0,u⇤i � amin > 0 there exists p̄ > 0 such that there exists a threshold t such
that with probability at least 1 � exp

⇣
�⇥

⇣
n�2

d log(1/�)

⌘⌘
where � = hu,u⇤i � hu0,u⇤i we have

nX

i=1

 (hXi,ui)
n

� t and
nX

i=1

 (hXi,u0i)
n

 t

16

Proof. We begin by bounding the expectation of the score function.

E[�(hX,ui)] =p
Z 1

0

0
BBBBB@x2 fN(0,1)

0
BBBBB@

x � hu,u⇤i
p

(1 � p)/p
p

1 � hu,u⇤i2

1
CCCCCA dx

1
CCCCCA + (1 � p)

Z 1

0

0
BBBBB@x2 fN(0,1)

0
BBBBB@

x � hu,u⇤i
p

p/(1 � p)
p

1 � hu,u⇤i2

1
CCCCCA dx

1
CCCCCA

=(1 � p)hu,u⇤i2 + p(1 � hu,u⇤i2) � p
Z 0

�1

0
BBBBB@x2 fN(0,1)

0
BBBBB@

x � hu,u⇤i
p

(1 � p)/p
p

1 � hu,u⇤i2

1
CCCCCA dx

1
CCCCCA

+ (1 � p)
Z 1

0

0
BBBBB@x2 fN(0,1)

0
BBBBB@
hu,u⇤i

p
p/(1 � p)

p
1 � hu,u⇤i2

1
CCCCCA dx

1
CCCCCA

Thus for each c1 > 0 there exists a p̄ > 0 such that for all p  p̄ and hu,u⇤i � l

hu,u⇤i2(1 � p) + (1 � hu,u⇤i2)

1 + p
2
� c1

!
 E[�(hX,ui)]  hu,u⇤i2(1 � p) + (1 � hu,u⇤i2)

1 + p
2

and for hu,u⇤i  0 have E[�(hX, ûi)]  1
2 .

Thus we can bound the di↵erence in expectation for u and u0

E[�(hX,ui)] � E[�(
⌦
X,u0

↵
)] � (hu,u⇤i2 � hu0,u⇤i2)

1 � 3p
2
� c1(1 � hu,u⇤i2)

Thus u and u0 there exists a p̄ > 0 such that E[�(hX,ui)]�E[�(hX,u0i)] > 0 By Lemma 5 we know that
����
Pn

i=1
�(hXi,ui)

n � E[�(hX,ui)]
���� 

� with probability at least 1 � exp
⇣
�⇥

⇣
n�2

d log(1/�)

⌘⌘
. The lemma follows by choosing � = |E[�(hX,ui)]�E[�(hX,u0i)]|

2 and t ac-
cordingly.

Appendix B.1. Proof of Theorem 1
As previously discussed we will split the proof of Theorem 1 into parts for each execution of Algorithm 2.

Proof. Combining Lemma 4 and Lemma 3 and choosing � = ⇥
✓
min

⇢
hu,u⇤i2pp , hu,u⇤i

�◆
we obtain

nX

i=1

*
gu(Xi)

n
,u⇤

+
� ⇥

min

(
hu,u⇤i2
pp

, hu,u⇤i
)!

with probability at least 1 � ⇥
⇣

1
s

⌘
if hu,u⇤i � a = ⇥

1p
dp

!
and n = e⌦

⇣
d2 p2

⌘
. Next notice that with probability at

least 1 � ⇥
⇣

1
s

⌘
.

�����
�0(Xu)

n

�����
2


�����
Xu
n

�����
2


������
(Id � u⇤u⇤>)X

n

������
op
+ kXu⇤k2  ⇥

1
p

n

!

By utilizing that (Id � u⇤u⇤>)X is a gaussian random matrix and that kXu⇤k22 follows a binomial(scaled) distribution.
Thus we can bound using Lemma 17

������
�0(Xu)>X(Id � u⇤u⇤> � e2e>2)

n

������
2
 ⇥

0
BBBBB@

r
d
n

1
CCCCCA

Thus by applying Lemma 16 we obtain probability 1 � ⇥
⇣

1
s

⌘

������

Pn
i=1 gu(Xi)

n

������
2


s*Pn
i=1 gu(Xi)

n
,u⇤

+2
1 +

hu,u⇤i2
1 � hu,u⇤i2

!
+ ⇥

d
n

!
(B.1)

17

First Execution of Algorithm 2 There exist parameters t1 and ⌘1 = ⌦(
p

dp) such that for a1 = ⇥

1p
pd

!
there

exists a constant b1 2 (0, 1) such that the first execution of Algorithm 2 fulfills the criteria of Lemma 1 for n = eO(d2 p2).

By Lemma 2 we have hu,u⇤i � ⇥

1p
pd

!
and thus fulfilling Precondition 1.

Using (B.1) we can bound

������

Pn
i=1 gu(Xi)

n

������
2
 max

8>>><
>>>:

2

s*Pn
i=1 gu(Xi)

n
,u⇤

+2
1 +

hu,u⇤i2
1 � hu,u⇤i2

!
,⇥

0
BBBBB@

r
d
n

1
CCCCCA

9>>>=
>>>;

(B.2)

Thus for all hu,u⇤i 2 (a1, b1) and n = e⌦
⇣
d2 p2

⌘
we have

hu,u⇤i�1
nX

i=1

*
gu(Xi)

n
,u⇤

+
�

������

Pn
i=1 gu(Xi)

n

������
2

This can be verified by using the bound (B.2). By applying Lemma 18 we can verify that Precondition 2 is fulfilled.
Finally, using Lemma 6 shows that Precondition 3 is fulfilled.

Second Execution of Algorithm 2 There exist parameters t2 and ⌘2 such that for a2 = b1 � � > 0 and b2 = 1 � �
for some ✏ > 0 and � > 0 the second execution of Algorithm 2 fulfills the criteria of Lemma 1 for n = eO(d2 p2).

As a result of the first execution of Algorithm 2 there exists a u such that hu,u⇤i � b1 � � and thus Precondition 1

is fulfilled. For all u for which hu,u⇤i 2 (a, b) there exists a constant choice for ⌘2 > 0 such that
����⌘2

Pn
i=1 gu(Xi)

n

����
2

2


⌘2hu,u⇤i�1
DPn

i=1 gu(Xi)
n ,u⇤

E
. By applying Lemma 19 we can show Precondition 2 is fulfilled. Finally, Precondition 3

can be fulfilled by Lemma 6.

Appendix C. Proofs in Subection 2.5

In this section use �(x) = x4 and (x) = �|x|.

Lemma 7. Have p < 1
3 . Then

E[hgu(X),u⇤i] � ⌦

hu,u⇤i3

p

!

Proof. Define µ0 = 0 and µi =
ipp and p0 = 1 � p and pi =

p
2 for i 2 {1,�1}. Thus

E[hgu(X),u⇤i]
= 4

X

i2{�1,0,1}
pi

⇣
3hu,u⇤i(1 � hu,u⇤i2)2(1 � µ2

i) + µ2
i hu,u⇤i3(1 � hu,u⇤i2)(µ2

i � 3)
⌘

= 4(1 � hu,u⇤i2)hu,u⇤i3

1
p
� 3

!

� ⌦

hu,u⇤i3

p

!

Lemma 8. For � 2 (0, 1) have

P

2
666664

�������

* nX

i=1

gu(Xi)
n
,u⇤

+
� ⌦

E
⇥
gu(X)

⇤
,u⇤

↵
�������
� �

3
777775  exp

�⇥

n�2

log(n log(s))2 �
1 +max

�hu,u⇤i4 p�1, hu,u⇤i8 p�2 �
!!

18

Proof. Choose an ortho-normal basis E = (u⇤, e2, ..., ed) 2 Rd⇥d such that u = hu,u⇤iu⇤ +
p

1 � hu,u⇤i2e2. Next we
will condition on ⌫̂i = hXi,u⇤i for all i where ⌫̂ 2 {�

p
1/p, 0,

p
1/p}. For convenience we define p̂ =

Pn
i=1

I⌫̂i,0

n as well

as n j =
Pn

i=1 I
⌫̂i= j
p

1/p with j 2 {�1, 0, 1}. Additionally define Y j =
✓
X

���hX,u⇤i = j
q

1
p

◆
.

Next observe that maxi2[n] |hXi, e2i|  ⇥
�
log(n log(s))

�
with probability at least 1 � ⇥

⇣
1
s

⌘
by applying the union

bound. Thus for all j we have with probability at least 1 � ⇥
⇣

1
s

⌘

����E
hD

gu(Y j),u⇤
Ei
�

D
gu(Y j),u⇤

E����  ⇥
0
BBBBB@max

8>><
>>:1, hu,u⇤i2

j

1
p

d

!2

, hu,u⇤i4

j
1
p

d

!3
9>>=
>>; log(n log(s))

1
CCCCCA

by By Hoe↵dings inequality we have

P

0
BBBBBBB@

��������

nX

i=1

hgu(Xi),u⇤i
n

�
X

j2{�1,0,1}

n jE
hD

gu(Y j),u⇤
Ei

n

��������
� �

1
CCCCCCCA  exp

0
BBBBBBB@�⇥

0
BBBBBBB@

�2

log(n log(s))2 Pn
i=1

max{1,hu,u⇤i4⌫4
i ,hu,u⇤i8⌫6

i }
n2

1
CCCCCCCA

1
CCCCCCCA

 exp

�⇥

n�2

log(n log(s))2 �
1 + p̂ max

�hu,u⇤i4 p�2, hu,u⇤i8 p�3 �
!!

By applying the Cherno↵ bound for the Binomial distribution we obtain

P

2
66666664

��������

X

j2{�1,0,1}

n jE
hD

gu(Y j),u⇤
Ei

n
� E

2
666664

nX

i=1

hgu(Xi),u⇤i
3
777775

��������
� �

3
77777775  exp

0
BBBBBBBB@�⇥

0
BBBBBBBB@

np�2

max
n
hu,u⇤i, hu,u⇤i3p

o2

1
CCCCCCCCA

1
CCCCCCCCA

Finally we can combine all bounds to obtain the full statement. For any constant �̄ 2 (0, 1) have

P

0
BBBBB@

�������

nX

i=1

hgu(Xi),u⇤i
n

� E[hgu(X),u⇤i]
�������
� �

1
CCCCCA

 P

0
BBBBBBB@

��������

nX

i=1

hgu(Xi),u⇤i
n

�
X

j2{�1,0,1}

n jE
hD

gu(Y j),u⇤
Ei

n

��������
� �

2

������|p̂ � p|  p�̄

1
CCCCCCCA + P

⇣
| p̂ � p| � p�̄

⌘

+ P

2
66666664

��������

X

j2{�1,0,1}

n jE
hD

gu(Y j),u⇤
Ei

n
� E

⇥hgu(X),u⇤i⇤
��������
� �

2

3
77777775

 exp

�⇥

n�2

log(n log(s))2 �
1 + p max

�hu,u⇤i4 p�2, hu,u⇤i8 p�3 �
!!

Lemma 9. For n = ⌦(d) have

P

2
666664 max

û2Sd�1

�������

nX

i=1

 (hXi, ûi)
n

� E[(hX, ûi)]
�������
� �

3
777775  exp

�⇥

n�2

d

!!

Proof. First make the distinction into Y j ⇠ N
✓

ju⇤pp , Id � u⇤u⇤>
◆n j

for j 2 {�1, 0, 1}, where
P

j2{�1,0,1} n j = n. We will
first note that A j(u) = (Y ju) � E[(Y ju)] is subgaussian and thus

P

2
66666664

��������

X

j2{�1,0,1}

n jX

i=1

A j,i(u)
n

��������
� �c

3
77777775  exp

⇣
�⇥

⇣
�2

cn
⌘⌘

19

Let N✏,d be the minimum size ✏-Net of the d-dimensional unit sphere. Thus we know
���N✏,d

��� 
⇣

3
✏

⌘d
.

P

2
66666664max

u2N✏,d

��������

X

j2{�1,0,1}

n jX

i=1

A j,i(u)
n

��������
� �c

3
77777775  exp

d log

3
✏

!
� ⇥

⇣
�2

cn
⌘!

First we bound the maximum deviation for u0 for ku0 � uk2 < ✏
�������

nX

i=1

 (hXi,ui)
n

�
nX

i=1

 (hXi,u0i)
n

�������
 kX(u � u0)k1

n
 kX(u � u0)k2p

n


✏ kXkopp

n

We continue by bounding for all u 2 Sd�1 by applying the triangle inequality
��������

X

j2{�1,0,1}

n jX

i=1

A j,i(u)
n

��������
 max

u02N✏,d

��������

X

j2{�1,0,1}

n jX

i=1

A j,i(u0)
n

��������
+
✏ kXkopp

n

Finally we notice that X can be decomposed into the union of Y�1,Y0,Y1. Thus by applying the Cherno↵ bound
for the Binonmial Distribution we obtain

P

2
66666664

��������
E[(hX,ui)] �

X

j2{�1,0,1}
E

h

⇣D
Y j,u

E⌘i
��������
�

�ppp

3
77777775  2 exp

⇣
�⇥

⇣
�2

pnp
⌘⌘

Thus we can prove the Theorem by choosing ✏ = ⇥ (�) for n > d > 1 and � < 1. The second to last step follows
bounding kXkop 

���X(u⇤u⇤>)
���

op +
���X(I � u⇤u⇤>)

���
op  ⇥

⇣p
n + t

⌘
with probability 1 � 2 exp(�t2) [23].

P

2
666664 max

u2Sd�1

�������

nX

i=1

 (Xiu)
n

� E[(Xu)]

�������
� �

3
777775

P

2
66666664max

u2N✏,d

��������

X

j2{�1,0,1}

n jX

i=1

A j,i

n

��������
� �

3

3
77777775 + P

"
✏ kXkopp

n
� �

3

#
+ P

2
66666664

��������
E[(hX,ui)] �

X

j2{�1,0,1}
E

h

⇣D
Y j,u

E⌘i
��������
� �

3

3
77777775

 exp

d log

3
✏

!
� ⇥

⇣
�2n

⌘!
+ 2 exp(�n) + exp

⇣
�⇥

⇣
�2np2

⌘⌘

2 exp

�⇥

n�2

d

!!

Lemma 10. For all hu,u⇤i > hu0,u⇤i and � > 0. there exists a threshold t such that

nX

i=1

 (hXi,ui)
n

� t and
nX

i=1

 (hXi,u0i)
n

 t

with probability at least 1 � 2 exp
⇣
�⇥

⇣
n�2

d

⌘⌘
.

Proof. By applying the expectation of the half normal distribution we obtain the following upper and lower bounds.

�
r

2
⇡

p
1 � hu,u⇤i2(1 � p) � pphu,u⇤i2 � E[(hX,ui)] � �

r
2
⇡

p
1 � hu,u⇤i2(1 � p) � pp

20

Thus if for all u �������

nX

i=1

 (hXi,ui)
n

� E[(hX,ui)]
�������
 �

then

�
r

2
⇡

p
1 � hu,u⇤i2(1 � p) � pp � � > �

r
2
⇡

q
1 � hu0,u⇤i2(1 � p) � pp

⌦
u0,u⇤

↵2 + �

indicates the existence of the threshold. The Lemma follows by applying Lemma 9 and reordering terms.

Lemma 11. With probability at least 1 � ⇥
⇣

1
s

⌘
� exp

⇣
�⇥

⇣
np

log(ns)

⌘⌘
have

�����
�0(Xu)

n

�����
2
 ⇥

0
BBBBBBB@

1 + hu,u
⇤i3

pp
n

1
CCCCCCCA

Proof. Choose an ortho-normal basis E = (u⇤, e2, ..., ed) 2 Rd⇥d such that u = hu,u⇤iu⇤ +
p

1 � hu,u⇤i2e2.

E[�0(hX,ui)2] = E[hX,ui6]

= E
⇣
hu,u⇤i hu⇤,Xi +

p
1 � hu,u⇤i2 he2,Xi

⌘6�

 ⇥
⇣
1 + E

h
hu,u⇤i hu⇤,Xi)6

i⌘

 ⇥

1 +
hu,u⇤i6

p2

!

For convenience we define p̂ =
Pn

i=1
IhXi ,u⇤i,0

n as well as n j =
Pn

i=1 IhXi,u⇤i= j
p

1/p with j 2 {�1, 0, 1}. Additionally

define Y j =
✓
X

���hX,u⇤i = j
q

1
p

◆
. For �̄ 2 (0, 1)

P

2
666664

�������

nX

i=1

�0(hXi,ui)2

n
� E

h
�0(hX,ui)2

i
�������
� �

3
777775

P

2
66666664

��������

nX

i=1

�0(hXi,ui)2

n
�

X

j2{�1,0,1}

n j

n
E


�0

⇣D
Y j,u

E⌘2
�
��������
� �

2

����� |p̂ � p|  p�̄ ^max
i2[n]
hXi, e2i  ⇥

⇣ p
log(ns)

⌘
3
77777775 + P

h
| p̂ � p| � p�̄

i

+ P
"
max
i2[n]
hXi, e2i � ⇥

⇣ p
log(ns)

⌘#
+ P

2
66666664

��������

0
BBBBBB@

X

j2{�1,0,1}

n j

n
E


�0

⇣D
Y j,u

E⌘2
�1CCCCCCA � E

h
�0(hX,ui)2

i
��������
� �

2

3
77777775

 exp

0
BBBBBBBB@�⇥

0
BBBBBBBB@

n�2

log(ns)
⇣
1 + hu,u

⇤i6
p2

⌘2

1
CCCCCCCCA

1
CCCCCCCCA + 2 exp

� �̄

2np
3

!
+ 2 exp

�
log(n) � ⇥ �

log(ns)
��
+ exp

0
BBBBBBBB@�⇥

0
BBBBBBBB@

�2np
⇣
1 + hu,u

⇤i6
p2

⌘2

1
CCCCCCCCA

1
CCCCCCCCA

(C.1)

⇥

1
s

!
+ exp

0
BBBBBBBB@�⇥

0
BBBBBBBB@

�2np

log(ns)
⇣
1 + hu,u

⇤i6
p2

⌘2

1
CCCCCCCCA

1
CCCCCCCCA

Here (C.1) follows by applying Hoe↵dings inequality and the Cherno↵ bound for the Binomial distribution. The last
term in (C.1) follows by bounding the di↵erence E

h
�0 (hY1,ui)2

i
�E

h
�0 (hY0,ui)2

i
= E

h
�0 (hY�1,ui)2

i
�E

h
�0 (hY0,ui)2

i


⇥
⇣
1 + hu,u

⇤i6
p2

⌘
and also applying the Cherno↵ bound.Choosing � = ⇥

⇣
1 + hu,u

⇤i6
p2

⌘
yields

E[�0(hX,ui)2]  ⇥

1 +
hu,u⇤i6

p2

!

With probability at least 1 � ⇥
⇣

1
s

⌘
� exp

⇣
�⇥

⇣
np

log(ns)

⌘⌘
. The lemma follows by computing the norm.

21

Appendix C.1. Proof of Theorem 2
Proof. As discussed we will split the proof of Theorem 2 into parts for each execution of Algorithm 2.

First Execution of Algorithm 2 There exist parameters t1 and ⌘1 = ⌦(dp2) such that for a1 = ⇥

1p
pd

!
and

some constant b1 2 (0, 1) the first execution of Algorithm 2 fulfills the criteria of Lemma 1 for n = eO(d3 p4).

By the same argument as in Lemma 2 we have hu,u⇤i � ⇥

1p
pd

!
with su�cient large probability, thus fulfilling

Precondition 1.
Using Lemma 7 and applying the concentration result of Lemma 8 we obtain that

nX

i=1

*
gu(Xi)

n
,u⇤

+
= ⌦

hu,u⇤i3

p

!
(C.2)

with probability at least 1 � exp
✓
�⇥

✓
n(hu,u⇤i3 p�1)2

log(n log(s))2(1+max{hu,u⇤i4 p�1,hu,u⇤i8 p�2})
◆◆

.

Next bound with probability at least 1 � ⇥
⇣

1
s

⌘
� exp

⇣
�⇥

⇣
np

log(ns)

⌘⌘

������

Pn
i=1 gu(Xi)

n

������
2


s*Pn
i=1 gu(Xi)

n
,u⇤

+2
1 +

hu,u⇤i2
1 � hu,u⇤i2

!
+

������
�0(Xu)>X(Id � u⇤u⇤> � e2e>2)

n

������

2

2
(C.3)



s*Pn
i=1 gu(Xi)

n
,u⇤

+2
1 +

hu,u⇤i2
1 � hu,u⇤i2

!
+ ⇥

1 +
hu,u⇤i6

p2

!
d
n

!
(C.4)

 max

8>>><
>>>:

2

s*Pn
i=1 gu(Xi)

n
,u⇤

+2
1 +

hu,u⇤i2
1 � hu,u⇤i2

!
, 2

s

⇥

1 +
hu,u⇤i6

p2

!
d
n

!9>>>=
>>>;

(C.5)

Here (C.3) follows by by decomposing the norm. (C.4) follows by applying Lemma 11 and Lemma 17. Finally using
⌘1 = ⌦

⇣
p2d

⌘
we apply Lemma 18 to demonstrate that Precondition 2 is fulfilled if n = e⌦

⇣
d3 p4

⌘
.

Finally Lemma 10 shows that Precondition 3 is fulfilled.

Second Execution of Algorithm 2 There exist parameters t2 and ⌘2 = ⌦(dp2) such that for a2 = b1 � � and
b2 = 1 � � for some 3 > ✏ > 0 the first execution of Algorithm 2 fulfills the criteria of Lemma 1 for n = e⌦

⇣
d3 p4

⌘
.

Precondition 1 is fulfilled by the first execution of Algorithm 2.
Using (C.5) have

����
Pn

i=1 gu(Xi)
n

����
2
= O

⇣
1
p

⌘
if |hu,u⇤i|  1��. Choosing ⌘2 = ⇥ (1) > 0 yields that ⌘2hu,u⇤i�1

DPn
i=1

gu(Xi)
n ,u

⇤
E
�

����⌘2

Pn
i=1 gu(Xi)

n

����
2

2
. Thus applying Lemma 19 we obtain that Precondition 2 is satisfied if n = e⌦

⇣
d3 p4

⌘
.

Finally Lemma 10 shows that Precondition 3 is fulfilled.

Appendix D. Proofs in Section 3

Appendix D.1. Proof of Corollary 1
Proof. First note we have EH0 [max {0,X}2] = EH1 [max {0,X}2 if hû,u⇤i = 0. Thus we can apply Lemma 6 to obtain
the result.

Lemma 12 is nearly equlvalent to Lemma 6.7 in Mao and Wein [15].

Lemma 12. For ↵ 2 Nn, let |↵| = Pn
i=1 ↵i = k↵k1, and let k↵k0 be the size of the support of ↵. For m 2 [d], define a set

A(k,m) := {↵ 2 Nn : |↵| = k, k↵k0 = m, ↵i 2 {0} [{3, 4, . . . } for all i 2 [n]} . (D.1)

Then we have |A(k,m)|  nmkk.

22

Proof. |A(k,m)| 
⇣

n
k

⌘
kk.

Lemma 13. Have the Imbalanced Clusters RV X ⇠ D⌫(p)

E[ĥ0(X)] = 1, E[ĥ1(X)] = 0, E[ĥ2(X)] = 0

And given p < 0.5 have for k � 3
|E[ĥk(X)]|  kk/2 p1�k/2

Proof. For p < 0.5 have E[Xk]  2p1�k/2. Thus we can bound

|E[hk(X)]| = 1
p

k!

0
BBBBBB@

kX

i=0

ciE[Xi]

1
CCCCCCA  |E[Xi]|

p
k!

. With the last inequality following from
kP

i=0
|ci|  k!.

Lemma 14 (Mao and Wein [15]). Consider the distribution H1 in Problem 1 and suppose the first D moments of ⌫
are finite. For ↵ 2 NN, let |↵| := PN

i=1 ↵i. Then

���LD
d

���2
2 =

DX

d=0

E[hu,u0id]
X

↵2NN

|↵|=d

NY

i=1

�
Ex⇠⌫[h↵i (x)]

�2 (D.2)

where u and u0 are drawn independently fromU.

Lemma 15 (Mao and Wein [15]). Let u and u0 be independent uniform random vectors on the unit sphere in Rn. For
k 2 N, if k is odd, then E[hu,u0id] = 0, and if k is even, then

E[hu,u0ik]  (k/n)k/2

Appendix D.2. Proof of Theorem 3
The proof of Theorem 3 closely follows the proof of Theorem 4.5 in Mao and Wein [15].

Proof. We will use A(k,m) as defined in Lemma 12 and note that for ↵ 2 A(k,m), we obtain that ↵ � 3 and thus
m  bk/3c using Lemma 13

X

↵2Nn

|↵|=k

nY

i=1

�
E[h↵i (x)]

�2 =

bk/3cX

m=1

X

↵2A(k,m)

nY

i=1

�
E[h↵i (x)]

�2 
bk/3cX

m=1

|A(k,m)|
Y

i2[n],↵i,0

↵2↵i
i p2�↵i 

bk/3cX

m=1

nmk3k p2m�k

By applying the closed form of the geometric series we obtain

X

↵2Nn

|↵|=k

nY

i=1

�
E[h↵i (x)]

�2  k3knp2�k (np2)bk/3c � 1
np2 � 1

 k3knp2�k (np2)k/3

1
2 np2

= 2k3knk/3 p�k/3.

This combined with Lemma 15 gives

E[hu, u0ik]
X

↵2Nn

|↵|=k

nY

i=1

�
E[h↵i (x)]

�2  (k/d)k/2 · 2k3knk/3 p�k/3 = 2

k10.5n
d3/2 p

!k/3

.

Finally, combining this with Lemma 14, we obtain

���LD
d

���2
2 =

DX

k=0

E[hu, u0ik]
X

↵2Nn

|↵|=k

nY

i=1

�
E[h↵i (x)]

�2  1 + 2
DX

k=3

k10.5n
d3/2 p

!k/3

.

This is true if d1.5 p > nDc2 for a su�ciently large constant c2 > 0 such that k10.5n
d3/2 p < 1/4.

23

Appendix E. Additional Proofs

Lemma 16. Choosing the ortho-normal basis E = (u⇤, e2, ..., ed) 2 Rd⇥d such that u = hu,u⇤iu⇤ +
p

1 � hu,u⇤i2e2.

������

Pn
i=1 gu(Xi)

n

������
2
=

s*Pn
i=1 gu(Xi)

n
,u⇤

+2
1 +

hu,u⇤i2
1 � hu,u⇤i2

!
+

������
�0(Xu)>X(Id � u⇤u⇤> � e2e>2)

n

������

2

2

Proof.
������

Pn
i=1 gu(Xi)

n

������
2
=

vut*Pn
i=1 gu(Xi)

n
,u⇤

+2

+

*Pn
i=1 gu(Xi)

n
, e2

+2

+

dX

i=3

*Pn
i=1 gu(Xi)

n
, ei

+2

By hu,u⇤i
DPn

i=1 gu(Xi)
n ,u⇤

E
+

p
1 � hu,u⇤i2

DPn
i=1 gu(Xi)

n , e2
E
= 0 we can expand to

������

Pn
i=1 gu(Xi)

n

������
2
=

vut*Pn
i=1 gu(Xi)

n
,u⇤

+2
1 +

hu,u⇤i2
1 � hu,u⇤i2

!
+

dX

i=3

*Pn
i=1 gu(Xi)

n
, ei

+2

Lemma 17. Choose a ortho-normal basis E = (u⇤, e2, ..., ed) 2 Rd⇥d such that u = hu,u⇤iu⇤ +
p

1 � hu,u⇤i2e2. Thus
������
�0(Xu)>X(Id � u⇤u⇤> � e2e>2)

n

������
2
= O

 p
d

�����
�0(Xu)

n

�����
2

!

with probability at least 1 � O
⇣

1
s

⌘
.

Proof. First notice that X(Id � u⇤u⇤> � e2e>2) ⇠ N(0, (Id � u⇤u⇤> � e2e>2))n and thus that for some vector v

P

2
6666664

�������

nX

i=1

vi

kvk2
Xi(Id � u⇤u⇤> � e2e>2)

�������
2

�
p

d + t

3
7777775  2 exp

⇣
�⇥

⇣
t2

⌘⌘

The lemma follows by using t =
p

log(s) and choosing v = �0(Xu)
n

Lemma 18. For any c3 2 (0, 1) such that if
����

Pn
i=1 gu(Xi)

n

����
2
 (1 � c3)

⌧ Pn
i=1 gu (Xi)

n ,u⇤
�

hu,u⇤i and
⌘
⌧ Pn

i=1 gu(Xi)
n ,u⇤

�

hu,u⇤i � 1 we have

hu⇤,u + ⌘
DPn

i=1
gu(Xi)

n ,u
⇤
E

����u +
DPn

i=1
gu(Xi)

n ,u⇤
E����

2

� hu,u⇤i
✓
1 +

c6

2

◆

Proof.

*
u⇤,

u + ⌘
Pn

i=1
gu(Xi)

n����u + ⌘
Pn

i=1 gu(Xi)
n

����
2

+
� hu,u⇤i

1 + ⌘hu,u⇤i�1
DPn

i=1
gu(Xi)

n ,u
⇤
E

r
1 + ⌘2

����
Pn

i=1 gu(Xi)
n

����
2

2

� hu,u⇤i
1 + ⌘hu,u⇤i�1

DPn
i=1

gu(Xi)
n ,u

⇤
E

1 + (1 � c3)⌘hu,u⇤i�1
DPn

i=1
gu(Xi)

n ,u⇤
E � hu,u⇤i

✓
1 +

c3

2

◆

24

Lemma 19. If ⌘hu,u⇤i�1
DPn

i=1
gu(Xi)

n ,u
⇤
E
�

����⌘
Pn

i=1 gu(Xi)
n

����
2

2

hu⇤,u + ⌘
DPn

i=1
gu(Xi)

n ,u
⇤
E

����u + ⌘
Pn

i=1
gu(Xi)

n

����
2

� hu,u⇤imin

8>><
>>:1 + ⌘

* nX

i=1

gu(Xi)
n
,u⇤

+
, 2

9>>=
>>;

Proof.

*
u⇤,

u + ⌘
Pn

i=1
gu(Xi)

n����u + ⌘
Pn

i=1 gu(Xi)
n

����
2

+
� hu,u⇤i

1 + ⌘hu,u⇤i�1
DPn

i=1
gu(Xi)

n ,u
⇤
E

r
1 +

����⌘
Pn

i=1 gu(Xi)
n

����
2

2

� hu,u⇤i

vt
1 + ⌘hu,u⇤i�1

* nX

i=1

gu(Xi)
n
,u⇤

+
� hu,u⇤imin

8>><
>>:1 + ⌘

* nX

i=1

gu(Xi)
n
,u⇤

+
, 2

9>>=
>>;

Lemma 20. For any �(·) and x,u,u⇤ 2 Rd have

hgu(x),u⇤i = @�(hx,ui)
@ hx,ui (hx,u⇤i � hx,ui hu,u⇤i)

Proof. First recall the definition gu(x) = (Id�uuT) @�(hu,xi
@u . Let us choose a new ortho-normal basis E = (u⇤, e2, ..., ed) 2

Rd⇥d. By hx,ui = hx,u⇤i hu,u⇤i +
⇣Pd

i=2 hx, eii hu, eii
⌘

hgu(x),u⇤i =
*
(I � uuT)

@�(hx,ui)
@u

,u⇤
+

=
@�(hx,ui)
@ hx,ui

0
BBBBBB@
⇣
1 � hu,u⇤i2

⌘
hx,u⇤i � hu,u⇤i

0
BBBBBB@

dX

i=2

hu, eii hx, eii
1
CCCCCCA

1
CCCCCCA

=
@�(hx,ui)
@ hx,ui

⇣
(1 � hu,u⇤i2) hx,u⇤i � hu,u⇤i (hx,ui � hu,u⇤i hx,u⇤i)

⌘

=
@�(hx,ui)
@ hx,ui (hx,u⇤i � hx,ui hu,u⇤i)

25

