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Abstract

Recent years have witnessed remarkable breakthroughs across var-
ious scientific and technological pursuits, including visual recog-
nition and language understanding that are approaching human-
level capabilities and protein folding. These breakthroughs have
been driven in part by the availability of data and computational
resources at unprecedented scales, as well as rapid progress in
designing and optimizing highly complex learning algorithms.

Despite the impressive success of modern machine learning,
the real-world applicability of these algorithms is hindered by two
interrelated problems. First, a theoretical understanding of these
complex methods is far from complete. Second, from a practi-
cal standpoint, these methods are brittle against adversarial ex-
amples and domain shifts and often do not comply with quality
attributes such as fairness and privacy. Many of these problems
can be characterized in the framework of learning under extreme
non-identifiability and constitute the key challenges of contempo-
rary research in machine learning. Unsurprisingly, the lack of a
theoretical understanding of algorithms under this framework is
particularly severe.

There are three key aspects any theory should consider in this
framework:

(a) Identification. The problem of learning from finite samples fun-
damentally suffers from the issue of non-identifiability. The key
to obtaining any theoretical justification is to define a model
(through assumptions based on prior knowledge) and seek a
model-relative justification. This is even more crucial for learn-
ing under extreme non-identifiability, where the issue of non-
identifiability persists even in the infinite sample limit.

(b) Estimation. Once the parameters or quantities of interest are
precisely identified, then the problem of learning is merely a
problem of statistical estimation and can admit theoretical guar-
antees (for example, consistency or rates of convergence).

(c) Computation. Computation is the other key aspect of learning.
While the focus of statistics is to provide guarantees under con-
straints on sample sizes, from a computational perspective, the
focus is to obtain guarantees under constraints on the available
computation.
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In this thesis, we contribute to the theoretical foundations of
the problem of learning under extreme non-identifiability with
emphasis (to varying degrees) on each of the three aspects. In
particular, we consider the problems of statistical clustering and
causal learning and make the following contributions.

(a) Theory of kernel clustering. We provide recovery guarantees for
kernel-based clustering under parametric and non-parametric
assumptions on the data-generating process. We study phase
transitions in the problem of high-dimensional Gaussian clus-
tering and show that kernel-based clustering algorithms can be
informational-theoretically optimal in their respective compu-
tational classes.

(b) Theory of causal learning. We introduce the framework of causal
learning theory for forecasting and provide finite-sample uni-
form convergence guarantees for the causal risk of the class of
vector autoregressive models. Under a linear causal model with
potential latent confounders, we study the problem of causal
generalization from the lens of interpolation and regularization.



Zusammenfassung

In den letzten Jahren wurden in verschiedenen wissenschaftlichen
und technologischen Bereichen bemerkenswerte Durchbrüche er-
zielt. Dazu gehören die visuelle Erkennung und das Sprachver-
ständnis, welche sich dem menschlichen Niveau nähern, sowie
die Proteinfaltung. Diese Durchbrüche wurden teilweise vorange-
trieben durch die Verfügbarkeit von Daten und Rechenleistung in
noch nie dagewesenem Umfang sowie durch rasche Fortschritte
bei der Entwicklung und Optimierung hochkomplexer Lernalgo-
rithmen.

Trotz des beeindruckenden Erfolgs des modernen maschinellen
Lernens wird die praktische Anwendbarkeit dieser Algorithmen
durch zwei miteinander verknüpfte Probleme behindert. Erstens
ist das theoretische Verständnis für diese komplexen Methoden
noch lange nicht abgeschlossen. Zweitens sind diese Methoden
von einem praktischen Standpunkt aus gesehen anfällig gegenüber
feindlichen Beispielen und Domänenverschiebungen und erfüllen
oft Qualitätsmerkmale wie Fairness und Datenschutz nicht. Viele
dieser Probleme lassen sich im Rahmen des Lernens unter extremer
Nicht-Identifizierbarkeit charakterisieren und stellen die zentralen
Herausforderungen des zeitgenössischen maschinellen Lernens dar.
Wenig überraschend ist der Mangel an theoretischem Verständnis
von Algorithmen in diesem Rahmen besonders gravierend.

Es gibt drei Schlüsselaspekte, die jede Theorie in diesem Rah-
men berücksichtigen sollte:

(a) Identifikation. Das Problem des Lernens von endlichen Stich-
proben leidet grundlegend unter dem Problem der Nicht- Iden-
tifizierbarkeit. Der Schlüssel zur Erlangung einer theoretischen
Rechtfertigung ist ein Modell zu definieren (durch Annahmen,
die auf Vorwissen beruhen) und eine modellbezogene Rechtfer-
tigung zu suchen. Dies ist sogar noch entscheidender für das
Lernen unter extremer Nicht-Identifizierbarkeit, wo das Prob-
lem der Nicht-Identifizierbarkeit auch bei unendlichen Stich-
proben fortbesteht.

(b) Schätzung. Sobald die gesuchten Parameter oder Größen genau
bestimmt sind, ist das Problem des Lernens lediglich ein Prob-
lem der statistischen Schätzung und kann theoretische Garantien
ermöglichen (zum Beispiel Konsistenz oder Konvergenzraten).

(c) Berechnung. Berechnung ist der dritte Schlüsselaspekt des Ler-
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nens. Während der Schwerpunkt der Statistik darin besteht,
Garantien unter Beschränkungen des Stichprobenumfangs zu
geben, liegt der Schwerpunkt aus der Sicht der Berechnung
auf Garantien unter Beschränkung der verfügbaren Rechenleis-
tung.

In dieser Arbeit leisten wir einen Beitrag zu den theoretischen
Grundlagen des Lernens unter extremer Nicht-Identifizierbarkeit,
wobei jeder dieser Aspekte (in unterschiedlichem Maße) im Vorder-
grund steht. Insbesondere betrachten wir die Probleme der statis-
tischen Clusterbildung und des kausalen Lernens und leisten die
folgenden Beiträge.

(a) Theorie der kernelbasierten Clusterbildung.

Wir bieten Wiederherstellungsgarantien für kernelbasierte Clus-
terbildung unter parametrischen und nicht-parametrischen An-
nahmen über den datenerzeugenden Prozess. Wir untersuchen
Phasenübergänge beim Problem der hochdimensionalen Gauss-
chen Clusterbildung und zeigen, dass kernelbasierte Cluster-
Algorithmen in ihren jeweiligen Rechenklassen informations-
theoretisch optimal sein können.

(b) Theorie des kausalen Lernens. Wir führen den Rahmen der kausalen
Lerntheorie für Prognosen ein und bieten uniforme Konvergen-
zgarantien unter endlicher Stichprobe für die Klasse der vek-
torautoregressiven Modelle. Im Rahmen eines linearen Kausal
modells mit potenziellen latenten Störfaktoren untersuchen wir
das Problem der kausalen Generalisierung unter dem Aspekt
der Interpolation und Regularisierung.



Part I

Introduction



A guide to the introduction

How to read the introduction? The introduction to this
thesis is comprised of five sections. We begin by discussing the
issue of non-identifiability in the problem of learning or inductive
inference. We review the philosophical and theoretical perspec-
tives on this problem and a means of reconciliation (Chapter 1).
We then discuss the issue of theoretical justification of statistical
learning methods in light of the issue of non-identifiability. We
review the framework of statistical learning theory and highlight
some landmark results (Chapter 2). In Chapter 3, we go beyond
learning under the standard i.i.d. setting and introduce the issue
of extreme non-identifiability. We discuss some of the challenging
problems in modern machine learning in light of the extreme non-
identifiability issue emphasizing the problem of statistical cluster-
ing and causal learning. In Chapter 4, we review existing work in
the theory of statistical clustering and causal learning. In Chap-
ter 5, we discuss some limitations of the current state of theory
in clustering and causal learning and present our contributions to
these topics.



1
Learning under non-identifiability.

“When the mind passes from the idea or impression of one object
to the idea or belief of another, it is not determin’d by reason,
but by certain principles, which associate together the ideas of
these objects, and unite them in the imagination.”

David Hume, A Treatise of Human Nature

In the summer of 1958, a press conference was held by the
United States Office of Naval Research to unveil an astounding in-
vention called the perceptron. The IBM 704 computer, which was
large enough to fill an entire room, was fed 100 punch cards with
squares placed on either the left or right side of a field. The percep-
tron was able to correctly distinguish between the two placements
in 97 instances after only seeing 30 to 40 examples. The New York
Times reported that the perceptron was expected to be "the first
non-living organism to perceive, recognize, and identify its sur-
roundings without any human training or control," according to
its inventor Frank Rosenblatt [NYT, 1958].

Such intelligent machines — from the tale of a bronze man
called Talos built by Hephaestus, the Greek god of invention, con-
ceptualized as far back as 700BC, to modern science fiction ref-
erences like Frankenstein’s monster or our beloved star wars duo
R2D2 and C3PO — have long captured the human imagination.
While the perceptron fell short of its grand promise in the 1960s,
fuelled by an abundance of data and enormous advances in com-
puting power, we have come a very long way in building highly
complex machines that achieve (or even surpass) human-level per-
formance on a wide array of intelligent tasks like image recogni-
tion [Krizhevsky et al., 2017], speech recognition [Radford et al.,
2022], or even discovering new algorithms [Fawzi et al., 2022]. De-
spite the enormous complexity of these modern intelligent ma-
chines, the conceptual goal of these machines is the same as it was
for perception: the problem of learning.
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1.1 What is learning?

What is Learning? On an abstract level, it refers to the prob-
lem of inferring a law of nature based on experiences. This is also
referred to as the problem of inductive inference. Imagine being
an explorer lost in a forest for weeks. Having not eaten in days,
you come across a bunch of purple berries and are tempted to eat
them. You decide to take a chance and find them delicious. For
the next ten days, along your trail, you find more purple berries,
and you find them delicious every time. Based on these expe-
riences, you conclude a general law: all purple berries are edible
and delicious. Similarly, much like how a child learns, after seeing
some examples of squares placed on the right or left, the percep-
tion algorithm learns to distinguish between the two cases, even in
unseen examples. Such inductive inferences, however, are merely
probable. Assuming the truth of the premises, it is likely that the
conclusion is true. This stands in contrast to the other common
type of cogent reasoning — typically referred to as deductive in-
ference — where the truth of the premises logically entails the
truth of the conclusions. For example, if all berries are delicious
and some berries are purple, you may conclude via deductive rea-
soning that all purple berries are delicious.

1.2 Hume’s induction dilemma.

The issue of non-identifiability, also known as the problem
of induction, lies at the heart of the philosophical and theoret-
ical foundations of the problem of learning. This problem was
highlighted by the philosopher and empiricist David Hume in his
book "A Treatise of Human Nature," published in 1739. Hume
asks what the basis is for inductive inference and how we can jus-
tify inferring that the next purple berry we encounter will also be
edible. By posing this question, Hume challenges the underly-
ing assumption of inductive inference: the uniformity of the law
of nature, which is the assumption that our past experiences will
resemble those we have not yet had.

Hume then proceeds to present his famous two-horn dilemma
of induction. According to Hume, all epistemological reasoning
can be divided into two categories: deductive or demonstrative
reasoning, and inductive or empirical reasoning. The first horn of
the dilemma argues that it is impossible to justify the uniformity
principle through purely deductive reasoning, as such reasoning
always leads to conclusions that cannot be falsified. At the same
time, we can find clear examples that contradict the uniformity
principle - the next purple berry we encounter could be poisonous.
The second horn of the dilemma argues that there can be no em-
pirical or inductive basis for the uniformity principle either, as any
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such argument would be circular. For example, one might argue
that inductive inferences have worked for us in the past, but this
would again require the assumption of the uniformity of the law
of nature, making the argument circular. Therefore, Hume con-
cludes that there can be "no rational justification" for induction.

1.3 No free lunch theorems.

The essence of the problem of induction or the issue of
non-identifiability is captured in the theory of learning via a se-
ries of mathematical impossibility results called the no-free-lunch
(NFL) theorems [Wolpert, 1992, Schaffer, 1994, Wolpert, 1996, 2002].

To understand these results, let’s introduce some notation to
formally describe the learning problem. Suppose we have a dataset
of training examples of the form

{
(xi, yi)

n
i=1
}

, where xi’s (e.g., one
of the purple berries) belong to some input space X and yi’s (e.g.,
the deliciousness of the berry) belong to a target space Y . The
elements of the input space are called features or covariates, and
the elements of the output space Y are called targets or labels.
The goal of a learning algorithm is then to learn the underlying
functional relationship between the features and the labels (e.g.,
the relationship between purple berries and deliciousness).

Now consider the problem of binary classification (i.e., where
the labels yi are assumed to be in {+1,−1}) on a discrete input
space X , and suppose that the training data is sampled from some
unknown distribution P. The NFL theorems show that, in expec-
tation under a uniform distribution over all possible true label-
ings, no algorithm can achieve superior performance over another
algorithm.1 In other words, on average, no algorithm can do bet- 1 In these results, performance is mea-

sured on a separate hold-out set also
drawn from the same underlying distri-
bution P but is disjoint from the train-
ing set.

ter than random guessing. Schaffer refers to this phenomenon as
the “conservation of generalization performance” since it suggests
that if an algorithm performs really well on some distributions,
this must necessarily be offset by poor performance on others
[Schaffer, 1994]. These results echo Hume’s inductive skepticism.

Despite the philosophical and mathematical impossibility of
induction, it is the foundation of not only computational learn-
ing but also the scientific method itself. So, how do we reconcile
these impossibility results and Hume’s dilemma of induction with
the practicality of inductive inference in our everyday lives and in
scientific research?2 2 There has been extensive debate in

philosophy around Hume’s induction
dilemma and various proposed resolu-
tions. We refrain from diving into this
literature and instead refer the inter-
ested reader to Sterkenburg and Grün-
wald [2021], Henderson [2022]

1.4 Reconciling theory and practice.

While the NFL theorems appear rather strong at first glance, a
path to reconciliation becomes clear after a moment of delibera-
tion. The NFL results can be interpreted as saying that, without
assuming any relationship between the experiences made so far
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(i.e., the training data) and future experiences (i.e., test data) and
if all functions between the features and the labels are equally
likely, then learning is impossible. This is far from how we ap-
ply induction in practice. Wolpert and Schaffer were aware of this
gap and believed that the “conservation law is theoretically sound
but practically irrelevant”. Nevertheless, these results highlight
an idea fundamental to learning, i.e., learning is impossible if an
algorithm does not incorporate any prior knowledge of the under-
lying task.

Analogously, in the philosophy literature, Sober and Okasha
reconcile Hume’s induction dilemma with the practicality of in-
ductive inference similarly by taking a local view of induction [Sober,
1991, Okasha, 2005]. They argue that the induction dilemma can
be sidestepped by questioning the presupposition of the unifor-
mity of the law of nature. In other words, there is no apriori as-
sumption, such as the uniformity of the law of nature, which can
justify all inductive inferences. Instead, every inductive inference
relies on some assumptions. This corresponds to challenging the
apriori assumption of a uniform (or any) distribution over possi-
ble labelings in the NFL results. In the local view, this means that
learning may be possible with additional local assumptions based
on prior knowledge of the learning task.

1.5 How do we incorporate prior knowledge?

A standard assumption in the setting of statistical learning is that
the training data and unseen test data are drawn from the same
(unknown) probability distribution P (i.i.d.). Under this assump-
tion, it is possible to find algorithms that are universally consistent
[Stone, 1977, Devroye and Wagner, 1979b, Bartlett and Traskin,
2006, Collins et al., 2020]; that is, for any distribution P, the per-
formance of the algorithms gets closer to optimal with increasing
size (n) of the training sample.3 Such a result may elicit hope for a3 Note that even under the iid assump-

tion, we don’t observe the entire do-
main even as n approaches infinity.
Universally consistent algorithms can
(without additional assumptions) ex-
ist only due to the precise manner in
which measurable spaces and functions
are defined. See, for example, the dis-
cussion in Bousquet et al. [2003, Ap-
pendix B]

universal learning algorithm under this general i.i.d. assumption.
However, for any fixed n, one can always find distributions on
which the error incurred by these algorithms is arbitrarily close to
random guessing. At the same time, another predictor is optimal
and incurs zero error (see Devroye et al. [2013]). This clearly em-
phasizes the need for stronger assumptions that encode local prior
knowledge to be incorporated into the learning process. There are
several ways to achieve this, for example, by choosing an appro-
priate loss function or through the topology of the input space.
In machine learning (ML), this is typically achieved by imposing
some restrictions on the class of the functions from which one
wishes to learn a good approximation to the optimal function.
For example, in Bayesian approaches, via a prior distribution over
the space of possible predictors, and in classical frequentist ap-
proaches, typically by choosing a predefined class of predictors.
We will discuss this approach further in the next section.



2
Theory of statistical learning

“Nothing is more practical than a good theory.”

Kurt Lewin; Vladimir Vapnik.

First, let us recall the formal setup of binary classification. Given
n samples of the form

{
(xi, yi)

n
i=1
}

drawn i.i.d. from some un-
known probability distribution P on Rd×{±1}, and a non-negative
loss function l : {±1} × {±1} → R+, the goal is to learn the func-
tion f ∗ : Rd → {±1} which minimizes the expected risk under
P

f ∗ := arg inf
f :Rd→{±1}

EP(x,y) l(y, f (x)). (2.1)

However, as discussed in Chapter 1, f ∗ is non-identifiable at
finite n, and therefore the goal is to approximate f ∗ as well as
possible under some assumptions.

2.1 Parametric approach

In classical statistics, a typical approach to solving this prob-
lem is to assume that the underlying distributions can be specified
up to a small number of parameters independent of the sample
size. Then, the maximum likelihood estimation (MLE) approach
is typically used for parameter estimation. Theoretical analysis in
this approach is specialized to the specified class of distributions
and the corresponding effectiveness of MLE. This approach can
yield good performance in simple settings and low dimensions
where such strong priors may be justified. However, parametric
approaches are generally not suitable for more real-world settings
where it is typically not possible to model distributions using a
small set of parameters.1 1 Modern ML models are notoriously

complex with number of parameters
running into the billions.
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2.2 Non-parametric approach

A more flexible, non-parametric framework was pioneered
by Vapnik and Chervonekis [Vapnik and Chervonenkis, 1971], build-
ing on the foundations of empirical process theory, specifically
on uniform laws of large numbers such as the Glivenko-Cantelli-
Kolmogorov theorem and its generalizations. In a non-parametric
approach, the goal is to find and justify an inductive principle that
can be applied in a general setting for any class of approximating
functions. From an algorithmic point of view, a natural candidate
for such a general inductive method is the principle of empirical
risk minimization (ERM). The main idea is that one can approxi-
mate the expectation under the underlying distribution P in (2.1)
by an expectation under the empirical distribution based on the
training data. That is, to use the function f̂ , which minimizes the
empirical risk over the space of all functions as an approximation
to f ∗ in (2.1).

f̂ := arg inf
f :Rd→{±1}

1
n

n

∑
i=1

l(yi, f (xi)). (2.2)

However, due to the issue of non-identifiability, the optimiza-
tion problem in (2.2) is not well-specified. A typical approach
to dealing with this issue is restricting the class of approximat-
ing functions to make the solution unique. For a fixed class of
approximating functions H (for example, the class of neural net-
works with a fixed architecture), the ERM predictor ferm is defined
as the solution to the optimization problem in (2.3).

ferm := arg min
f∈H

1
n

n

∑
i=1

l(yi, f (xi)). (2.3)

We are mainly interested in controlling the excess risk of the
ERM predictor ferm which is defined as the difference between
the risk incurred by ferm and the best possible risk under P. De-
noting the expected risk incurred by any predictor f under the
distribution P as R( f ) = EP(x,y) l(y, f (x)), the excess risk is given
by

E( ferm) := R( ferm)−R( f ∗).

The excess risk can be decomposed into two components: esti-
mation error and approximation error

R( ferm)−R( f ∗) = R( ferm)− inf
f∈H
R( f )

︸ ︷︷ ︸
estimation error

+ inf
f∈H
R( f )−R( f ∗)

︸ ︷︷ ︸
approximation error

.

Observe that the two error terms are different in character. While
the problem of controlling the approximation error is a conceptual
one relating to the non-identifiability issue that was discussed in
Section 1, controlling estimation error is a statistical problem that



theory of statistical learning 9

corresponds to seeking a model-relative justification. A majority
of the vibrant field of statistical learning theory (SLT) focuses on
the latter issue. Specifically, addressing the following questions
has been the primary focus of this field (with answers to some
questions more satisfactory than others).

1. What are the necessary and sufficient conditions under which
the estimation error of ferm vanishes as the number of training
samples approaches infinity? This property is often referred to
as statistical consistency.

2. How fast does the estimation error converge with increasing n?
What is the optimal rate of convergence?

3. Can we find algorithms or learning principles with optimal pre-
dictive ability? What can we say about approximation error?

4. How do the computational properties of estimators interplay
with their statistical properties? What are the fundamental lim-
its of learning under computational constraints?

Here, we briefly review some standard approaches to addressing
these questions and review some landmark results along the way.
However, this area of research is incredibly rich, and this review
should not, by any means, be considered exhaustive.

2.2.1 Necessary and sufficient conditions for consistency of ERM

A celebrated result in the field of statistical learning theory is a
complete characterization of conditions that are both sufficient
and necessary for the consistency of empirical risk minimization
(ERM). Vapnik and Chervonenkis [1971] showed that in binary
classification setting, consistency of empirical risk minimization
is equivalent to stating that the hypothesis class H is a uniform
Glivenko Cantelli class (uGC), that is, uniformly over all functions
in H and uniformly over all probability distributions, empirical
risk converges (in probability) to the expected risk. Furthermore,
Vapnik and Chervonenkis [1971] showed that uniform Glivenko
Cantelli hypothesis classes can be precisely characterized by the
finiteness of a combinatorial measure of complexity or capacity of
the function class called VC dimension. Alon et al. [1997] showed
that such a characterization also holds for the setting of regres-
sion with a generalized notion of complexity measure called fat-
shattering-dimension. H is uGC if and only if the fat-shattering
dimension of H is finite at every finite scale. Algorithmic stabil-
ity is another algorithm-dependent notion of complexity that can
also be used to characterize the consistency of ERM [Kutin and
Niyogi, 2002, Mukherjee et al., 2006]. Specifically, consistency of
ERM holds if and only if ERM is stable on H (for some weak no-
tion of stability).

Note that consistency is a property of
the induction principle, i.e., ERM. How-
ever, consistency is closely related to the
notion of statistical learnability, which
is defined as a property of the hypoth-
esis class H. H is learnable if and only
if there exists a learning mechanism for
which consistency holds. In the set-
ting of classification or regression, it has
been shown that a necessary and suf-
ficient condition for learnability is that
H is uGC [Vapnik and Chervonenkis,
1971, Alon et al., 1997]. Since ERM is
consistent under this condition, it holds
that if a hypothesis class is learnable,
then it is learnable by ERM. However,
settings exist beyond supervised clas-
sification and regression where these
notions diverge. See Shalev-Shwartz
et al. [2010] for a thorough discussion
on such settings and the interplay be-
tween uniform convergence, learnabil-
ity, and stability. These results provide
a complete answer to the first question
concerning the consistency of ERM.
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2.2.2 Convergence rates for estimation error

There has been intense work in the past two decades on the topic
of deriving convergence rates for estimation error. Before we re-
view them, let us first introduce the notion of generalization gap.
Assume without loss of generality that fopt ∈ arg inf f∈HR( f ) ex-
ists. Notice that the estimation error admits the decomposition,

R( ferm)−R( fopt) = (R( ferm)− R̂( ferm))+

(R̂( ferm)− R̂( fopt)) + (R̂( fopt)−R( fopt)).

The second expression in the decomposition cannot be strictly pos-
itive. Since fopt is a fixed function, an application of the law of
large numbers reveals that the third expression vanishes (under
some mild assumptions as O(1/

√
n)). However, since ferm is a

function of the training data, a simple law of large numbers cannot
be applied to the first expression. Consequently, the object of all
analyses is typically the first term: the difference between an esti-
mator’s empirical risk and the expected risk. This term is typically
referred to as the generalization error (or gap), and correspond-
ing bounds for this expression are termed generalization bounds.
There are several ways to derive generalization bounds (for exam-
ple, uniform convergence, algorithmic stability, or margin-based
bounds). Conceptually, we can broadly categorize them in two
ways based on whether or not they depend on the underlying
data distribution.

Data-independent generalization bounds

Obtaining bounds on the estimation error that holds indepen-
dent of the data distribution can be of interest since they can be
evaluated without the knowledge of the underlying probability
distribution. To derive such bounds, two predominant approaches
exist 1) uniform convergence and 2) algorithmic stability.2 Both2 There are many other approaches

to deriving generalization bounds, for
example, using information-theoretic
properties. The two discussed here are
widely entrenched.

were already referenced in our discussion of conditions for the
consistency of ERM.

Uniform convergence. A key observation that underlies this
approach is the following. Since ferm depends on the training data,
it is not clear which model is chosen by the algorithm apriori.
One way to overcome this is to apply a crude upper bound on
generalization error as in (2.4) and treat the upper bound instead,
which, incidentally, has been one of the most investigated objects
in empirical process theory.

R( ferm)− R̂( ferm) ≤ sup
f∈H

(R( f )− R̂( f )). (2.4)

Leveraging tools from empirical process theory, one can typically
obtain high probability, uniform convergence bounds of the form33 This bound should only serve as an

exemplar. For example, there has been
a lot of work on improving the conver-
gence rate and obtaining minimax opti-
mal convergence rates.

∀ f ∈ H, R( f )− R̂( f ) ≤ O
( cap(H)√

n

)
. (2.5)
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Here, cap(H) refers to some measure of complexity or capacity
of the hypothesis class H, for example, VC-dimension for binary
classification [Vapnik and Chervonenkis, 1971] or fat-shattering di-
mension in the context of regression with real-valued functions
[Alon et al., 1997]. Many other complexity measures, such as the
Natarajan dimension or pseudo-dimension, have been utilized to
derive similar results for more general settings. For an overview
of the different complexity measures, see Anthony et al. [1999].
A distinguishing feature of such bounds is that they are agnos-
tic to the underlying probability distribution and hold uniformly
over the space of all functions in H. We now turn to the other
prominent approach to deriving generalization bounds.

Algorithmic stability. Generalization bounds, such as the
ones in (2.5), are typically used for model selection (for example,
to select a hypothesis class with a suitable complexity measure).
It is, therefore, crucial that the obtained bounds closely reflect the
ground truth. However, due to the crude upper bound in (2.4),
bounds in (2.5) can be weak since they hold uniformly over all
the predictors in H. The notion of algorithmic stability, which
is inspired by Rogers and Wagner [1978], Devroye and Wagner
[1979b,a], provides an alternative. Several notions of algorith-
mic stability exist, such as leave-one-out stability, cross-validation
stability, and uniform stability, among many others.4 Intuitively, 4 See Kutin and Niyogi [2002] for an

overview of different stability mea-
sures. Note that some stability no-
tions are data-dependent (for example,
average stability) and can also be uti-
lized to derive generalization bounds
[Shalev-Shwartz et al., 2010, Kuzborskij
and Lampert, 2018]

they all capture the sensitivity of an algorithm’s output to small
perturbations of the training set. Uniform stability, proposed by
Bousquet and Elisseeff [2002], is the strictest of these notions.
It requires that for any two training sets from the input space
that differ by one element, the algorithm’s output (or loss) does
not change much.5 There is an entrenched line of work deriv- 5 Many algorithms can be shown to sat-

isfy this propertying generalization bounds for uniformly stable algorithms [De-
vroye and Wagner, 1979a, Bousquet and Elisseeff, 2002, Zhang,
2003, Maurer, 2017, Feldman and Vondrak, 2018, 2019, Bousquet
et al., 2020]. Most notably, Feldman and Vondrak made signifi-
cant breakthroughs by deriving nearly-tight high-probability gen-
eralization bounds for uniformly stable algorithms [Feldman and
Vondrak, 2018, 2019]. The intuition here is that stability controls
the estimator’s variance, thereby controlling the generalization er-
ror.6 Stability-based bounds can often be much tighter since they 6 Practical approaches, such as bagging,

have been inspired by this intuition.can take into account the properties of the specific model chosen
by the algorithm. Here, the size of the hypothesis class does not
matter but rather how the algorithm explores this space [Bousquet
and Elisseeff, 2002]. A classical example is that of the k-nearest
neighbor (kNN) classifier whose hypothesis class has an infinite
VC dimension and, therefore, corresponding bounds are vacuous.
However, Rogers and Wagner [1978] derived non-vacuous gener-
alization bounds for the kNN classifier based on its stability. An-
other notable example is that of stochastic gradient descent for
strongly convex losses for which uniform convergence bounds are
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known to be at least Ω(
√

d) times worse than those obtained via
stability [Hardt et al., 2016, Feldman and Vondrak, 2018].

Data-dependent generalization bounds

In our discussion of algorithmic stability, we saw how sharper
generalization bounds can be obtained in certain settings by con-
sidering the properties of the specific model chosen by the algo-
rithm. Here, we discuss obtaining tighter bounds by considering
complexity measures that depend on the data distribution. One
of the widely employed data-dependent complexity measures, in-
spired by its utility in empirical process theory, is Rademacher com-
plexity or the closely related Gaussian complexity [Koltchinskii, 2001,
Mendelson, 2002, Bartlett et al., 2002, Bartlett and Mendelson, 2002].
Intuitively, they measure how well the functions in H restricted
to the training set correlate with random noise. Since these mea-
sures capture properties of the data distribution, they often yield
sharper uniform convergence bounds on generalization error. Cru-
cially, bounds based on Gaussian or Rademacher complexity can
be evaluated based on the training data and do not require knowl-
edge of the underlying distribution.

One can further improve the estimation rates by considering
bounds that do not hold uniformly over H but only a meaningful
subset of H chosen in a data-dependent fashion. For example,
one could only be concerned with the performance of predictors
that achieve a small empirical risk on a given training set. The
complexity of this subset could be considerably lower than that
of H, thereby improving the generalization bound. This intuition
underlies the notion of local Rademacher complexity and margin
bounds. In many other situations, one can obtain “fast rates” —
convergence rates scaling at O(1/n) under low noise conditions
[Tsybakov, 2004].

2.2.3 Controlling approximation error. The framework of struc-
tural risk minimization.

So far, we only discussed different approaches to controlling the
estimation error of ferm. Recall that excess risk is the sum of the
estimation and approximation errors. Therefore, to control the
excess risk, we need to obtain bounds on the approximation er-
ror. However, the NFL theorems discussed in Chapter 1 dictate
that, without assumptions on the class of data distributions, one
cannot provide finite-sample bounds simultaneously for the ap-
proximation error. Controlling the approximation error alone can
be solved by simply choosing a sufficiently large H. For example,
if H is chosen to be the class of all possible functions, then the ap-
proximation error is 0. However, this is at odds with controlling
the estimation error, which requires choosing H with low com-
plexity. This dichotomy between the estimation and approxima-
tion errors is often termed as the bias-variance tradeoff in statistics.
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The framework of structural risk minimization suggests choosing
a complexity hierarchy of function classes H1 ⊆ H2 ⊆ H3 ⊆ · · ·
and choose the class with the appropriate complexity based on the
training data to achieve the correct tradeoff between the estimation
and approximation errors. Many learning algorithms have been
motivated by this approach, for example, support vector machines
[Cortes and Vapnik, 1995] and ridge [Golub et al., 1999] or lasso
regression [Tibshirani, 1996].

2.2.4 Statistical-computational tradeoffs

So far, we have discussed statistical aspects of learning prob-
lems. The main object of this study is to investigate the perfor-
mance of algorithms under constraints on the number of observed
samples. The other fundamental aspect of learning problems is
a computational one. Here, the goal is to investigate the per-
formance of algorithms under the additional constraints on the
amount of available computation. There are numerous ways to
investigate the interplay between the statistical and computational
properties of estimators. Here, we restrict our attention to the two
different questions commonly studied in learning theory. Natu-
rally, one may expect some kind of a tradeoff between the statisti-
cal and computational properties of learning algorithms.

1. Phase transitions in learning. In the study of phase tran-
sitions, the primary concern is to obtain precise conditions un-
der which it is possible to obtain a consistent estimator within a
given computational complexity class, such as the class of estima-
tors that can be obtained using computation that is polynomial
in the number of samples. This, for instance, is a key ques-
tion underlying the framework of probably approximately correct
(PAC) learning proposed by Valiant [Valiant, 1984]. See Kearns
and Vazirani [1994] for an introduction to this topic. In this set-
ting, no emphasis is placed on ordering the different estimators
within a computational class.

2. Trade-offs within a computational class. The other
complementary goal is to establish the precise tradeoffs be-
tween statistics and computation within a computational class.
For instance, one algorithmic question pursued in this setting
is the following: Given an estimator that is statistically optimal
(in some sense) within a computational class, is it possible to
find an estimator in the class that uses less computation with-
out relinquishing statistical optimality? Typical approaches to
addressing this question involve using statistically efficient ap-
proximations of the optimal algorithm, for instance, via sub-
sampling procedures [Rudi et al., 2015, Rudi and Rosasco, 2017,
Calandriello et al., 2017].
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2.3 Failure of uniform convergence. Theory of deep learn-
ing.

Recent breakthroughs in the field of machine learning have pri-
marily been driven by the so-called deep-learning models fuelled
by data and computation at unprecedented scales. However, the
empirical success of these complex learning algorithms has been
elusive to standard tools of statistical learning theory. These mod-
els exhibit a curious statistical behavior — heavily overparame-
terized models with the ability to fit random labels and often
trained to interpolate the training data achieve impressive out-
of-sample generalization performance even under the presence of
large amounts of label noise [Zhang et al., 2021, Belkin et al., 2018].
This phenomenon is often referred to as benign overfitting in the
literature. This is in seeming defiance of classical learning the-
ory wisdom, which suggests choosing a hypothesis that balances
data-fitting with some measure of complexity of the hypothesis.

Belkin [2021] argues that no general bounds (including data-
dependent ones) on the difference between the training and the
test risks of interpolating estimators can exist since such bounds
would need to have the knowledge of the noise level of the prob-
lem apriori. Nagarajan and Kolter [2019] formally show that there
exist settings where uniform convergence cannot explain gener-
alization for interpolation. Bartlett and Long [2021] extend these
results to show that any risk bounds for linear regression with
the minimum norm interpolating solution must be loose for some
probability distribution. In other words, meaningful risk bounds
for interpolating estimators must rely on the specific properties of
the data distribution and, therefore, cannot hold uniformly over
every distribution. A considerable amount of work has now been
done in analyzing the asymptotic and non-asymptotic generaliza-
tion properties of interpolating estimators in classification and re-
gression settings under different assumptions on the data distribu-
tions [Hastie et al., 2019, Mei and Montanari, 2019, Muthukumar
et al., 2020, Montanari et al., 2019, Liang and Sur, 2020]. Another
line of work studies the role of optimization and suggests that
even if no explicit regularization is enforced during training, the
choice of optimization enforces implicit regularization in training
the models [Soudry et al., 2018, Gunasekar et al., 2018a,b, Ji and
Telgarsky, 2019].



3
Extreme non-identifiability

3.1 From non-identifiability to extreme non-identifiability

In Chapter 1, we discussed the problem of non-identifiability in
statistical learning under the i.i.d. assumption through the lens
of the no-free-lunch theorems and Hume’s induction dilemma,
emphasizing the need for strong prior assumptions. In Chap-
ter 2, we discussed how one can formally provide model-relative
justification for statistical learning methods under prior assump-
tions, such as restrictions on the class of approximating functions.
We also briefly reviewed common theoretical approaches toward
this goal. The i.i.d. assumption in statistical learning seems rea-
sonable, and significant methodological progress has been made
across various applications via learning methods that operate un-
der this assumption. However, the i.i.d. assumption is too re-
strictive in the context of modern machine learning, where we
care about more than merely predicting statistical associations.
Real-world deployment of machine learning systems, particularly
in safety-critical applications, demands a wide array of attributes
such as robustness against adversarial perturbations or interven-
tions, privacy, fairness, or generalizability across domains and
tasks. There has been a distressing amount of evidence suggest-
ing that deep learning models are vulnerable to adversarial per-
turbations[Szegedy et al., 2014, Goodfellow et al., 2015], certain
kinds of interventions [Quinonero-Candela et al., 2008, Torralba
and Efros, 2011, Kuehlkamp et al., 2017, Csurka et al., 2017], and
even spatial transformations [Biscione and Bowers, 2020]. Despite
these limitations, there is increasing adoption of ML models even
in safety-critical applications such as autonomous driving [Yurt-
sever et al., 2020], medical diagnostics [Richens et al., 2020], and
criminal justice [Rudin, 2019]. There is clearly a pressing need for
both developing new methods to this end and (arguably), more
importantly, providing theoretical guarantees to justify their in-
ference. This constitutes the focal challenge of current machine
learning research [Carlini and Wagner, 2017, Madry et al., 2018,
Bartlett et al., 2021, Bubeck and Sellke, 2021, Heinze-Deml and
Meinshausen, 2021]. Many of the problems discussed above can
be studied under the framework of learning under extreme non-
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identifiability. Recall the issue of non-identifiability in the i.i.d. set-
ting.

Non-identifiability in the i.i.d. setting. The underlying model
cannot be uniquely specified given a finite training set. However,
as the training set size goes to infinity, the underlying model can
be uniquely identified.

In contrast, by extreme non-identifiability, we refer (informally) to
the following issue.

Extreme non-identifiability. Even if one observes an infinite
amount of data from the data distribution, the underlying model
may not be uniquely specified. Indeed, even asymptotically, in-
finitely many models may exist that explain the observed data.

To further clarify, let us discuss some of the challenging prob-
lems in machine learning in light of the extreme non-identifiability
issue.

3.2 Learning under extreme non-identifiability

3.2.1 Statistical Clustering.

Clustering has been one of the foundational learning problems
and is studied under the framework of unsupervised learning.
The problem of clustering is typically stated as follows: Given
a finite sample X = {xi}n

i=1 drawn i.i.d. from some unknown
probability distribution P over the domain Rd, find a meaningful
partition of X. This formulation naturally brings us to the ques-
tion of what meaningful partitions are. In the long line of clus-
tering literature, this has been addressed in many different ways.
One natural approach to formalize the problem of clustering is to
assume that the data is generated according to some (potentially
non-parametric) mixture model, where the goal is to recover the
underlying mixture components. Under this natural conceptual-
ization, without any additional assumptions, it can be easily shown
that even if we have full knowledge of the underlying distribution
P, the mixture components are still non-identifiable [Teicher, 1963,
Holzmann et al., 2006, Vandermeulen and Scott, 2015, Miao et al.,
2016, Aragam et al., 2020]. See Figure 3.1 for a simple illustration.

Figure 3.1: Example to show that even
simple separation conditions do not
suffice to overcome identifiability. As
the distribution γ2,2 moves arbitrarily
far from the remaining distributions,
the distance between γ1 and γ2 also
increases arbitrarily. However, with-
out additional assumptions, no clus-
tering algorithm can recover the desir-
able clusters as defined by the true
components γ1 and γ2. Figure from
[Vankadara et al., 2021a]. Extreme non-identifiability in statistical clustering. Mixture

models can be decomposed in infinitely many ways into their
component distributions.

3.2.2 Causal learning

The problem of casual learning is one of the key challenges in
modern machine learning, with close connections to many others
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such as robustness, fairness, transfer learning, and domain gen-
eralization [Peters et al., 2017, Schölkopf et al., 2021, 2011, Wang
et al., 2022]. It can be viewed as an instance of the general prob-
lem of distributionally robust learning where the goal is to min-
imize the worst-case loss over a class of distributions defined by
do-interventions [Meinshausen, 2018, Rothenhäusler et al., 2021].1 1 In the language of distributionally ro-

bust optimization, the goal is to min-
imize the worst-case risk with respect
to an ambiguity set of distributions
which is typically defined as the class
of distributions within a small radius
of the training distribution with re-
spect to some measure of discrepancy
[Rahimian and Mehrotra, 2019].

Consider the “simple” problem of learning the causal relationship
between two variables. x (e.g., taking a particular drug) and y (e.g.,
recovery of a disease). To learn such a relationship, we typically
have access to interventional data, for example, through random-
ized control trials. However, access to interventional data may be
prohibitive for a myriad of ethical, financial, or feasibility consid-
erations, and one typically only has access to data from the statis-
tical distribution. Assuming complete knowledge of the statistical
distribution, even if one observes statistical dependence between
x and y, it is unclear to what extent this can be attributed to one
of the three possibilities: x influences y, y influences x or both x
and y are influenced by some common cause z (as postulated in
Reichenbach’s common cause principle [Reichenbach, 1991]). See
Figure 3.2.2 for a simple example.

x

z

y

ε

β

M α

x y

ε̃

β̃

Figure 3.2: Graphical representation
of the structural causal models given
by z ∼ N (0, Il) , ε ∼ N (0, σ2) , x =
Mz , y = xT β + zTα + ε (top) and ε̃ ∼
N (0, σ̃2) , x ∼ N (0, MMT) , y = xT β̃ + ε̃
(bottom) with parameters M ∈ Rd×l ,
α ∈ Rl , β ∈ Rd and σ2 > 0. Both lin-
ear causal models induce the same joint
distribution over (x, y) for all parame-
ters satisfying β̃ := β + Γ and σ̃2 :=
σ2 + ∥α∥2 − ∥Γ∥2

Σ, where Γ = M+Tα.

Extreme non-identifiability in causal learning. The underlying
causal structure is non-identifiable even with full knowledge of
the joint distribution. [Pearl, 2009, Peters et al., 2017]

In this manuscript, we will primarily focus on the problems of
statistical clustering and causal learning; Below, we briefly men-
tion a few other problems in the framework of learning under
extreme non-identifiability.

3.2.3 Domain Generalization

One of the key limitations of the current state-of-the-art ML mod-
els is their inability to generalize to unseen domains (for example,
see Heinze-Deml et al. [2018], Schölkopf et al. [2021] and refer-
ences therein). For example, ML models trained on data collected
on clear sunny days and deployed in the wild, for example, in
autonomous driving systems, would be expected to make valid
predictions even on foggy or rainy days. Other examples include
using simulated data for training a model with the goal of gener-
alization to real-world settings (see Figure 3.3 for an illustration).

This problem of generalization to unseen domains based on
data from one or more related domains is called domain generaliza-
tion. Note that this is different from out-of-sample generalization
in the standard i.i.d. setting, where the test data is assumed to
arise from the same distribution as the training data. Formally,
given a collection of p datasets Dj =

{
(xj

i , yj
i)

n
i=1
}

for j ∈ [p],

where (xj
i , yj

i)
i.i.d.∼ P

j
xy, the goal is to learn a function h : Rd ×R
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such that the error incurred on some unseen domain Ptest
xy is min-

imized, that is, h minimizes EPtest(x,y) l(y, g(x)). Naturally, at this
level of generality, if one makes no further assumptions about how
the training and test distributions are related, the issue of non-
identifiability persists even if we observe an infinite amount of
data from the training distributions. Several other problems, such
as transfer learning, domain adaptation, multi-task learning, and
even causal learning, are closely related to the problem of domain
generalization.

Figure 3.3: A sample image from a
popular domain generalization dataset
VISDA 2017 [Peng et al., 2017].

3.2.4 Transfer Learning

A humble but powerful tool that dictates the practical utility of
deep learning models is the concept of transfer learning. For exam-
ple, neural networks such as VGG16 [Simonyan and Zisserman,
2015] or Stable diffusion models [Rombach et al., 2022] in com-
puter vision or the GPT-3 [Brown et al., 2020] and Whisper models
[Radford et al., 2022] in natural language processing are trained on
a huge corpus of data. These models are subsequently deployed in
target domains or tasks that may differ from the training domain
or task. In this setting, the models are assumed to have access to
a small amount of labeled data from the target distribution. This
problem is referred to as transfer learning and is closely related
to the problem of domain generalization. Without additional as-
sumptions on how the training and target domains or tasks are
related, it suffers from the issue of extreme non-identifiability.

3.3 Reconciling theory and practice

Need for stronger assumptions. As discussed in Chapter 1,
the problem of learning inherently suffers from the issue of non-
identifiability and requires assumptions based on prior knowledge
of the task. From the examples discussed so far, it is exceed-
ingly clear that under extreme non-identifiability, it is imperative
to impose arguably even stronger assumptions that render learn-
ing possible based on prior knowledge of the underlying problem
setting. The principal challenge lies in finding a set of assumptions
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that satisfy some level of generality, are practically meaningful,
and are amenable to theoretical analysis.

How do we make assumptions? Not surprisingly, the choice
of assumptions highly depends on the underlying task, arguably
even more so than in the case of learning in the i.i.d. setting. Nu-
merous assumptions have been considered for various problem
settings. For example, in the context of domain generalization or
transfer learning, one may assume that the source and the target
domains or tasks are “related” or close according to some discrep-
ancy metric. In the context of clustering, one may assume that
items within a cluster are closer to each other than those across
clusters. For learning under extreme non-identifiability, specifying
general yet practically relevant assumptions is a significant chal-
lenge both from a theoretical as well as a methodological point
of view. In this manuscript, we focus on the problems of statis-
tical clustering and causal learning. Below, we discuss some of
the standard assumptions postulated in the corresponding litera-
ture. A high-level discussion along similar lines may be found in
[Von Luxburg and Ben-David, 2005].

3.3.1 Assumptions for clustering

Unlike in the i.i.d. setting of classification and regression where
non-identifiability is a finite sample issue, non-identifiability arises
due to two factors in clustering:

1. ill-posedness at the population level,

2. finite-sample issues.

Accordingly, different kinds of assumptions are necessary to deal
with them. Assumptions targeted toward addressing population-
level non-identifiability specifically focus on addressing the fol-
lowing conceptual question:

What kind of clustering is desirable, given complete knowledge of the
underlying data distribution?

Over decades of research on clustering, numerous assumptions
have been considered to address this question. Dominant exam-
ples include assumptions based on objective functions, axiomatic
approaches, mixture models, and density-based approaches.

In contrast, typical assumptions to deal with the issue of non-
identifiability due to finite samples aim to address the following
statistical question:

Given such a model of the desirable clustering, how can one find a
clustering that is as close as possible if one only has access to a finite

sample?
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As one may expect, these assumptions are typically similar to
those postulated for finite-sample non-identifiability in the i.i.d.
setting, such as constraints on the complexity of the hypothesis
class or data distributions. In Section 4.1, we will discuss both
kinds of assumptions in further detail.

3.3.2 Assumptions for causal learning

Learning the causal relationships between a set of variables from
observational data is one of the most challenging problems in ma-
chine learning today. A primary source of this challenge is the
issue of (extreme) non-identifiability in causal learning. Accord-
ingly, assumptions are made to address two key questions:

1. Under what assumptions is it possible to identify causal relations at
the population level?

2. Given an identifiable causal relationship, when can we estimate it from
the data?

We shall elaborate on the various approaches to learning causal
relationships and their underlying assumptions in Section 4.2.
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Theory of learning under extreme
non-identifiability

In this section, we will discuss theoretical foundations for learning
under extreme non-identifiability, emphasizing the problems of
statistical clustering and causal learning.

4.1 Theory of statistical clustering

First, let us recall the problem of clustering in a statistical frame-
work. Given a sample of n items X = {xi}n

i=1 drawn i.i.d. ac-
cording to an unknown probability distribution P over Rd, the
goal is to find the underlying cluster structure. Clearly, one can-
not formalize the clustering problem without further specifying
the underlying or optimal clustering. In other words, one can-
not formalize clustering without resolving the issue of population
non-identifiability. Under a model of optimal clustering, one can
ask for a model-relative justification of clustering methods. Concep-
tually, this is similar in spirit to controlling the estimation error in
the setting of supervised learning. Therefore, the primary focus
of learning theory for clustering rests on addressing similar ques-
tions to those posed in Chapter 2. Note, however, that unlike in
the case of supervised learning where theoretical justification is
sought for a general inductive principle, viz ERM, in clustering,
an inductive principle of such generality does not exist beyond a
small class of methods such as K-means and a myriad of its exten-
sions. Therefore, guarantees are sought for individual clustering
methods or a class of methods. See [Von Luxburg and Ben-David,
2005] for a discussion on some analogies between clustering and
learning in the supervised setting.

The key goals of learning theory for clustering are to ad-
dress the following questions:

1. What are the necessary and sufficient conditions under which a
clustering method or a class of methods can consistently es-
timate the optimal clustering as the number of samples ap-
proaches infinity?
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2. How fast does the clustering at finite samples converge with
increasing n? What is the optimal rate of convergence?

3. Can we find algorithms with optimal predictive ability?

4. How do the computation properties of clustering methods in-
terplay with their statistical properties?

We will now discuss a few models of the true underlying clus-
tering considered in the literature and review some existing work
that addresses these questions under the model assumptions.

4.1.1 Objective functions

In this framework, a model or optimal clustering is defined via
a measure of the quality of a clustering. Examples in this frame-
work include the problem of k-means clustering [MacQueen, 1967]
or weighted k-means clustering, which are known to be closely
related to certain graph-theoretic clustering objectives, such as the
normalized cut problem [Shi and Malik, 2000, Dhillon et al., 2004].
In this section, we will use the k-means problem as an archetype
of this framework.

Formally, for any distribution P on Rd and a parameter k ∈
N, the goal of the k-means problem is to find k centers C∗ =

{c1, c2, · · · , ck} ∈ Rd such that the expected k-means cost under P

is minimized, that is

C∗ ∈ arg min
C∈Rd , |C|=k

EP(x) min
c∈C

d(x, c), (4.1)

where d(·, ·) is a measure of distance or dissimilarity. Under the
standard squared l2 distance on Rd, this formulation corresponds
to the standard K-means problem [MacQueen, 1967]. In this set-
ting, the existence of C∗ is guaranteed if the second moments of
P are bounded [Linder, 2002]. However, the set of minimizers
of (4.1) is not necessarily unique. Many generalizations of this
problem, for instance, via other dissimilarity measures, have been
studied in literature; notable among them is the problem of center-
based clustering with Bergman divergences which has been exten-
sively treated in the literature [Banerjee et al., 2005, Telgarsky and
Dasgupta, 2012, Brécheteau et al., 2021, Paul et al., 2021a,b]. Under
this framework, as in the supervised learning setting, a natural es-
timator for C∗ can be obtained via empirical cost/risk minimization.
Given a finite sample drawn according to P, the ERM estimator is
given by

Ĉ ∈ arg min
C∈Rd , |C|=k

1
n

n

∑
i=1

min
c∈C

d(x, c).

Consistency of ERM. Theoretical analysis for ERM estimators
in this framework was initialized by the strong consistency results
for the standard K-means problem with the l2 distance. Pollard
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[1981] and Abaya and Wise [1984] showed that under the mild as-
sumption on finiteness of 2nd moment of P, the cost of every em-
pirical cost minimizer Ĉ converges to the cost of C∗ almost surely
under P as n→ ∞. More generally, Biau et al. [2008] and Levrard
[2015] derived strong consistency results for the K-means problem
over any separable Hilbert space. Such consistency results also ex-
ist for many related problems in this framework, for example, for
sparse K-means, power K-means, and reduced K-means problems
[Terada, 2014, 2015, Chakraborty and Das, 2020]. Consistency of
ERM in this framework may also be characterized by the notion of
algorithmic stability [Shalev-Shwartz et al., 2010].

Convergence rates for ERM In the framework of center-based
clustering, there has been extensive work on deriving non-asymptotic
guarantees for clustering methods [Pollard, 1981, Chou, 1994, Bartlett
et al., 1998, Linder et al., 1994, Linder, 2000, 2002, Antos, 2005,
Antos et al., 2005, Graf and Luschgy, 2007, Biau et al., 2008, Tel-
garsky and Dasgupta, 2013, Bachem et al., 2017, Brécheteau et al.,
2021]. This line of work is strongly inspired by empirical pro-
cess theory and uniform convergence guarantees for ERM in su-
pervised learning. Accordingly, typical bounds for ERM in this
framework take the following form. Given a set of k centers C =

{c1, c2, · · · , ck}, let R(C) denote the expected cost (or distortion) of
C under P given by

R(C) = EP(x) min
c∈C

d(x, c).

Analogously, let R̂(C) denote the empirical counterpart of R(C)
given by

R̂(C) =
1
n

n

∑
i=1

min
c∈C

d(x, c).

For instance, Biau et al. [2008] showed that for any distribution
P over a bounded domain in a separable Hilbert space such that
∥x∥ ≤ M for some M < ∞, there exists a constant C such that, for
any δ ∈ (0, 1), with probability at least (1− δ),

R(C∗)− R(Ĉ) ≤ CM2

√
k2 + log 1

δ

n
(4.2)

These bounds are optimal with respect to n in the minimax sense
without additional assumptions [Antos, 2005]. More recently, for
distributions with bounded support, nearly optimal upper bounds
with respect to both n and k have also been derived in [Liu, 2021].
Uniform convergence bounds for ERM under less restrictive mo-
ment assumptions with a rate of O(1/

√
n) have also been derived

in this framework [Klochkov et al., 2021]. Better convergence rates
(so-called “fast rates”) scaling as O(1/n) can be achieved under
additional assumptions, for example, for distributions with finite
support or distributions with bounded support satisfying certain
regularity conditions.
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Improved estimation. There has been a multitude of methods
that aimed to derive more robust estimators for center-based clus-
tering. Most of these estimators are motivated from a practical
standpoint, and only a few admit theoretical justification. Notable
among them is the class of so-called medians of means estimators
(MOM) provides an outlier-robust class of estimators for center-
based clustering and admits strong theoretical guarantees similar
to the ERM. For a nice overview of MOM estimation for center-
based clustering with Bergman divergence, refer to Paul et al.
[2021b]. For example, Klochkov et al. [2021] provides uniform
convergence bounds scaling at a rate of O(

√
k/n) for MOM esti-

mators for center-based clustering in any separable Hilbert space
under the mild assumption of the existence of 2nd order moments
of the underlying distributions. These bounds are minimax opti-
mal both with respect to k and n.

Statistical Computational Trade-offs. So far, we have
only discussed the statistical properties of ERM and MOM esti-
mators in the framework of center-based clustering. In the worst
case, the ERM and the MOM estimators (which achieve optimal
convergence rates) are NP-Hard. Numerous approximations have
been proposed to address the computational complexity of ERM
estimators. However, the theoretical understanding of these algo-
rithms in a statistical framework is very sparse. Nystrom approxi-
mations [Calandriello and Rosasco, 2018] or Gaussian approxima-
tions [Biau et al., 2008] attempt to reduce the computational com-
plexity of center-based clustering by constraining the underlying
hypothesis class. However, in general, ERM over these classes is
still NP-Hard. The most common approach to analyzing such ap-
proximations is by deriving guarantees on the approximation ra-
tio, which is the ratio of the cost of the clustering obtained by the
approximation to that obtained via the target estimator, such as
ERM (see [Wang et al., 2019b] and references therein for a sample
result of this kind).

4.1.2 Density-based clustering

The paradigm of density-based clustering is another widely pop-
ular approach to systematically resolve the ambiguity of “what is
a good clustering?”. In this framework, clusters are defined as re-
gions of high density separated by low-density regions [Hartigan, 1975,
1981]. Assuming that n i.i.d. samples X = {x1, x2, · · · , xn} from
a distribution P with density f over Rd are observed, two distinct
problems have been studied under this framework:

1. Flat clustering. Estimate the connected components of the upper-
level set given by

{
x ∈ Rd : f (x) ≥ λ

}
, for a specified λ ≥ 0.

2. Cluster tree estimation. Estimating the cluster tree of f , that is,
a map C : R → C(Rd), given by C(λ) =

{
x ∈ Rd : f (x) ≥ λ

}
,
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where C(Rd) denotes the set of all partitions of subsets of Rd.

For both problems, a natural approach to estimating the level
sets and their connected components based on X is to estimate
the density f using some non-parametric approach such as ker-
nel density estimators and then obtain the level sets (and their
connected components) of the estimated density fn. In a certain
sense, this plugin estimator inherits the statistical properties of the
density estimator fn.

Consistency and convergence rates of the plugin estimator
have been extensively investigated for the flat clustering problem
[Tsybakov, 1997, Cuevas and Fraiman, 1997, Klemelä, 2004, Rigol-
let and Vert, 2009, Rinaldo et al., 2010]. However, this approach
suffers from certain limitations. First, it is unclear how one may
choose an appropriate λ since different choices of λ can create am-
biguity in the notion of the true clustering. Second, even for simple
univariate distributions, there may not exist a single λ for which
the connected components of the level set do not correspond to
visually distinct clusters (see Rinaldo et al. [2012, Figure 1] for
an illustration). Furthermore, from an algorithmic point of view,
estimating the level sets of typical densities used for estimation
is extremely complicated, thereby limiting the practical utility of
such estimators [Sriperumbudur and Steinwart, 2012, Chaudhuri
et al., 2014].

The framework of cluster tree estimation is proposed as
an alternative to mitigate some of these limitations of the flat clus-
tering problem. Due to the algorithmic difficulties of the plugin
approach discussed earlier, recent work focuses on algorithms that
directly estimate the cluster tree. Hartigan [1981] showed that the
single linkage algorithm satisfies a weaker notion of consistency
called fractional consistency, which eliminates spurious clusters at-
tained due to finite sample effects. Chaudhuri et al. [2014] show
that a modified single linkage algorithm and an estimator based
on the k-nearest neighbor graph also achieve consistency in the
weak sense that depends on a separation criterion between the
clusters under a mild assumption of uniform continuity of the
density. They provide optimal convergence rates in the minimax
sense with respect to the cluster separation criterion. These results
were extended by Balakrishnan et al. [2013] to distributions over
manifolds satisfying certain regularity conditions.

The DBSCAN algorithm [Ester et al., 1996] and its modifications
are some of the most popular clustering methods for practition-
ers in the framework of density-based clustering. Despite being
a rather popular practical approach, statistical properties of DB-
SCAN have only recently been analyzed in Sriperumbudur and
Steinwart [2012]. For α−Hölder continuous densities, Sriperum-
budur et al. [2010] adaptively estimate the first split λ∗ that yields
two connected components in its density level set and provide con-
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sistency as well as optimal convergence rates under this setting.
For smooth densities, Wang et al. [2019a] derived consistency and
nearly optimal rates for cluster tree estimation. Further extensions
of these analyses to a general class of estimators based on kernel
density estimation can be found in Steinwart et al. [2019].

Statistical-computational tradeoffs. The computational
complexity of DBSCAN is known to be O(n2) in the worst case
[Gan and Tao, 2015]. A lot of work has been done on finding
approximations that run in sub-quadratic or almost linear time
based, for example, on approximate nearest neighbors [Huang
and Bian, 2009, Kumar and Reddy, 2016], subsampling [Liu, 2006,
Viswanath and Babu, 2009], or parallel computation. However,
most of these methods are based on heuristics and lack statisti-
cal guarantees. The only algorithms with statistical guarantees are
provided in Jang and Jiang [2019] and Esfandiari et al. [2021]. Jang
and Jiang [2019] provide a modification of the DBSCAN algorithm
called DBSCAN++, which retains optimal statistical rates while
achieving a sub-quadratic computational complexity. They also
demonstrate that DBSCAN++ exhibits a general tradeoff between
computational complexity and convergence rates. Esfandiari et al.
[2021] improved these results to obtain an almost linear time ap-
proximation to DBSCAN while retaining the optimal convergence
rates.

4.1.3 Axiomatic approaches

Another principled approach to evaluating clustering methods is
the so-called axiomatic approach [Kleinberg, 2002, Ben-David and
Ackerman, 2008, Zadeh and Ben-David, 2012]. Here, unlike the
approaches discussed so far, an explicit target/population cluster-
ing is not specified. Instead, a list of axioms or desirable properties
is postulated, and the extent to which different clustering meth-
ods satisfy them is investigated. Kleinberg [2002] postulated three
conditions one may expect clustering functions to satisfy. Under
these axioms, Kleinberg famously derived an impossibility result,
proving that no clustering method can satisfy all three criteria si-
multaneously. However, it has been argued that the impossibility
result is merely an artifact of the specific formalism invoked in
Kleinberg’s work [Ben-David and Ackerman, 2008]. For example,
Zadeh and Ben-David [2012] modified the criterion and derived
a positive result under the modified axioms. In particular, they
showed that the single linkage algorithm is consistent with the
three modified axioms simultaneously.

4.1.4 Mixture models

Another systematic approach to evaluate clustering algorithms
can be found in the so-called planted models, where the goal is to
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obtain recovery guarantees under distributional assumptions [Das-
gupta, 1999, Yan and Sarkar, 2016, Banks et al., 2018, Vankadara
and Ghoshdastidar, 2020, Vankadara et al., 2021a]. For example,
under the assumption that a mixture of distributions generates
the data, the goal is to recover the membership of each item in
a finite sample. As we already discussed in the previous chapter,
population-level identifiability persists for general mixture models
without further assumptions. Mixture models are identifiable un-
der certain parametric assumptions such as Gaussiantiy of the com-
ponents [Bruni and Koch, 1985, Teicher, 1963]. Accordingly, re-
covery guarantees under parametric assumptions (typically Gaus-
sianity) have been extensively studied in the clustering literature.
Dasgupta [1999] presented a clustering method that can prov-
ably learn a mixture of high-dimensional Gaussians. Recent work
in this direction focuses on statistical-computational tradeoffs or
phase transitions in clustering a mixture of high-dimensional Gaus-
sians [Banks et al., 2018, Ashtiani et al., 2018]. More recently, the
issue of population-level identifiability has also been addressed
under non-parametric assumptions such as separability, indepen-
dence of marginals, or by incorporating certain symmetries. The
framework of obtaining recovery guarantees under parametric as
well as non-parametric assumptions is a central focus of this the-
sis. We discuss this approach in further detail in Chapters 6 and
7.

Despite decades of research in the theory of clustering, exist-
ing guarantees for clustering are far from satisfactory. We will dis-
cuss some shortcomings of the current state of clustering theory,
which partly motivates the contributions of this thesis, in Chapter
5.

4.2 Theory of causal learning

Causal learning is the process of using observations to infer cause-
effect relationships. The study of causality has a rich history, dat-
ing back to ancient philosophers such as Aristotle, who made key
contributions to our understanding of causality. In the centuries
that followed, many other philosophers and scientists continued
to develop and refine our understanding of causality, including
figures such as John Stuart Mill and David Hume. However, the
formal study of causal learning is relatively recent. In the 20th
century, the field of causal learning underwent significant devel-
opments, with the advent of modern statistical methods and the
development of new mathematical frameworks for representing
and reasoning about causal relationships.



28 towards a theory of learning under extreme non-identifiability.

4.2.1 Modeling causal relationshps

There are several ways to model causal relationships among a set
of variables. One popular approach is to use the framework of
causal graphical models (CGM) [Pearl, 2009], which represent vari-
ables as nodes of a directed graph, and direct cause-effect rela-
tionships between the variables as directed edges. This powerful
framework enables us to reason about the effects of interventions
or manipulations on a subset of the variables. Here, we primar-
ily focus on a subclass of causal graphical models called structural
causal models (SCM) [Peters et al., 2017].

Given a set of variables {x1, x2, · · · , xn} equipped with a di-
rected acyclic graph G, SCMs define each variable xi as a re-
sult of a deterministic function of its parents in G, denoted by
Pa(xi) ⊂ {x1, x2, · · · , xn} and a noise variable ui:

xi := fi(Pa(xi), ui), (i = 1, 2, · · · , n).

The (random) noise variables {u1, · · · , un} are assumed to be jointly
independent. An SCM induces a joint distribution over the vari-
ables, which satisfies the causal Markov condition. This condition
states that each variable xi is independent of its non-descendants
in G conditioned on its parents. Equivalently, the joint distribution
satisfies all the conditional independence relations that are im-
plied by a (global) graphical criterion called d-separation, which is
based on a notion of “path blocking”. Note that different graphs
can satisfy the same d-separation criteria and therefore enforce
the same set of conditional independence relationships. The class
of all such graphs is called the Markov equivalence class [Pearl,
2009].

This framework provides a natural means to formalize the no-
tion of interventions or manipulations which are fundamental to
the problem of causal learning. Many different kinds of inter-
ventions are considered in causal learning. Hard interventions on
a variable xi correspond to modifying the structural equation fi

and setting it to a fixed value c. From a graphical point of view,
this corresponds to severing all the incoming edges into xi [Pe-
ters et al., 2017]. Interventions induce a shift in the underlying
distribution — which is the joint distribution induced by the cor-
responding set of structural equations. This is formally denoted
using the do operator as do(x := c). Many other kinds of interven-
tions, such as soft or randomized interventions, are also consid-
ered in the literature [Vankadara et al., 2021b].

4.2.2 Causal discovery

A majority of research in causal learning is focused on the prob-
lem of causal discovery, which is the process of inferring the (qual-
itative) causal relationships between the variables. In the SCM or
DCGM framework, the goal of causal discovery is to recover the
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underlying causal graph from observational data. This can be for-
malized as a problem of statistical estimation of parameters that
describe the causal graph [Glymour et al., 2019]. Like any statis-
tical estimation problem, there are two key aspects to consider:
identifiability and estimation. Once the parameters of interest are
correctly identified, the problem is reduced to a statistical one.
Therefore, we can also ask the same theoretical questions about
consistency or convergence rates that we discussed in the context
of statistical learning and clustering.

While the causal graph is not identifiable from observational
data in general, under suitable assumptions such as faithfulness1, 1 While the causal DAG implies certain

independence properties in the joint
distribution, the distribution may sat-
isfy additional independence properties
not implied by the DAG. Faithfulness
assumes that the distribution only sat-
isfies independence properties implied
by the graph.

it is possible to recover the underlying causal graph up to its
Markov equivalence class (MEC) [Pearl, 2009]. For example, under
the assumption of faithfulness and absence of latent confounders,
the PC algorithm can be shown to consistently recover the causal
graph asymptotically with the number of observed samples [Spirtes
et al., 2000]. Subject to faithfulness, the FCI algorithm is known to
be consistent even in the presence of latent confounders [Spirtes
et al., 2000]. These methods and many extensions rely on condi-
tional independence tests to prune the edges of a fully connected
causal DAG. They are typically referred to as constraint-based meth-
ods. In general, constraint-based approaches cannot provide finite
sample bounds since they are only equipped with “pointwise”
(and not uniform) consistency guarantees [Glymour et al., 2019].

While these approaches are rather powerful and make relatively
few assumptions, there are subject to several limitations. Condi-
tional independence testing is a notoriously difficult problem at
finite samples and often requires additional assumptions [Shah
and Peters, 2020]. Moreover, they cannot identify the causal graph
within a Markov equivalence class. For example, when there are
only two observable quantities2, conditional independence tests 2 Learning cause-effect relationships be-

tween two variables is a rather impor-
tant problem in causal learning from a
practical point of view.

cannot determine cause-effect relationships between them.

An interesting approach to dealing with these limitations is
to impose constraints on the class of functions ( fi) in the SCM. The
main intuition behind this idea is that these structural functions
leave a footprint in the observational distribution, which can be
exploited to recover the causal structure [Peters et al., 2017]. This
bears a resemblance to the standard setting of statistical learning,
where constraints on the complexity of the hypothesis class are
crucial to derive finite-sample generalization bounds. For exam-
ple, in the absence of latent confounders, if the structural equa-
tions are constrained to be linear, and the noise variables are as-
sumed to be non-Gaussian, the causal structure can be shown to
be identifiable [Shimizu et al., 2006]. These models, commonly
known as LiNGAM models, can be consistently and (computa-
tionally) efficiently estimated from observational data even in the
two variable settings [Shimizu et al., 2011]. Several generalizations
of these results under relaxed assumptions have been obtained.
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The post-non-linear causal models (PNL) have the most general
form in the SCM framework, under which it can be shown that
the causal directions are identifiable [Zhang and Hyvarinen, 2012].
These methods are often used in conjunction with constraint-based
methods to refine the edges in the Markov equivalence class [Zhang
and Hyvarinen, 2012]. Identifiability of the causal structure is a
crucial problem in SCM-based learning, and most of the theory in
this setting is focused on deriving conditions that guarantee iden-
tifiability. However, to the best of our knowledge, there is hardly
any work on finite sample analysis (for example, sample complex-
ity bounds) for causal discovery.

4.2.3 Causal inference

While the problem of causal discovery is concerned with recov-
ering the underlying causal structure among a set of variables,
causal inference or reasoning aims to quantify causal influences
given the causal structure. Identification and estimation are again
the central aspects to consider. The typical setup of causal infer-
ence considers a (potentially multi-dimensional) causal driver x
influencing a target variable y, and the goal is to estimate the ef-
fect of interventions on x on the target variable or outcome y. In
the SCM framework, this often amounts to estimating the struc-
tural functions. The potential outcomes (PO) framework [Rubin,
1974, Neyman, 1923] is another popular framework in the study
of causal inference. In this framework, causal effects are described
as treatment effects, which evaluates the differences in the outcome
under two contrasting interventions [Rosenbaum and Rubin, 1983,
Imbens and Rubin, 2015]. The causal driver also called the treat-
ment variable, is often assumed to be binary, representing the
treatment or control groups.

Identification and estimation are the two critical aspects of
the theory of causal inference. In the theory of identification, the
central question that is asked is: Under what conditions can causal
effects be precisely identified? If causal effects can be accurately iden-
tified, the task of estimating causal effects becomes a statistical
estimation problem. Randomized controlled trials (RCTs) are con-
sidered the gold standard for identifying and estimating causal
effects. In an RCT, participants are randomly assigned to either
the treatment or control groups. The treatment group receives the
intervention/treatment, while the control group receives either a
placebo or no intervention. By comparing the outcomes of the two
groups, one can estimate the causal effect of the treatment on the
outcome. When RCTs are infeasible, one seeks to assess causal
effects from observational data. Without additional assumptions,
causal effects are not identifiable purely from observational data.

A common assumption in the causal inference literature is the
absence of latent confounding variables. Under this assumption,
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the do-calculus provides a complete set of rules that allow the
identification of causal effects from the observational distribution
[Robins, 1986, Pearl, 2009]. Estimating causal effects in this set-
ting is feasible under the so-called strong ignorability condition.
There are several ways to estimate the causal/treatment effects
in this setting. Common approaches include regression-based ad-
justment, matching, and re-weighting methods [Rosenbaum, 2002,
Abadie and Imbens, 2006, Van Der Laan and Rubin, 2006, Robins
et al., 2017]. Typical guarantees for these approaches focus on
asymptotic consistency and convergence rates in low-dimensional
settings. However, these methods are known to be prone to biases
in high-dimensional regimes or under strong confounding [Belloni
et al., 2014, 2017, Chernozhukov et al., 2018].

Doubly robust methods typically use a combination of methods
(for example, propensity-score methods and regression methods)
to mitigate the bias of, say, regression-based adjustments [Belloni
et al., 2014, 2017, Chernozhukov et al., 2018]. Assuming the ex-
istence of a consistent estimator for propensity score, these ap-
proaches derive

√
n consistency guarantees for treatment effect

estimation in high dimensions. There is little emphasis in this lit-
erature on obtaining small sample convergence rates. Notable ex-
ceptions include [Shalit et al., 2017], which provides finite-sample
generalization error bounds for estimating individual treatment
effects.

In the presence of latent confounders, the problem of estimat-
ing treatment effects is incredibly hard and requires additional in-
formation or stronger assumptions. Approaches based on instru-
mental variables are some of the most popular methods in this set-
ting. Many algorithms have been proposed for estimating causal
effects in the presence of instrumental variables [Newey and Pow-
ell, 2003, Chen and Christensen, 2018, Singh et al., 2019, Muandet
et al., 2020]. These methods admit strong theoretical guarantees
that hold at finite samples. For a review of these results, we refer
the reader to Singh et al. [2019], Muandet et al. [2016].
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Thesis contributions

5.1 Guarantees for kernel-based clustering

5.1.1 What is missing?

A majority of the theoretical analysis of clustering focuses on frame-
works based on objective functions, such as center-based cluster-
ing. As discussed earlier, analyses in this framework define the
underlying clustering as the one that consistently partitions the
data domain. Such objective functions are typically ad hoc and
have no generality beyond specific applications such as vector
quantization. To illustrate, consider the following example. Ker-
nel k-means is one of the most popular algorithms for clustering
among practitioners. Consistency guarantees and corresponding
convergence rates exist for kernel k-means (see, for example, [Biau
et al., 2008]). However, the target clustering strongly depends on
the choice of the kernel function. If one adopts a non-informative
kernel, such as the identity kernel, arbitrary partitions of the data
domain may be optimal. While statistical consistency and cor-
responding convergence guarantees are necessary, they are not
sufficient. It is crucial to consider models of clustering that are
practically relevant and sufficiently general while being amenable
to theoretical analysis.

Density-based clustering provides one of the more promising
formalisms of clustering. Algorithms motivated by this general
framework, such as DBSCAN and its extensions, are practically
popular and admit strong theoretical guarantees. However, they
are still subject to several limitations. They are known to fail when
clusters widely differ in their densities. Furthermore, similar to
density estimation, they suffer from the curse of dimensionality.
Generally, no single formalization of the true/underlying cluster-
ing suffices for every practical application. There has been a long
discussion in the clustering literature on the need to develop a tax-
onomy of clustering frameworks and methods [Von Luxburg and
Ben-David, 2005, Von Luxburg et al., 2012]. This clearly empha-
sizes the need for evaluating clustering algorithms under sufficient
general and practically meaningful formalisms.
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5.1.2 Contributions

Kernel-based clustering methods such as kernel k-means or
spectral clustering are some of the most popular clustering meth-
ods among practitioners. However, theoretical guarantees for these
methods under a general formalism of clustering are surprisingly
limited. In this thesis, we take a step toward addressing this
gap between theory and practice. We consider the fairly general
framework of mixture models to define a notion of true cluster-
ing. Under this framework, we focus on addressing the following
questions under parametric or non-parametric assumptions on the
mixture distribution:

1. What are the necessary and sufficient conditions under which
kernel clustering algorithms can consistently recover the under-
lying clustering?

2. How do the statistical properties interplay with computational
properties?

To this end, our work results in the following contributions:

(a) We consider the problem of clustering a mixture of Gaussians
in the high-dimensional regime. Under this formulation, we
study phase transitions – sharp information-theoretic thresholds
below which no algorithm can, provably, recover the true clus-
tering. We show that kernel k-means and an efficient semi-
definite relaxation are both information-theoretically (near) op-
timal in their respective computational classes (Chapter 6).

(b) We study the statistical performance of kernel clustering algo-
rithms under general non-parametric conditions on the mixture
models. We provide necessary and sufficient separability condi-
tions under which these algorithms can consistently recover the
true clustering (Chapter 7).

5.2 Contributions to the theory of causal learning

The investigation of how to identify causal relationships using
only observational data is a relatively recent area of study. Guar-
antees that hold at finite samples are generally scarce, particularly
in high-dimensional settings or in time series settings, and are lim-
ited to simple models. Although there has been a surge in research
on developing theoretical foundations for causal inference, we are
far from a complete understanding.

In this thesis, we attempt to improve our understanding of the
problem of causal learning from both a theoretical and conceptual
standpoint. Our results are motivated by Janzing [2019] which
formally establishes a close analogy between “generalizing from
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empirical to observational distributions” and “generalizing from
observational to interventional distributions” albeit for highly con-
structed statistical and causal models. Intuitively speaking, the
analogy suggests that the bias due to observing small sample sizes
is qualitatively similar to the bias due to shifts in distributions.
Such observations have also been made in the distributionally ro-
bust learning literature [Zhu et al., 2020]. An immediate conse-
quence of this observation is the following conjecture:

Can techniques for learning models with good out-of-sample
generalization performance (e.g., regularization) also help learn

models with good out-of-distribution generalization and
vice-versa?11 The term out-of-distribution general-

ization is used a bit informally to re-
fer to generalization from the observa-
tional to the class of interventional dis-
tributions

A preliminary and positive answer to this question is indicated
in Janzing (2019), which suggests that standard norm-based regu-
larization techniques typically recommended for better statistical
learning may also help learn better causal models. Furthermore,
distributionally robust optimization approaches are increasingly
being utilized to learn predictive models with good out-of-sample
generalization performance when few samples are available [Zhu
et al., 2020].

More generally, similar to the setting of statistical learning
where uniform convergence bounds are sought for general hy-
pothesis classes, one can ask:

When can we obtain guarantees of causal generalization —
generalizing from the observational to interventional

distributions — that hold uniformly over a hypothesis class
under restrictions on the complexity of the class?

To this end, the following contributions are made by this thesis:

(a) We introduce the framework of causal learning theory for fore-
casting. Using this framework, we obtain a characterization of
the difference between statistical and causal risks, which helps
identify sources of divergence between them. When no hidden
confounders are present, the problem of causal generalization
amounts to learning under covariate shifts, albeit with addi-
tional structure (restriction to interventional distributions under
the vector autoregressive models(VAR). This structure allows us
to obtain uniform convergence bounds on causal generalizabil-
ity for the class of vector autoregressive models. To the best of
our knowledge, this is the first work that provides theoretical
guarantees for causal generalization in the time-series setting
(Chapter 8).

(b) A large volume of recent work shows that in complex model
classes, interpolators can achieve statistical generalization and
even be optimal for statistical learning. As discussed in Chap-
ter 2, uniform convergence fails to explain the generalization
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properties of interpolators in high-dimensional and overparam-
eterized settings. Despite increasing interest in learning mod-
els with good causal properties, there is no understanding of
whether such interpolators can also achieve causal generalization.
To address this gap, we study causal learning from observa-
tional data through the lens of interpolation and its counterpart—
regularization under a linear causal model (Chapter 9).
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Abstract

This paper studies the optimality of kernel
methods in high-dimensional data clustering.
Recent works have studied the large sample
performance of kernel clustering in the high-
dimensional regime, where Euclidean dis-
tance becomes less informative. However, it
is unknown whether popular methods, such
as kernel k-means, are optimal in this regime.
We consider the problem of high-dimensional
Gaussian clustering and show that, for a class
of dot-product kernels, the sufficient condi-
tions for partial recovery of clusters using the
NP-hard kernel k-means objective matches
the known information-theoretic limit up to
a factor of

√
2 for large k. It also exactly

matches the known upper bounds for the
non-kernel setting. We also show that a semi-
definite relaxation of the kernel k-means pro-
cedure matches upto constant factors, the
spectral threshold, below which no polyno-
mial time algorithm is known to succeed.
This is the first work that provides such op-
timality guarantees for the kernel k-means
as well as its convex relaxation. Our proofs
demonstrate the utility of the less known
polynomial concentration results for random
variables with exponentially decaying tails in
higher-order analysis of kernel methods.

1 Introduction

Kernel methods are one of the most empirically suc-
cessful class of machine learning techniques. While be-
ing easy to implement, kernel methods are well known
to improve empirical performance of algorithms and
are also related to other successful machine learning

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

principles such as Gaussian process and neural net-
works (Kanagawa et al., 2018; Jacot, Gabriel, and
Hongler, 2018). At the heart of kernel based learning
lies the kernel trick which implicitly maps the data
to a high, possibly infinite, dimensional reproducing
kernel Hilbert space (RKHS), and hence, induces non-
linearity into classical linear learning models such as
support vector machines, principle component analysis
or k-means. Kernel methods are based on a solid the-
oretical foundation, which makes them conducive to
theoretical analysis. There has been considerable the-
oretical research on kernel based supervised learning
from a statistical perspective (Steinwart and Christ-
mann, 2008; Mendelson and Neeman, 2010), and to
some extent, in the context of semi-supervised learn-
ing (Wasserman and Lafferty, 2008; Mai and Couillet,
2018). Perhaps surprisingly, much less is known about
the statistical performance of kernel methods beyond
such settings, for instance, kernel based clustering.

A long-standing issue in the theoretical study of clus-
tering, and also kernel based clustering, has been the
lack of a universally accepted notion of goodness of
clustering. A popular definition of good clustering is
one that consistently or near-optimally partitions the
data domain. Based on this perspective, there exist
approximation guarantees for solving kernel based cost
functions (S. Wang, Gittens, and Mahoney, 2019) and
consistency results showing that the clustering asymp-
totically approaches a limiting clustering (Luxburg,
Belkin, and Bousquet, 2008). In such analyses, the op-
timal cost function is inherently tied to the chosen ker-
nel and hence can be arbitrarily far from the “ground
truth.” For instance, even an arbitrary clustering can
be optimal (can achieve maximal clustering objective)
for trivial kernels such as constant or identity kernels.
Another approach to measure the performance of a
clustering algorithm is by establishing recovery guar-
antees under distributional assumptions, sometimes
known as planted models. Distributional assumptions,
or specifically (sub)-Gaussian mixture model assump-
tion, is often considered in the theory of clustering.
While learning a mixture of Gaussians has always been
an important research problem, Dasgupta (1999), for
the time, presented a provable clustering algorithm to
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learn a mixture of high-dimensional Gaussians. The-
oretical research on learning high-dimensional Gaus-
sians have ever since been highly significant, owing to
the ubiquity of high-dimensional data in practice. Re-
cent works in this direction provide phase transitions
for both clustering and parameter estimation of a mix-
ture of high-dimensional Gaussians (Banks et al., 2018;
Ashtiani et al., 2018).

Couillet and Benaych-Georges (2016) initiated the the-
oretical study of kernel methods for high-dimensional
Gaussian clustering, and in particular, presented the
large sample behaviour of kernel spectral clustering
in the regime where number of samples grow linearly
with the data dimension. The statistical difficulty in
this regime stems from the fact the Euclidean distance
tends to be less informative in high dimensions and
intra-cluster distances could be systematically larger
than inter-cluster distances. Yan and Sarkar (2016)
generalised the problem setup to sub-Gaussian mix-
tures and derived sufficient conditions for achieving
zero clustering error using convex relaxations of the
kernel k-means objective. In both works, the analy-
sis is restricted to computationally efficient clustering
algorithms and the optimality of kernel methods, in
terms of comparing necessary and sufficient conditions
for clustering, is not addressed.

In this paper, we study the phase transitions — sharp
information-theoretic thresholds below which no algo-
rithm can, provably, recover the true clustering bet-
ter than chance — of the high-dimensional Gaussian
clustering problem. Our setting is similar to Banks
et al. (2018), where the number of samples is linear
in the problem dimension. However, we focus on the
case where one has access to only a kernel matrix. In
other words, while the information-theoretic thresh-
olds inherent to the Gaussian clustering problem are
expected to remain unchanged in the kernel setting
with a non-trivial kernel, we prove that one can nearly
achieve such thresholds using popular kernel methods.
The main contributions in this paper are the follow-
ing: (1) We identify the smallest separation between
the means of latent clusters such that the clusters are
statistically distinguishable under a kernel k-means ob-
jective in the sense of partial recovery, that is, error
smaller than random guessing. Our result matches
the phase transition for high-dimensional Gaussian
clustering without kernels (Banks et al., 2018). (2) We
analyse a common semi-definite relaxation of the
kernel k-means objective and present sufficient condi-
tions for partial recovery that match, up to con-
stant factors, the known spectral threshold —
akin to the Kesten-Stigum threshold in the commu-
nity detection under stochastic block model literature
(Baik, Arous, and Péché, 2005; Paul, 2007).

Our main results obtained from the analysis of the two
kernel-based clustering algorithms and the best known
results for the same problem in a non-kernel setup are
summarized in the table below. k is the number of
clusters, and α is the ratio of sample size to the data
dimension which remains asymptotically finite in our
setting.

The lower and the upper bounds are on the minimum
separation of the clusters required to achieve partial
recovery. The first column contains the bounds for
the information-theoretic threshold. The second col-
umn contains the bounds corresponding to the com-
putational class of poly-time algorithms.

Information-

theoretic limit

Poly-time

solvable

Lower bounds

√
2(k−1) log(k−1)

α
k−1√
α

Upper bounds
(non-kernel)

2
√

k log k
α + 2 log k O(k−1∨ k−1√

α
)

Upper bounds

(kernel)
2
√

k log k
α + 2 log k O(k ∨ k√

α
)

As noted in Couillet and Benaych-Georges (2016), one
requires a second-order analysis since first-order ap-
proximation of the kernel function does not suffice
for the analysis in the high-dimensional setting. To
this end, our proofs show that recent polynomial con-
centration inequalities (Götze, Sambale, and Sinulis,
2019) can be useful for second-order analysis of kernel
methods.

2 Background and Setting

Notation: We denote the set of natural numbers
{1, 2, . . . , k} by [k]. For any matrix A, ‖A‖F refers
to the Frobenius norm of the matrix. For any vector
x, ‖x‖ and ‖x‖1 refer to the Euclidean and l1 norms
of the vector. I denotes the identity matrix. For any
A ∈ Rm×m, ‖A‖∞→1 refers to the ∞ → 1 operator
norm and defined as sup

y,z∈{±1}m
(yTAz). For any n real

numbers {ai}ni=1, (a1 ∨ a2 . . .∨ an) refers to the maxi-
mum of the sequence:max

i
ai. For any random variable

x, Ex denotes the expectation of x.

Setting: Our setting is akin to the one used in
Banks et al. (2018), specifically due to the existence of
a near-optimal phase transition for the information-
theoretic threshold in the setting. We assume that
the data is generated according to the following pro-
cess. Let k be the number of clusters. Then, k points
{µ′1, µ′2, ..., µ′k} ∈ Rp are generated independently ac-
cording to a normal distribution with mean 0 and co-
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variance k
k−1 Ip. The k points are then centered by sub-

tracting their sample mean from each entry and the re-
sulting centered vectors are denoted by {µ1, µ2, ..., µk}.
Let m = αp for some α > 0, a fixed parameter. Then
for each i ∈ [k], generate m

k points from a normal dis-

tribution with mean
√

ρ
pµi and covariance matrix I for

some fixed parameter ρ > 0. Observe that the param-
eter ρ represents the separation between the clusters
and can be treated as the parameter indicating the
“statistical ease” with respect to the clustering prob-
lem or alternatively as the signal-to-noise ratio in this
setting (we have an identity covariance matrix). We
are interested in studying the large sample behaviour
of clustering approaches in the high-dimensional set-
ting: m, p→∞ and m

p = O(1).

We denote the resulting set of m points by
{x1, x2, ..., xm}. Let σ : [m] → [k] denote a balanced
partition of m points into k clusters and let σ∗ denote

the true partition: σ∗(i) = s if Exi =
√

ρ
pµs. Let X∗

denotes the ground truth clustering matrix defined as
follows:

X∗i,j =

{
1 if σ∗(i) = σ∗(j)

0 otherwise.

For any arbitrary partition σ, define the k× k overlap
matrix β(σ, σ∗), for each s, t ∈ [k] as the fraction of all
points assigned by σ to the sth cluster and the fraction
of all points assigned by σ∗ to the tth cluster,

β(σ, σ∗)s,t =
k|σ−1(s) ∩ σ−1∗ (t)|

m
.

Then ‖β(σ, σ∗)‖2F is a measure of similarity of the par-
tition, σ with the true partition, σ∗. Observe that if
the partitions are completely uncorrelated, then β is
the constant matrix of 1/k and ‖β(σ, σ∗)‖2F = 1. If
the partitions are identical up to permutations over
the labels, then β would be the permutation matrix
and ‖β(σ, σ∗)‖2F = k.

Alternatively, for the sake of analytical tractability, we
sometimes, use the quantity err(σ, σ∗) to denote the
fraction of points misclassified by σ.

err(σ, σ∗) = 1−
max
π

Trace(πβ(σ, σ∗))

k
.

where πβ refers to the matrix resulting from a permu-
tation of β over the cluster labels and the maximum
is over all possible such permutations.

Clustering with k-means: The clustering objective
of the k-means procedure (Pollard, 1981) is given as
follows:

min
σ:[m]→[k]

k∑

s=1

∑

i∈σ−1(s)

∥∥∥∥∥∥
xi −

k

m

∑

σ(j)=s

xj

∥∥∥∥∥∥

2

.

This is equivalent to the following optimization prob-
lem:

max
σ:[m]→[k]

k∑

s=1

∑

i,j∈σ−1(s)

〈xi, xj〉.

Kernel k-means: For any partition σ : [m] → [k],
define

F(σ) =
k∑

s=1

∑

i,j∈σ−1(s)

k(xi, xj).

Then, by the use of the kernel trick, we can formulate
the kernel k-means clustering objective as follows:

max
σ:[m]→[k]

F(σ) (1)

where k : Rp × Rp → R is a kernel function. Min-
imizing this objective over all possible partitions is
NP-hard (Garey, Johnson, and Witsenhausen, 1982;
Aloise et al., 2009). Several convex relaxations of the
k-means procedure exist in literature. A well known
semi-definite program (SDP) relaxation of the kernel
k-means (Peng and Wei, 2007) objective is given by:

max
X

trace(KX) (2)

s.t., X � 0, X ≥ 0, X1 =
m

k
1, diag(X) = 1,

where K refers to the kernel matrix for a given kernel
function k: Ki,j = k(xi, xj). This SDP can be solved
in polynomial time. To obtain a partitioning σ̂ of the
data based on the optimal solution X̂ of the SDP, a
7-approximate k-medians’s procedure (Charikar et al.,
2002) is applied on the rows of the matrix X̂ in a
similar fashion as Fei and Chen (2018). We denote the
partition inferred by this procedure as σ̂. The details
of the k-median procedure can be found in Fei and
Chen (2018, Algorithm 1).

Choice of kernel function: For the analysis, we
consider the class of dot-product kernel functions —
k(x, y) = f(〈x, y〉) where f is assumed to be twice
continuously differentiable and f ′(0) > 0. The well-
known exponential kernel k(x, y) = exp(〈x, y〉) belongs
to this class of kernel functions.

3 Our Results

We denote the upper bound on the information-
theoretic threshold in the non-kernel setting as
ρupperlinear NP and the best known lower bound as ρlowerNP .
We denote the upper bound from the analysis of the
NP-hard kernel k-means procedure as ρupperkernelNP .

The central question we address in this section is the
following: Does the kernel clustering procedure achieve
information-theoretic optimality for high-dimensional
clustering:

ρupperkernelNP
?
= ρlowerNP .
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Figure 1: Our upper bounds are near optimal and ex-
actly match those of the non-kernel setting.

The maximum likelihood estimator in the non-kernel
setting is already known to achieve near optimality in
an information-theoretic sense. Therefore, our princi-
pal objective can be rephrased, in essence, as: Is the
the class of dot-product kernels more(or less) informa-
tive than the linear kernel:

ρupperkernelNP

?
≤ ρupperlinear NP .

As noted earlier, optimizing the kernel k-means objec-
tive is NP-hard. Therefore, for practical significance,
it is also interesting to understand the information-
theoretic optimality of kernels via kernelized, com-
putationally efficient clustering algorithms. To this
end, we analyze the kernel SDP given in (2). It has
been observed in several clustering problems that the
parameter space of the signal-to-noise ratio (SNR)
ρ where polynomial time algorithms are known to
succeed is, typically, strictly above the information-
theoretic threshold. To evaluate if there is any in-
formation loss, due to the use of kernels in polynomial
time clustering algorithms, we compare the SNR above
which kernel SDP can provably recover the true clus-
tering, ρupperkernel P , with the known spectral threshold,
ρlowerP below which no known poly-time algorithm is
known to succeed. We also compare ρupperkernel P to the
upper bound(ρupperlinear P ) derived from the analysis of a
similar semidefinite relaxation of linear k-means:

ρupperkernel P
?
= ρlowerP ρupperkernel P

?
= ρupperlinear P .

We pictorially demonstrate all our results in Figure 1.

3.1 Optimality of kernel k-means

The following lower and upper bounds, ρlowerNP and
ρupperlinear NP respectively on the information-theoretic
threshold appeared in Banks et al. (2018):

ρupperlinear NP = 2

√
k log k

α
+ 2 log k, (3)

ρlowerNP =

{√
1/α k = 2√
2(k−1) log(k−1)

α k ≥ 3 .
(4)

We analyze the performance of the kernel k-means
clustering algorithm and give the following upper
bounds on the information-theoretic threshold:

Theorem 1 (Optimality of kernel k-means). Let

ρupperkernelNP = 2

√
k log k

α
+ 2 log k. (5)

If ρ > ρupperkernelNP , then for large enough m, with high
probability (w.h.p), it is possible to recover the true
partition.

Our results show that there is no loss of information
incurred due to the use of the kernel function in high-
dimensional Gaussian clustering. This also matches
the known information-theoretic lower bounds up to
a factor of

√
2 when the number of clusters k is large

(Banks et al., 2018).

Overview of the analysis: On a high level, the main
line of argumentation of the proof is similar to the
one in Banks et al. (2018). However, note that their
analysis only holds for the linear k-means algorithm
and extending the analysis to a second order expansion
of the kernel k-means objective is considerably more
complex and requires a different set of mathematical
tools and techniques (see Section 4.1).

We consider the distribution of the objective of ker-
nel k-means F(σ) as a function of the partition σ.
We show that above the aforementioned threshold
ρupperkernelNP , with high probability, the distribution of
F(σ∗) is disjoint with and higher than that of the dis-
tribution of max

σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

F(σ), where ε > 0 is an arbi-

trarily small constant. Let σ̃ denote the optimal so-
lution to (1). Since, by definition, F(σ̃) ≥ F(σ∗), it
follows that the support of the distribution of F(σ̃) is
disjoint with and higher than that of the distribution
of max

σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

F(σ).

3.2 Optimality of kernel SDP

The following phase transition for spectral methods
can be inferred from Paul (2007) and Baik, Arous, and
Péché (2005) and appeared in Banks et al. (2018):

ρlowerP =
k − 1√
α
.

We give the following upper bound on the threshold
below which no known computationally efficient poly-
nomial clustering approaches (provably) achieve par-
tial recovery.

Theorem 2 (Optimality of kernel SDP). Let

ρupperkernel P = ck

(
1 ∨ 1√

α

)
. (6)

for some fixed constant c > 0. If ρ > ρupperkernel P , then
for sufficiently large m, w.h.p, kernel SDP can recover
the true partition.
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Our results match the spectral threshold up to con-
stant factors of approximation for large k. Our result
also matches with the known upper bound (ρupperlinear P )
for partial recovery via the linear k-means clustering
procedure (Giraud and Verzelen, 2018) up to a factor

of (k−1)
k . In agreement with the established conjecture,

it is also evident from our results that the threshold at
which a computationally efficient kernel clustering pro-
cedure can be guaranteed to succeed is strictly above
the information-theoretic threshold. They differ by an

order of
√

k
log k .

Overview of the analysis: Denote κ = f ′′(τ +
C0

log p√
p ) We define the matrix K̃ that depends on the

population parameters of the data distribution as fol-
lows:

K̃(i, j) = f(0)+




f
′
(0)ρ〈µi,µj〉

p2 +
κρ2〈µi,µj〉2

p4 + κ
p if i 6= j

f
′
(0)(p2+ρ‖µi‖2)

p2 + κ(p2+ρ‖µi‖2)2
p4 + κ

p otherwise.

We show that the kernel matrixK concentrates around
K̃ in the ∞→ 1 operator norm.

Let X̂ denote the optimal solution to (2). Then, us-
ing Grothendieck’s inequality (Grothendieck, 1956),
we derive an upper bound on ‖X̂ − X∗‖1 in terms
of ‖K − K̃‖∞→1. Since X̂ is not a partition matrix,
we need a procedure that can infer a partition from
X̂. We use the 7-approximate k-median’s procedure
(Fei and Chen, 2018) on the rows of X̂ to infer a
partition σ̂. Then Fei and Chen (2018) showed that
the fraction of mis-classified vertices by the partition
σ̂ denoted by err(σ∗, σ̂) can be upper bounded by a

constant factor of
‖X̂−X∗‖

1

‖X∗‖1
. Thereby, we show that

for ρ > ρupperkernel P , the fraction of misclassified points
err(σ̂, σ∗) < (1−1/k), which is the condition required
for partial recovery.

SDPs, such as the one defined in (2), have been an-
alyzed using the Grothendieck’s inequality approach
in community detection literature for stochastic block
models (Guédon and Vershynin, 2016). However, the
main technical challenges of our analysis lie in the
choice of appropriate K̃ and showing that the ma-
trix K concentrates around K̃ in the ∞ → 1 oper-
ator norm. Establishing the concentration results for
‖K − K̃‖∞→1 is considerably harder compared to the
analysis of similar quantities based on the adjacency
matrix of a network generated from a stochastic block
model. Unlike in the case of adjacency matrices, the
entries of the kernel matrix encode dependencies be-
tween the data points and hence most classical concen-
tration tools from random matrix theory fall short in

the analysis of kernel matrices. Also the RKHS corre-
sponding to the chosen class of kernel functions can be
infinite dimensional and hence concentration inequali-
ties that depend on the dimension of the feature space
are also not applicable for analyzing functions of kernel
entries.

To this end, we demonstrate that the polynomial con-
centration inequalities for exponentially decaying ran-
dom variables in Götze, Sambale, and Sinulis (2019)
can be used to analyze an entry-wise second order ap-
proximation of the kernel matrix. We make some fur-
ther remarks about our proof, and possibilities for im-
proving the result.

Remark 1: Finer upper bounds on 〈K − K̃,X∗− X̂〉
can be obtained by applying an analysis similar to Fei
and Chen (2018) to obtain better error rates. However,
our bounds on ρ, essentially remain the same — which
is the main emphasis of this paper.

Remark 2: The choice of K̃ can further be refined in
the second order terms without changing the results of
our analysis.

Remark 3: One could, alternatively, infer a parti-
tion by applying the k-means procedure on the rows
of the eigenvectors of X̂. Using Davis-Khan’s theorem
(Yu, T. Wang, and Samworth, 2014), one may simi-
larly upper bound the fraction of misclassified nodes

by a constant factor of ‖X̂−X
∗‖1

‖X∗‖1 . This approach gives

a slightly worse approximation constant.

4 Proofs

4.1 Proof of Theorem 1

Overview of the technical steps: Let ε > 0 be
an arbitrarily small constant. The two main ingredi-
ents required to establish conditions of recovery are as
follows:

• Upper tail bounds for max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

F(σ).

• Lower tail estimates for the distribution of F(σ∗).

To obtain these bounds, for any fixed σ, we first ap-
ply the Taylor’s theorem with mean value form of the
reminder to obtain a 2nd order polynomial approxima-
tion of each of the kernel entry and obtain a tight lower
bound Fl(σ) and an upper bound Fu(σ) on F(σ).

For any fixed σ such that ‖β(σ, σ∗)‖2F ≤ 1 + (k − 1)ε,
we compute Fu(σ) which is a 4th order polynomial of
normally distributed random variables and carefully
upper bound all the terms of this polynomial using var-
ious known concentration results in literature. By an
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union bound over all such partitions, we obtain upper
tail bounds for max

σ:‖β(σ,σ∗)‖2F≤1+(k−1)ε
Fu(σ). Similarly,

we compute Fl(σ∗) which is a 4th order polynomial
of normally distributed random variables and obtain
lower bounds for all the involved terms. Therefore, we
obtain:

F(σ∗) ≥ Fl(σ∗) > ωl

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

F(σ) ≤ max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

Fu(σ) ≤ ωu.

By comparing ωu and ωl, we obtain the conditions on
ρ under which ωl ≥ ωu.

Notation: We use the following notation for some
recurring terms for improved readability.

For any i, j ∈ [m], set τ = E‖xi‖2
p = 1 + O(1/p). For

any σ, we use the following notation:

Q1σ = k
m

∑
s∈[k]

∑
i,j∈σ−1(s)

〈xi,xj〉
p ;

Q2σ = k
m

∑
s∈[k]

∑
i,j∈σ−1(s)

〈xi,xj〉2
p2 ;

Q3 = k(f ′(τ)−f ′(0))
m

∑
i∈[m]

(‖xi‖2
p − τ

)
;

Q4 = k
2m

∑
i∈[m]

(‖xi‖2
p − τ

)2
; Q5 =

∑
i∈[m]

kτ‖xi‖2
mp ;

γ1 = f ′′(C0
log p√
p ); γ2 = f ′′(τ + C0

log p√
p )

γ3 = f ′′(−C0
log p√
p ); γ4 = f ′′(τ − C0

log p√
p )

for some constant C0 > 0.

All the lemmas we state below hold with high proba-
bility (1− Ω( 1

p )) and the proofs of all the lemmas are
provided in the supplementary.

Outline of the proof: Recall that for any partition
σ : [m]→ [k], F(σ) = k

m

∑
s∈[k]

∑
i,j∈σ−1(s)

k(xi, xj).

Lemma 1 (Upper and lower bounds for inner
products).

max
i,j

|〈xi, xj〉|
p

= τ1i=j +O

(
log p√
p

)
, and

min
i,j

〈xi, xj〉
p

= τ1i=j + Ω

(
− log p√

p

)
.

By a second order Taylor expansion of each k(xi, xj)
where i 6= j around 0 and expanding each k(xi, xi)
around τ , and using Lemma 1, for any σ, we can write
F(σ) ≤ Fu(σ) =

f ′(0)Q1σ + γ1Q2σ +Q3 + (γ2 − γ1)Q4 − γ1Q5

− kτf ′(τ) + kf(τ) + (m− k)f(0) +
kγ1τ

2

2
.

and for any σ, F(σ) ≥ Fl(σ) =

f ′(0)Q1σ + γ3Q2σ +Q3 + (γ4 − γ3)Q4 − γ3Q5

− kτf ′(τ) + kf(τ) + (m− k)f(0) +
kγ3τ

2

2
.

Upper bounds for maxσ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

F(σ): We de-

rive upper bounds for all the terms that constitute
Fu(σ), which simultaneously hold for all σ such that

‖β(σ, σ∗)‖2F ≤ 1 + (k − 1)ε.

Lemma 2 (Upper bounds for Q1σ, Q5).

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

Q1σ ≤ k + αρε+ 2(1 + ε)α log k

+ 2
√

(1 + ε) (k + 2αρε)α log k +O(
√

log p/p).

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

−γ1Q5 ≤

− kγ1τ

mp

(
mp+ pαρ− 2

√
(mp+ 2pαρ) log p

)
.

Proof (sketch). The terms Q1σ and Q5 can be ex-
pressed as sums of independent non-central chi-
squared random variables and applying the known up-
per tail bounds for such sums, followed by a union
bound over all σ : ‖β(σ, σ∗)‖2F ≤ 1 + (k− 1)ε, we have
the results from Lemma 2.

Lemma 3 (Upper bound for Q2σ).

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

γ1Q2σ ≤ γ1
(

1 +
1

k
+O

(
1

p

))

+ C2γ1O

(√
α

p
∨ α
√
α

p
∨
√

1

αp

)

for some constant C2 > 0.

Proof (sketch). Controlling the typical behavior of the
term Q2σ is the most demanding part of the proof. We
use the concentration results established for polyno-
mials of sub-Gaussian random variables (see the sup-
plementary for a definition) in Götze, Sambale, and
Sinulis (2019) to establish the result in Lemma 3.

Lemma 4 (Upper bound for Q4).

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

(γ2−γ1)Q4 ≤ C4k(γ2−γ1)(log p)2/2p.

for some constant C4 > 0.
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Proof (sketch). The term Q4 is small relative to the
other terms and hence a crude upper bound based on

the inequality: For any two vectors a, b,
n∑
i=1

ai · bi ≤

sup
i∈[n]
|bi| ·

n∑
i=1

|ai|, followed by an application of Lemma

1 suffices to establish the behavior of this term.

Lower bounds for F(σ∗). Similarly, we derive lower
bounds for all terms that arise in Fl(σ∗).
Lemma 5 (Lower bound for Q1σ∗ and Q5).

Q1σ∗ > k + αρ−O(
√

log p/p), and

− γ3Q5 > −
kγ3τ

mp
(mp+ pαρ+ 2 log p)

− kγ3τ

mp

(
2
√

(mp+ 2pαρ) log p
)
.

Proof (sketch). From upper tail estimates for sums of
non-central chi-squared random variables, we establish
the result of Lemma 5.

Lemma 6 (Lower bound for Q2σ∗).

γ3Q2σ∗ > γ3

(
1 +

1

k
+O

(
1

p

))

− C2γ3

(√
log p

p2
∨ α
√

log p

p2

)
.

Proof (sketch). Q2σ∗ , as discussed earlier, is a 4th

order polynomial of sub-Gaussian random variables
(see the supplementary for a definition). There-
fore from lower tail estimates for polynomials of sub-
Gaussian random variables in Götze, Sambale, and
Sinulis (2019), we establish the result in Lemma 6.

Since Q4 is a smaller term, the following lower bound
suffices to control its behavior:

Q4 > 0. (7)

Using the mean-value theorem, we can write
γ1 − γ2 = f ′′′(ξ)2C0 log p/

√
p, where ξ ∈

(−C0 log p/
√
p, C0 log p/

√
p). By assumption, f is

twice continuously differentiable on the compact inter-
val [−C0, C0] and thereby f ′′′(ξ) is bounded. Hence
γ1 − γ2 → 0 as p → ∞. Similarly, γ3 − γ4 → 0 as
p → ∞. From Lemmas 2 to 6 and Equation (7), we
obtain that for ρ > 2

√
k log k/α + 2 log k, for large

enough p, with high probability, max
σ
F(σ) ≥ F(σ∗) ≥

maxσ:‖β(σ,σ∗)‖2F≤1+(k−1)ε F(σ).

4.2 Proof of Theorem 2

Overview of the technical steps:

• We define a matrix K̃ which relies on the model
parameters of the data distribution.

• We upper bound the l1 norm of the difference be-
tween the ground truth clustering matrix and the
optimal solution of the SDP ‖X̂−X∗‖1 by a con-
stant factor of the inner product between K − K̃
and X∗ − X̂, that is, 〈K − K̃,X∗ − X̂〉.

• We use the Grothendieck’s inequality to upper
bound 〈K − K̃,X∗ − X̂〉 by a constant factor of
‖K − K̃‖∞→1.

• We establish the upper tail estimates of the devia-
tion of the kernel matrix K from K̃ in the∞→ 1
norm.

• Thereby, we have an upper bound on ‖X̂ −X∗‖1
which translates to an upper bound on err(σ̂, σ∗).
By setting err(σ̂, σ∗) < 1 − 1/k, we derive the
desired conditions on ρ.

Notation: Denote κ = f ′′(τ + C0 log p√
p ). For ease of

notation, we define the m×m matrices R(1) and R(2)

as follows:

R
(1)
i,j =

{
f ′(0)〈xi,xj〉

p − f ′(0)ρ〈µi,µj〉
p2 if i 6= j,

f ′(0)‖xi‖2
p − f ′(0)p2+f ′(0)ρ‖µi‖2

p2 otherwise.

R
(2)
i,j =

{ 〈xi,xj〉2
p2 − ρ2〈µi,µj〉2

p4 − 1
p if i 6= j,

‖xi‖4
p2 − (p2+ρ‖µi‖2)2

p4 − 1
p otherwise.

All the lemmas hold with high probability: with prob-
ability 1 − Ω(1/p) and the proofs of the lemmas are
provided in the supplementary.

Outline of the proof: We begin by establishing the
following upper bound on ‖X∗ − X̂‖1.

Lemma 7 (Upper bound on ‖X∗ − X̂‖1).

‖X∗−X̂‖1 ≤
2〈K̃,X∗ − X̂〉

ρ
p

(
k
k−1 +O(

√
log p/p) + κρO( 1

p )
) .

Observe that, by definition, 〈K, X̂〉 ≥ 〈K,X∗〉 =⇒
〈K, X̂ −X∗〉 ≥ 0, and therefore,

〈K,X∗ − X̂〉 ≤ 〈K − K̃,X∗ − X̂〉
≤ 2 sup

X�0
diag(X)≤1

|〈K − K̃,X〉|.
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Using Grothendieck’s inequality (Grothendieck, 1956),
we arrive at the following (see the appendix for a state-
ment of Grothendieck’s inequality):

2 sup
X�0

diag(X)≤1

|〈K − K̃,X〉| ≤ KG‖K − K̃‖∞→1.

where KG ≈ 1.783 is the Grothendieck’s constant. For
any pair of fixed vectors z, y ∈ {±1}m, by a 2nd order
Taylor’s expansion of each Ki,j around 0, and applying
the result from Lemma 1, we can see that:

yT (K − K̃)z ≤ yT (R(1) + κR(2))z. (8)

Lemma 8 (Upper bounds for R(1)).

sup
z,y∈{±}n

yTR(1)z ≤ C1α (
√
mp ∨m) (9)

for some constant C1 > 0.

Proof (sketch): Linear combinations of entries of the
matrix R(1) can be re-written as sums of independent
sub-exponential random variables (see the supplemen-
tary for a definition). By an application of Bernstein’s
inequality for each fixed {z, y ∈ ±1}m, followed by an
union bound over all possible z, y we establish the re-
sult.

Lemma 9 (Upper bounds for R(2)).

sup
{z,y∈±1}m

κyTR(2)z ≤

C ′2κ
p2

(ρm(m−1)+m+(mp
√
m ∨ m2

√
m ∨ p2√m)).

for some constant C ′2 > 0.

Proof. In order to bound the linear combinations of en-
tries of R(2), for each fixed {z, y ∈ ±1}m we apply the
concentration results for polynomials of independent
sub-Gaussian random variables. (Götze, Sambale, and
Sinulis, 2019). In order to bound the maximum of the
second order terms over all {z, y ∈ ±1}m, we use the
union bound.

From Lemmas 7, 8 and 9, we have that: ‖X̂−X∗‖1 ≤

2C
′

φp

(
(m2/

√
α ∨m2) +

κ

p
(ρm2 +O(m))

)

+
2C
′
κ

φp2
(
mp
√
m ∨ m2

√
m ∨ p2

√
m
)
, (10)

where φ = ρ
p

(
k
k−1 +O(

√
log p/p) + κρO( 1

p )
)

, for

some constant, C
′
> 0.

Let σ̂ be the partition generated by applying the η-
approximate k-median’s procedure on X̂.

Proposition 1 (Fraction of misclassified nodes
(Fei and Chen, 2018)). The fraction of mis-classified
points corresponding to the partition σ̂:

err(σ̂, σ∗) ≤ 2(1 + 2η)
‖X̂ −X∗‖1
‖X∗‖1

Observe that ‖X∗‖1 = m2

k . Applying the result from
Proposition 1, we have that for large enough p, if ρ &
k( 1√

α
∨ 1), err(σ̂, σ∗) < 1− 1

k .

5 Discussion

In this paper, we study the large sample behaviour
of the kernel k-means algorithm for high-dimensional
clustering. The principal focus lies in investigating the
information-theoretic optimality of the kernel k-means
procedure. Recent works have demonstrated that the
linear k-means algorithm is near optimal in this sense.
Therefore another aspect of our work resides in un-
derstanding the informativeness of specific kernels for
high-dimensional clustering in relation to the linear
kernel. A thorough understanding of these aspects is
fundamental to the use of kernels in any unsupervised
high-dimensional learning problem.

We also study the large sample behaviour of a popular
semi-definite relaxation of the kernel k-means objec-
tive. We emphasize on optimality and informativeness
of kernels in computationally efficient algorithms for
high-dimensional clustering. A widely believed con-
jecture in clustering literature, with support from well
founded theoretical evidence, is that computationally
efficient algorithms are sub-optimal in an information-
theoretic sense. Therefore, in this paper, we consider
the SDP to be information-theoretically optimal if its
optimal in the class of computationally efficient algo-
rithms. The best known result for this class arises from
the well known spectral threshold in this setting.

We show that both the algorithms are near optimal
in their computational class and as a consequence also
demonstrate that their is no loss of information in-
curred by the use of the class of dot-product kernels
over the linear kernel. By virtue of our proofs, we also
demonstrate that the recent polynomial concentration
inequalities for random variables with exponentially
decaying tails can aid in the analysis of higher order
kernel approximations.

Furthermore, this line of analysis can be extended to
other empirically popular kernels. In particular, since
the squared distance is known to be less informative
in high dimensions, it would be interesting to investi-
gate the informativeness of the popular Gaussian ker-
nel which relies on the square distances.
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(2005). “Phase transition of the largest eigenvalue
for nonnull complex sample covariance matrices”.
In: The Annals of Probability 33.5, pp. 1643–1697.

Banks, Jess, Cristopher Moore, Roman Vershynin,
Nicolas Verzelen, and Jiaming Xu (2018).
“Information-theoretic bounds and phase tran-
sitions in clustering, sparse PCA, and submatrix
localization”. In: IEEE Transactions on Informa-
tion Theory 64.7, pp. 4872–4894.

Charikar, Moses, Sudipto Guha, Éva Tardos, and
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1 Notation and Preliminaries

For any d ∈ N, Let g : {(i, d)}i∈[m],d∈[p] → [mp] be an injective mapping. For

any (i, d), for ease of notation, we simply refer to g(i, d) as id when it occurs as
an index. For any i ∈ [m], d ∈ [p], xid refers to the dth component of xi. For
any two tensors x, y x⊗ y refers to the outer product between x, y.

2 Definitions

2.1 α− sub-Exponential random variables

Definition 1 (α− sub-Exponential random variables (Götze, Sambale, and
Sinulis 2019)). A centered random variable X is said to be α− sub-Exponential
if there exist two constants c, C and some α > 0 such that for all t ≥ 0,

Pr (|X| ≥ t) ≤ c exp

(
− t

α

C

)

The corresponding α− sub-Exponential norm of X is given by:

‖X‖ψα = inf

{
t > 0 : E exp

( |X|α
tα

)
≤ 2

}

α− sub-Exponential random variables with α = 2 are referred to as sub-
Gaussian random variables. Random variables with α = 1 sub-Exponential
decay are referred to simply as sub-Exponential random variables.

Definition 2 (Tensor norms (Götze, Sambale, and Sinulis 2019)). For any

dth order, symmetric tensor A ∈ Rnd , let J = {J1, J2, ..., Jk} be any partition

of [d]. Then for any x = x1 ⊗ x2 ⊗ · · · ⊗ xk, where xi ∈ Rn|Ji| :

‖A‖J := sup




∑

i1,...,id

ai1...id

k∏

j=1

xjiJj
: ‖xj‖2 ≤ 1



 . (1)

1
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2.1.1 Properties of sub-Gaussian random variables:

Proposition 1 (Sums of sub-Gaussian random variables (Vershynin 2018)).
Let {X1, X2, ..., Xm} be m independent, centered, sub-Gaussian random vari-
ables. Then

∑
i∈[m]

Xi is a sub-Gaussian random variable and,

‖
∑

i∈[m]

Xi‖2ψ2
≤ C

∑

i∈[m]

‖Xi‖2ψ2
.

Proposition 2 (Products of sub-Gaussian random variables (Vershynin
2018)). Let X1 and X2 be sub-Gaussian random variables. Then X1 · X2 is a
sub-Exponential random variable and,

‖X1 ·X2‖ψ1
≤ ‖X1‖ψ2

· ‖X2‖ψ2
.

Proposition 3 (Squares of sub-Gaussian random variables(Vershynin
2018)). Let X be sub-Gaussian random variables. Then X2

1 is a sub-Exponential
random variable and,

‖X2
1‖ψ1 = ‖X1‖2ψ2

.

3 Useful concentration results

Proposition 4 (Bernstein’s inequality (Vershynin 2018)). Let {X1, X2, ..., Xm}
be a set of independent, centered, sub-Exponential random variables. Then for
any t > 0, we have:

Pr


|
∑

i∈[m]

Xi| ≥ t


 ≤ 2 exp


−C min


 t2∑
i∈[m]

‖Xi‖2ψ1

,
t

max
i∈[m]
‖Xi‖ψ1







for some fixed constant C > 0.

Proposition 5 (Tail bounds for chi-squared distributions (Birgé 2001)).
The following lower and upper tail bounds hold for non-central chi-squared dis-
tributions : For any t > 0,

Pr
(
χ2
d

(
µ2
)
< d+ µ2 − 2

√
(d+ 2µ2) t

)
< exp(−t) (2)

Pr
(
χ2
d

(
µ2
)
> d+ µ2 + 2

√
(d+ 2µ2) t+ 2t

)
< exp(−t) (3)

Proposition 6 (Polynomials of α− sub-Exponentials(Götze, Sambale, and
Sinulis 2019)). Let X1, . . . , Xn be a set of independent random variables satisfy-
ing ‖Xi‖ψ2

≤ b for some b > 0. Let f : Rn → R be a polynomial of total degree
D ∈ N. Then, for any t > 0,

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp
(
− 1

CD
min

1≤s≤D
min
J∈Ps

( t

bs‖Ef (s)(X)‖J

) 2
|J |
)
.

where, for any for any s ∈ D, f (s) denotes the symmetric sth order tensor of
its sth order partial derivatives and Ps denotes the set of all possible partitions
of [s].

2
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4 Other useful results

Proposition 7 (Grothendieck’s inequality (Grothendieck 1956)). For any
matrix A ∈ Rm×m,

sup
X�0

diag(X)≤1

|〈X,A〉| ≤ KG‖A‖∞→1.

where KG ≈ 1.783 is the Grothendieck’s constant.

5 Proofs of lemmas

By an application of Bernstein’s inequality for sub-exponential random vari-
ables, followed by an union bound over all s, s′ ∈ [k], it can be verified that,
with high probability,

min
s∈[k]
‖µs‖2 = p+O(

√
p log p); min

s6=s′∈[k]
〈µs, µs′〉 =

−p
k − 1

+O(
√
p log p) (4)

Proof of Lemma 9. Let X = {xid}i∈[m],d∈[p] and let f(X) =

∑

i6=j∈[m]

yizj(〈xi, xj〉2 −
ρ2

p2
〈µi, µj〉2 − p) +

∑

i∈[m]

yizi(‖xi‖2 − (p+
ρ

p
‖µi‖2)2 − p).

Since f is a 4th order polynomial in X, from Proposition 6, for any t > 0 :

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp
(
− 1

C4
min

1≤s≤4
min
J∈Ps

( t

bs‖Ef (s)(X)‖J

) 2
|J |
)
.

We have Ef(X) = Cf (m2ρ+m) for some constant Cf > 0.
We need the following tensors and their corresponding tensor norms to establish
the results of Lemma 9 via an application of Proposition 6.

• For each s ∈ [4], sth order tensors As of expectations of sth order deriva-
tives of f with respect to each {xi1,d1 , ..., xis,ds}ij∈[m],dj∈[p].

• Tensor norms for As with respect to each J in Ps - the set of all possible
partitions of [s].

Computing A1: The first order derivative of f with respect to xid for any

i ∈ [m] and d ∈ [p]: ∂f(X)
∂xid

=

4x3idyizi +
∑

d′ 6=d
2xidx

2
id′yizi +

∑

j 6=i
2xidx

2
jdyizj +

∑

d′ 6=d

∑

j 6=i
xid′xjdxjd′yizj . (5)

E(
∂f(X)

∂xid
) = O(

√
p log p). (6)

Therefore, A1 = O(
√
p log p)Jmp, where Jmp ∈ Rmp denotes the vector of ones.

3

optimality of kernels for high dimensional clustering 51



Tensor norms of A1. P1 = {1} and

‖A1‖{1} = sup





∑

1∈[m],d∈[p]
A1
idx

1
id : ‖x1‖2 ≤ 1



 = ‖A1‖2 = O(p

√
m log p).

All the inequalities in this proof are obtained from multiple applications of
Hölder’s inequality with p = 1 and q = ∞, CauchySchwarz inequality and the
inequality: for any x ∈ Rn, ‖x‖1 ≤

√
n ‖x‖2.

Computing A2: The second order derivative of f with respect to xid, xkβ for

any i, k ∈ [m] and d, β ∈ [p]: ∂f(X)
∂xid∂xkβ

=





12x2idyizi +
∑
d′ 6=d

2x2id′yizi +
∑
j 6=i

2x2jdyizj if k = i;β = d,

4xidxiβyizi +
∑
j 6=i

2xjdxjβyizj if k = i;β 6= d,

4xidxkdyizk +
∑
d′ 6=d

xid′xkd′yizk if k 6= i;β = d,

xiβxkdyizk otherwise .

(7)

Then A2(i, j) = 



O(p) if k = i;β = d,

O(log p) if k = i;β 6= d,

O(1) if k 6= i;β = d,

O(log p/p) otherwise .

(8)

Tensor norms of A2

P2 = {{1, 2} , {{1} {2}}}.
From the definition, its clear that A2

{1,2} = ‖A‖2 = O(p2).

A2
{{1}{2}} = sup





∑

i,j∈[m],d,d′∈[p]
A2
id,jd′x

1
idx

2
jd′ : ‖x1‖2, ‖x2‖2 ≤ 1





≤ sup
∀l,‖xl‖2≤1

{ ∑

i∈[m]

∑

d∈p
O(p)|x1idx2id|+

∑

i∈[m]

∑

d6=d′∈p
O(log p)|x1idx2id′ |

+
∑

i 6=j∈[m]

∑

d∈p
O(1)|x1idx2jd|+

∑

i 6=j∈[m]

∑

d6=d′∈p
ρO(

log p

p
)|x1idx2jd′ |

}

≤ sup
∀l,‖xl‖2≤1

{
O(p)‖x1‖2‖x2‖2 +O(log p)

∑

d6=d′∈p

√∑

i∈[m]

(x1id)
2
∑

i∈[m]

(x2id′)
2

+
∑

i 6=j∈[m]

∑

d∈p
O(1)

√∑

d∈[p]
(x1id)

2
∑

d∈[p]
(x2jd)

2 + ρO(
log p

p
)(
√
mp‖x1‖2)(

√
mp‖x2‖2)

}

≤ sup
∀l,‖xl‖2≤1

{
O(p)‖x1‖2‖x2‖2 +O(log p)

√
p‖x1‖2

√
p‖x2‖2

+O(1)
√
m‖x1‖2

√
m‖x2‖2 + ρO(

log p

p
)(
√
mp‖x1‖2)(

√
mp‖x2‖2)

}

≤ O(p log p).
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Computing A3: The third order derivative of f with respect to xid, xkβ , xαl
for any i, k ∈ [m] and d, β ∈ [p]: ∂f(X)

∂xid∂xkβ∂xαl
=





24xidyizi if α = k = i; l = β = d,

4xilyizi if α = k = i; l 6= β = d,

4xαdyizα if α 6= k = i; l = β = d,

xαβyizα if α 6= k = i; l = d 6= β,

0 otherwise .

(9)

Then A3
id,kβ,αl =





O( log p
p )yizi if α = k = i; l = β = d,

O( log p
p )yizi if α = k = i; l 6= β = d,

O( log p
p )yizα if α 6= k = i; l = β = d,

O( log p
p )yizα if α 6= k = i; l = d 6= β,

0 otherwise .

(10)

Tensor norms of A3: The set of all possible partitions of [3] up to symmetries
is P3 =

{{{1, 2, 3}} , {{1} , {2} , {3}} , {{1} , {2, 3}}}
.
Computing ‖A3‖{{1,2,3}}: It follows from the definition that ‖A3‖{{1,2,3}} =
‖A3‖2 = O(m

√
p log p).

Computing ‖A3‖{{1},{2},{3}}:

= sup




∑

i1,i2,i3

ai1,i2,i3x
1
i1x

2
i2x

2
i3 : ∀l, ‖xl‖2 ≤ 1





≤ sup
∀l,‖xl‖2≤1




∑

i,j∈[m]

∑

d,d′∈[p]
|x1id||x2id′ ||x3jd|



 ·O

(√
log p

p

)

≤ sup
∀l,‖xl‖2≤1




∑

i,j∈[m]

√∑

d∈[p]
(x1id)

2

√∑

d∈[p]
(x2jd)

2
√
p

√∑

d∈[p]
(x3id′)

2



 ·O

(√
log p

p

)

≤ sup
∀l,‖xl‖2≤1

{√
mp‖x1‖2‖x2‖2‖x3‖2

}
·O
(√

log p

p

)

≤ O(
√
p log p).
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Computing ‖A3‖{{1,2},{3}}:

= sup




∑

i1,i2,i3

ai1,i2,i3x
1
i1x

2
i2,i3 : ∀l, ‖xl‖2 ≤ 1





≤ sup
∀l,‖xl‖2≤1




∑

i,j∈[m]

∑

d,d′∈[p]
|x1id||x2id′,jd|



 · ‖A

3‖∞

≤ sup
∀l,‖xl‖2≤1




∑

i,j∈[m]

√∑

d∈[p]
(x1id)

2
√
p

√∑

d′∈[p]
(x2id′,jd)

2



 ·O

(√
log p

p

)

≤ sup
∀l,‖xl‖2≤1

{√
mp‖x1‖2‖x2‖2

}
·O
(√

log p

p

)

≤ O(
√
p log p).

Computing A4: The fourth order derivative of f with respect to xid, xkβ , xαl, xqγ
for any i, k, α, q ∈ [m] and d, β, l, γ ∈ [p]: ∂f(X)

∂xid∂xkβ∂xαl∂xqγ
=





24yizi if q = α = k = i; γ = l = β = d,

4yizi if q = α = k = i; γ = l 6= β = d,

4yizα if q = α 6= k = i; γ = l = β = d,

yizα if q = α 6= k = i; l = d 6= β = γ,

0 otherwise .

(11)

Tensor norms of A4: The list of all possible partitions of [4] is the following(up
to symmetries). P[4] =
{{{1, 2, 3, 4}} , {{1} , {2} , {3} , {4}} , {{1, 2} , {3, 4}} , {{1} , {2, 3, 4}} , {{1} , {2} , {3, 4}}}.
Computation of ‖A4‖{{1,2,3,4}}:
Its clear from the definition that ‖A4‖{{1,2,3,4}} = ‖A‖2 ≤ 24mp.
Computation of ‖A4‖{{1},{2},{3},{4}}:

= sup





∑

i1,i2,i3,i4

ai1,i2,i3,i4x
1
i1x

2
i2x

2
i3x

4
i4 : ∀l, ‖xl‖2 ≤ 1





= sup




∑

i,j∈[m]

∑

d,d′∈[p]
A4
id,id′,jd,jd′x

1
idx

2
id′x

3
jdx

4
jd′ : ∀l, ‖xl‖2 ≤ 1





≤ sup

{ ∑

i∈[m]



√∑

d∈[p]
(x1id)

2
∑

d′∈[p]
(x2id′)

2


 ∑

j∈[m]



√∑

d∈[p]
(x3jd)

2
∑

d′∈[p]
(x4jd′)

2




: ∀l, ‖xl‖2 ≤ 1

}
‖A4‖∞.

≤ ‖A4‖∞ = 24.
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Note that the first inequality follows from a simultaneous application of the
Holder’s inequality with p = 1 and q = ∞ and the Cauchy schwarz inequality.
The last step follows from an application of the Cauchy-Schwarz inequality.
Computation of A4

{{1,2},{3,4}} :

= sup





∑

i1,i2,i3,i4

ai1,i2,i3,i4x
1
i1,i2x

2
i3,i4 : ∀l, ‖xl‖2 ≤ 1





= sup
∀l,‖xl‖2≤1

{ ∑

i,j∈[m]

∑

d,d′∈[p]
A4
id,id′,jd,jd′

(
x1id,id′x

2
jd,jd′ + x1id,jdx

2
id′,jd′ + x1id,jd′x

2
id′,jd

+ x1id,id′x
2
jd′,jd + x1id,jdx

2
jd′,id′ + x1id,jd′x

2
jd,id′)

}

≤ sup
∀l,‖xl‖2≤1

{ ∑

i,j∈[m]

√ ∑

d,d′∈[p]
(x1id,id′)

2
∑

d,d′∈[p]
(x2jd,jd′)

2+

∑

d,d′∈[p]

√ ∑

i,j∈[m]

(x1id,jd)
2
∑

i,j∈[m]

(x2id′,jd′)
2+

√ ∑

i,j∈[m]

∑

d,d′∈[p]
(x1id,jd′)

2
∑

i,j∈[m]

∑

d,d′∈[p]
(x2id′,jd)

2

}
2‖A4‖∞.

≤ 2‖A4‖∞(m+ p+ 1) = 48(m+ p+ 1).

Computation of A4
{{1},{2,3,4}}:

= sup





∑

i1,i2,i3,i4

ai1,i2,i3,i4x
1
i1x

2
i2,i3,i4 : ∀l, ‖xl‖2 ≤ 1





≤ sup
∀l,‖xl‖2≤1

{ ∑

i,j∈[m]

∑

d,d′∈[p]
A4
id,id′,jd,jd′

(
x1idx

2
id′,jd,jd′ + x1idx

2
id′,jd′,jd + x1idx

2
id′,jd,jd′

+ x1idx
2
jd′,jd,id′ + x1idx

2
jd,jd′,id′ + x1idx

2
jd′,jd,id′)

}
· ‖A4‖∞,

≤ sup
∀l,‖xl‖2≤1

{ ∑

i∈[m]

∑

d∈[p]
|x1id||

∑

d′∈[p]
x2id′jdjd′ |

}
· 6‖A4‖∞,

≤ sup
∀l,‖xl‖2≤1

{
√
p
∑

i∈[m]

√∑

d∈[p]
(x1id)

2


∑

j∈[m]

√ ∑

d,d′∈[p]
(x2id′jdjd′)

2



}
· 6‖A4‖∞,

≤ sup
∀l,‖xl‖2≤1

{
√
mp

∑

i∈[m]

√∑

d∈[p]
(x1id)

2



√∑

j∈[m]

∑

d,d′∈[p]
(x2id′jdjd′)

2



}
· 6‖A4‖∞,

≤ sup
∀l,‖xl‖2≤1

{
√
mp

√∑

i∈[m]

∑

d∈[p]
(x1id)

2



√ ∑

i,j∈[m]

∑

d,d′∈[p]
(x2id′jdjd′)

2



}
· 6‖A4‖∞

≤ 6‖A4‖∞(
√
mp) = 144

√
mp.
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Computation of A4
{{1},{2},{3,4}}:

= sup





∑

i1,i2,i3,i4

ai1,i2,i3,i4 · x1i1 , x2i2 , x3i3,i4 : ∀l, ‖xl‖2 ≤ 1





= sup
∀l,‖xl‖2≤1

{ ∑

i,j∈[m]

∑

d,d′∈[p]
A4
id,id′,jd,jd′

(
x1id, x

2
id′x

3
jd,jd′ + x1id, x

2
jdx

3
id′,jd′ + x1id, x

2
jd′x

3
id′,jd

+ x1id, x
2
id′x

3
jd′,jd + x1id, x

2
jdx

3
jd′,id′ + x1id, x

2
jd′x

3
jd,id′)

}

≤ sup
∀l,‖xl‖2≤1

{ ∑

i,j∈[m]

√ ∑

d,d′∈[p]
(x1idx

2
id′)

2
∑

d,d′∈[p]
(x3jd,jd′)

2+

∑

d,d′∈[p]

√ ∑

i,j∈[m]

(x1idx
2
jd)

2
∑

i,j∈[m]

(x3id′,jd′)
2

+

√ ∑

i,j∈[m]

∑

d,d′∈[p]
(x1idx

2
jd′)

2
∑

i,j∈[m]

∑

d,d′∈[p]
(x3id′,jd)

2

}
· 2‖A4‖∞.

≤ 2‖A4‖∞(m+ p+ 1) = 48(m+ p+ 1).

Gathering all the norms, we have that for any fixed y, z ∈ {±1}m:

P(f(X) ≥ Cf (m2ρ+m)+t) ≤ 2 exp

(
− 1

C
min

(( t

24mp

)2
,
( t

24

) 1
2

,
( t

4(m+ p+ 1)

)
,

( t√
mp

)
,
( t

4(m+ p+ 1)

) 2
3

,
( t

p
√
p log p

)2
,
( t

p2

)
,
( t

m
√
p log p

)2
,
( t√

p log p

) 2
3

,
( t√

mp

)))
.

(12)

Applying a union bound over all possible y, z ∈ {±1}m and the setting the R.H.S
of Equation 12 to exp(−(1+ε)m log 2), for some arbitrarily small constant ε > 0
we have that w.h.p,

sup
{z,y∈±1}m

κ
m∑

i,j=1

yizjR
(2)
i,j ≤

C2κ

p2
(ρm(m− 1) +m+ (mp

√
m ∨ m2

√
m ∨ p2

√
m)). (13)

for some constant C2 > 0.
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Proof of Lemma 8. For any fixed y, z ∈ {±1}m,

∑

i,j∈[m]

yizj (〈xi, xj〉 − E〈xi, xj〉) =

∑

d∈[p]




∑

i∈[m]

yixid




∑

j∈[m]

zjxjd


− E


∑

i∈[m]

yixid




∑

j∈[m]

zjxjd




 . (14)

Since each xid is a normally distributed random variable,
∑
i∈[m]

yixid is a sub-

Gaussian random variable with

‖
∑

i∈[m]

yixid‖ψ2
≤ √m‖xid‖ψ2 ≤

√
m(1 +O(log p/p)).

Therefore, for each d ∈ [p],

(
∑
i∈[m]

yixid

)(
∑
j∈[m]

zjxjd

)
is a sub-exponential

random variable with sub-exponential norm:

‖(
∑

i∈[m]

yixid)(
∑

j∈[m]

zjxjd)‖ψ1
≤ ‖

∑

i∈[m]

yixid‖ψ2
‖
∑

j∈[m]

zjxjd‖ψ2
≤ m(1+O(log p/p))2.

Applying Bernstein’s inequality for sums of independent sub-exponential ran-
dom variables, we have that ∀t > 0,

Pr


∑

d∈[p]


(
∑

i∈[m]

yixid)(
∑

j∈[m]

zjxjd)− E(
∑

i∈[m]

yixid)(
∑

j∈[m]

zjxjd)


 > t


 ≤

exp

(
−cmin

(
t2

pm2(1 +O(log p/p))4
,

t

m(1 +O(log p/p))2

))
. (15)

Applying a union bound over all possible partitions y, z ∈ {±1}m, we can see
that w.h.p

sup
y,z∈{±1}m

∑

i,j∈[m]

yizj (〈xi, xj〉 − E〈xi, xj〉) ≤ C1(
m2

√
α
∨m2) (16)

for some constant C1 > 0.

Proof of Lemma 1. Since for each i ∈ [m] and each d ∈ [p], xid is a normally
distributed random variable, for each i, j ∈ [m], xidxjd is a sub-exponential
random variable with:

‖xidxjd‖ψ1 ≤ ‖xid‖ψ2‖xjd‖ψ2 ≤ (1 +O(log p/p))2.

From an application of Bernstein’s inequality for sub-exponential random vari-
ables, we have that:

Pr (|〈xi, xj〉 − E〈xi, xj〉|) > t ≤ 2 exp

(
−c
(

t2

p(1 +O(log p/p))4
∧ t

(1 +O(log p/p))2

))
.
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Taking a union bound over all i, j ∈ [m], we have that:

max
i,j∈[m]

〈xi, xj〉 ≤ E〈xi, xj〉+O(
√
p log p).

and

min
i,j∈[m]

〈xi, xj〉 ≥ E〈xi, xj〉 −O(
√
p log p).

Since ∀i 6= j, E〈xi, xj〉 = O(1), we have that w.h.p:

max
i 6=j∈[m]

〈xi, xj〉
p

≤ O(log p/
√
p), min

i 6=j∈[m]

〈xi, xj〉
p

≥ −O(
√

log p/p)

and ∀i ∈ [m], E‖xi‖2 = p+O(1). So,

max
i∈[m]

‖xi‖
p
≤ 1 +O(log p/

√
p), min

i∈[m]

‖xi‖
p
≥ 1−O(

√
log p/p)

Proof of Lemma 2. For any partition σ such that ‖β(σ, σ∗)‖2F ≤ 1+(k−1)ε,

k

m

k∑

s=1

∑

σ(i)=s
σ(j)=s

〈xi, xj〉 =
k

m

k∑

s=1

∥∥∥∥∥∥
∑

σ(i)=s

xi

∥∥∥∥∥∥

2

.

∑
σ(i)=s

xi is the sum of independent normally distributed random variable and

is also normally distributed. Therefore, ‖ ∑
σ(i)=s

xi‖2 follows a non central chi-

square distribution with non-centrality:

αρ

k

∑

s′∈[k]

∑

s,t∈[k]
βs,s′βt,s′〈µs, µt〉 =

pαρ

k − 1
(‖β‖2F − 1) +O(

√
p log p)

and pk degrees of freedom. Applying upper tail bounds from proposition 5,
followed a union bound over all such partitions and setting t = (1 + ε)m log k,
we obtain the following inequality which holds with high probability:

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

k

m

k∑

s=1

∑

σ(i)=s
σ(j)=s

Q1σ
i,j ≤ k + αρε+ 2(1 + ε)α log k

+ 2
√

(1 + ε) (k + 2αρε)α log k +O(
√

log p/p). (17)

Similarly, the random variable
m∑
i=1

p∑
d=1

x2id is distributed according to a non-

central chi-squared distribution with non-centrality(µ2) pαρ and mp degrees of
freedom(d). Note that it is independent of the partition. Using the lower tail
bounds from proposition 5 and setting t = log(p), w.p.a.l (1− 1

p ).

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

−γmaxQ
5
i ≤ −

kγmaxτ

mp

(
mp+ pαρ− 2

√
(mp+ 2pαρ) log p

)
. (18)

10
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Proof of Lemma 4. Using the inequality,
n∑
i=1

ai ·bi ≤ sup
i∈[n]
|bi|·

n∑
i=1

|ai|, we have:

k

m

∑

i∈[m]

(
‖xi‖2
p
− τ)2 ≤ k max

i∈[m]
(
‖xi‖2
p
− τ)2 ≤ kO(

log p

p
).

Therefore,

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

∑

i∈[m]

kγmax(eτ − 1)

2m
Q4σ
i ≤ C0kγmax(eτ − 1)(log p)2/2p. (19)

Proof of Lemma 5. For the true partition σ∗, ‖ ∑
σ∗(i)=s

xi‖2 follows a non cen-

tral chi-square distribution with non-centrality:

pαρ+O(
√
p log p)

and pk degrees of freedom. Applying lower tail bounds from proposition 5
and setting t = log p, we obtain the following inequality which holds with high
probability:

k

m

k∑

s=1

∑

σ∗(i)=s
σ∗(j)=s

Q1σ
i,j ≥ k + αρ−O(

√
log p/p). (20)

Similarly, as noted earlier, the random variable
m∑
i=1

p∑
d=1

x2id is distributed accord-

ing to a non-central chi-squared distribution with non-centrality(µ2) pαρ and
mp degrees of freedom(d). Using the upper tail bounds from proposition 5 and
setting t = log(p), w.p.a.l (1− 1

p ):

− γminQ
5 > −kγminτ

mp

(
mp+ pαρ+ 2 log p− 2

√
(mp+ 2pαρ) log p

)
. (21)

Proof of Lemma 7.

K̃(i, j) = f(0) +




f
′
(0)ρ〈µi,µj〉

p2 +
κρ2〈µi,µj〉2

p4 + κ
p if i 6= j

f
′
(0)(p2+ρ‖µi‖2)

p2 + κ(p2+ρ‖µi‖2)2
p4 + κ

p otherwise.

〈K̃,X∗ − X̂〉 =
∑

S

∑

i 6=j∈S
K̃i,j(1− X̂i,j) +

∑

S,S′

∑

i∈S
j∈S′

K̃i,j(−X̂i,j)

≥ min
S

min
i 6=j∈S

K̃i,j

∑

S

∑

i 6=j∈S
(1− X̂i,j)−max

S,S′
max
i∈S
j∈S′

K̃i,j

∑

i∈S
j∈S′

∑

i∈S
j∈S′

(X̂i,j)

= (min
S

min
i6=j∈S

K̃i,j −max
S,S′

max
i∈S
j∈S′

K̃i,j)
∑

S

∑

i6=j∈S
(1− X̂i,j).

11
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The last inequality is obtained using the property that the sum of entries of
each row of X̂ is equal to m

k . Similarly,

‖X∗ − X̂‖1 =
∑

S

∑

i 6=j∈S
(1− X̂i,j) +

∑

S,S′

∑

i∈S
j∈S′

(X̂i,j)

≤ 2
∑

S

∑

i 6=j∈S
(1− X̂i,j).

Therefore,

‖X∗ − X̂‖1 ≤
2

(min
S

min
i 6=j∈S

K̃i,j −max
S,S′

max
i∈S
j∈S′

K̃i,j)
〈K̃,X∗ − X̂〉. (22)

Substituting the values of K̃i,j , we have that

min
S

min
i6=j∈S

K̃i,j = f(0) + f ′(0) min
S

ρ‖µs‖2
p2

+ eτγmax min
S

ρ2‖µs‖4
p4

= f(0) + f ′(0)
ρ(1 +O(

√
log p
p ))

p
+ eτγmax

ρ2(1 +O(
√

log p
p ))2

p2
.

max
S 6=S′

max
i∈S,j∈S′

K̃i,j = f(0) + f ′(0) max
S 6=S′

ρ〈µs, µ′s〉
p2

+ eτγmax max
S 6=S′

ρ2〈µs, µ′s〉2
p4

= f(0) + f ′(0)
ρ( −1k−1 +O(

√
log p
p ))

p
+ eτγmax

ρ2( −1k−1 +O(
√

log p
p ))2

p2
.

where, the second equalities for both quantities arise from substituting the values
of min

s
‖µs‖2 and min

s,s′
〈µs, µs′〉. Therefore,

min
S

min
i6=j∈S

K̃i,j − max
S 6=S′

max
i∈S,j∈S′

K̃i,j =
ρ

p

(
k

k − 1
+O(

√
log p

p
) +O(1/p)

)
and

‖X∗ − X̂‖1 ≤
2〈K̃,X∗ − X̂〉

ρ
p

(
k
k−1 +O(

√
log p
p ) +O(1/p)

) .

Proofs of Lemma 3,6. fσ∗(X) =
∑
s∈[k]

∑
i,j∈σ−1

∗ (s)

〈xi, xj〉2.

E
∑

s∈[k]

∑

i,j∈σ−1
∗ (s)

〈xi, xj〉2 =
mp2

k
(k +

α

k
+O(

1

p
)).

We need the following tensors and their corresponding tensor norms to establish
the results of lemma 3 and 6 via an application of Proposition 6.

• For each s ∈ [4], sth order tensors As of expectations of sth order deriva-
tives of f with respect to each {xi1,d1 , ..., xis,ds}ij∈[m],dj∈[p].

12
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• Tensor norms for As with respect to each J in Ps.

Computing A1: The first order derivative of f with respect to xid for any

i ∈ [m] and d ∈ [p]:
∂fσ∗ (X)
∂xid

=

4x3id +
∑

d′ 6=d
2xidx

2
id′ +

∑

s∈[k]

∑

j 6=i∈σ−1
∗ (s)

2xidx
2
jd +

∑

d′ 6=d

∑

j 6=i∈σ−1
∗ (s)

xid′xjdxjd′ . (23)

E(
∂fσ∗(X)

∂xid
) = O(

√
p log p). (24)

Therefore,
A1 = O(

√
p log p)Jmp

, where Jmp ∈ Rmp denotes the vector of ones.
Computing A2: The second order derivative of f with respect to xid, xkβ for

any i, k ∈ [m] and d, β ∈ [p]:
∂fσ∗ (X)
∂xid∂xkβ

=





12x2id +
∑
d′ 6=d

2x2id′ +
∑

j 6=i∈σ−1
∗ (s)

2x2jd if k = i;β = d,

4xidxiβ +
∑

j 6=i∈σ−1
∗ (s)

2xjdxjβ if k = i;β 6= d,

4xidxkd +
∑
d′ 6=d

xid′xkd′ if k 6= i ∈ σ−1∗ (s); s ∈ [k];β = d,

xiβxkd if k 6= i ∈ σ−1∗ (s); s ∈ [k];β 6= d,

0 otherwise .

(25)

Then A2(i, j) =




O(p) if k = i;β = d,

O(log p) if k = i;β 6= d,

O(1) if k 6= i ∈ σ−1∗ (s); s ∈ [k];β = d,

O(log p/p) if k 6= i ∈ σ−1∗ (s); s ∈ [k];β 6= d,

0 otherwise .

(26)

Computing A3: The third order derivative of fσ∗(X) with respect to xid, xkβ , xαl

for any i, k ∈ [m] and d, β ∈ [p]:
∂fσ∗ (X)

∂xid∂xkβ∂xαl
=





24xid if α = k = i; l = β = d,

4xil if α = k = i; l 6= β = d,

4xαd if α 6= k = i; l = β = d, α 6= i ∈ σ−1∗ (s); s ∈ [k];

xαβ if α 6= k = i; l = d 6= β, α 6= i ∈ σ−1∗ (s); s ∈ [k];

0 otherwise .

(27)

Then A3
id,kβ,αl = 




O( log p
p ) if α = k = i; l = β = d,

O( log p
p ) if α = k = i; l 6= β = d,

O( log p
p ) if α 6= k = i; l = β = d,

O( log p
p ) if α 6= k = i; l = d 6= β,

0 otherwise .

(28)
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Computing A4: The fourth order derivative of fσ∗(X) with respect to xid, xkβ , xαl, xqγ

for any i, k, α, q ∈ [m] and d, β, l, γ ∈ [p]:
∂fσ∗ (X)

∂xid∂xkβ∂xαl∂xqγ
=





24 if q = α = k = i; γ = l = β = d,

4 if q = α = k = i; γ = l 6= β = d,

4 if q = α 6= k = i; γ = l = β = d, α 6= i ∈ σ−1∗ (s); s ∈ [k];

1 if q = α 6= k = i; l = d 6= β = γ, α 6= i ∈ σ−1∗ (s); s ∈ [k];

0 otherwise .

(29)

Computing all the tensor norms, (see the proof of Lemma 9 for how the norms
are computed) we have:

‖A1‖{1} = O(p
√
p log p); ‖A2‖{1,2} = O(p2); ‖A2‖{{1},{2}} = O(p log p);

‖A3‖{1,2,3} = O(m
√
p log p); ‖A3‖{1,2},{3} = O(

√
mp); ‖A3‖{{1},{2},{3}} = O(

√
p log p);

‖A4‖{1,2,3,4} = O(mp); ‖A4‖{1,2},{3,4} = O(p); ‖A4‖{{1},{2},{3},{4}} = O(1);
‖A4‖{1},{2,3,4} = O(

√
mp); ‖A4‖{{1},{2},{3,4}} = O(p);

Applying the lower tail bounds for fσ∗(X) from Proposition 6, and setting the
R.H.S of the inequality to 1

p , we derive the following upper bound that holds

with probability at least 1− 1/p:

fσ∗(X) >
mp2

k
(k +

α

k
+ O(

1

p
)) − (O(p2

√
log p) ∨ O(mp

√
log p))

Therefore,

γminQ2σ∗ > γmin

(
1 +

1

k
+O(

1

p
)

)
− C2γmin

(√
log p

p2
∨ α
√

log p

p2

)
.

Fix some ε > 0 be an arbitrarily small constant. For any σ : ‖β(σ, σ∗)‖2F <
1 + (k − 1)ε, let fσ(X) =

∑
s∈[k]

∑
i,j∈σ−1(s)

〈xi, xj〉2.

We can show that Efσ(X) ≤ mp2

k (k + α
k + O( 1

p )). Computing the tensors and
their respective norms similarly as above, applying proposition 6, followed by
an union bound over all such partitions and we can show that w.h.p,

max
σ:‖β(σ,σ∗)‖2F
≤1+(k−1)ε

γmaxQ2σ ≤ γmax

(
1 +

1

k
+O(

1

p
)

)
+C2γmaxO

(√
α

p
∨ α
√
α

p
∨
√

1

αp

)
.

(30)
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Abstract

Despite the ubiquity of kernel-based cluster-
ing, surprisingly few statistical guarantees ex-
ist beyond settings that consider strong struc-
tural assumptions on the data generation pro-
cess. In this work, we take a step towards
bridging this gap by studying the statistical
performance of kernel-based clustering algo-
rithms under non-parametric mixture models.
We provide necessary and sufficient separabil-
ity conditions under which these algorithms
can consistently recover the underlying true
clustering. Our analysis provides guarantees
for kernel clustering approaches without struc-
tural assumptions on the form of the compo-
nent distributions. Additionally, we establish
a key equivalence between kernel-based data-
clustering and kernel density-based cluster-
ing. This enables us to provide consistency
guarantees for kernel-based estimators of non-
parametric mixture models. Along with the-
oretical implications, this connection could
have practical implications, including in the
systematic choice of the bandwidth of the
Gaussian kernel in the context of clustering.

1 INTRODUCTION

Clustering refers to the unsupervised task of parti-
tioning a given data sample or the input space into
meaningful regions. Kernel clustering approaches such
as kernel k-means (Dhillon et al., 2004) and kernel spec-
tral clustering (Ng et al., 2002) are widely adopted by
practitioners, particularly for partitioning non-spherical

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

complex cluster structures. Beyond their good prac-
tical behavior, kernel methods are appealing due to
their amenability to theoretical analysis. However,
as an anomaly, kernel clustering has been elusive to
theoretical analysis, in particular, under general non-
parametric assumptions on the data generation process.
One of the principle sources for this gap between the-
ory and practice had been the lack of a universally
accepted characterization of the quality of a cluster-
ing. One popular notion of the goodness of clustering
is defined as the one that consistently partitions the
data space. Consistency is, however, only a necessary
condition for clustering algorithms. It simply checks
if an algorithm asymptotically converges to a limiting
partition. The optimality of this limiting partition is
not studied under consistency. As an example, spectral
clustering has been shown to be consistent (Luxburg et
al., 2008) for any similarity function k. However, if one
uses a similarity function based on an uninformative
kernel such as the identity kernel, then the obtained
limiting partition is clearly not guaranteed to be a de-
sirable one. Density based clustering (Hartigan, 1975;
Hartigan, 1981; Rinaldo et al., 2010) is another popular
line of work with theoretical backing, where clusters
are defined as connected components of high-density
regions, referred to as density level sets. The impre-
cise notion of a high-density region is overcome using
the so called cluster-tree approach (Chaudhuri et al.,
2014; Sriperumbudur and Steinwart, 2012), where a
continuum of all level sets is simultaneously considered.

Another systematic approach to overcome the ambi-
guity concerning the quality of clustering lies in the
so called model-based clustering, which assumes that
the data is generated from a mixture distribution and
the goal is to partition the data in congruity with the
components that generate the data. However, theoret-
ical analysis of kernel clustering methods have been
confined to settings with parametric distributions (Yan
et al., 2016; Couillet et al., 2016; Vankadara et al.,
2020). Parametric assumptions such as the Gaussian
mixture setting, where the components are assumed to
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be normally distributed, are extremely restrictive since
the data generated under such assumptions are far from
a typical dataset for which kernel clustering algorithms
are applicable. In contrast, non-parametric assump-
tions on the data-generation process can be consider-
ably less restrictive, but kernel clustering algorithms
have been elusive to theoretical analysis under such
assumptions. A primary hurdle in the analysis of clus-
tering approaches under non-parametric assumptions
is due to the issue of identifiability of non-parametric
mixture models, that is, non-parametric models may
be ambiguously defined. There is limited previous
work that presents an analysis of kernel-based cluster-
ing algorithms under non-parametric mixture models.
Schiebinger et al. (2015) provide recovery guarantees
for spectral clustering of non-parametric mixtures by
analyzing the spectral properties of the Laplacian op-
erator under the assumption that the overlap between
the components is small relative to a notion of “indi-
visibility” of the components. The analysis provided in
Schiebinger et al. (2015) is restricted to that of spectral
clustering and considerably different from the analysis
in this paper.

1.1 Contributions

Non-parameteric kernel clustering. We provide
non-parametric conditions for consistency of certain
kernel-based clustering algorithms. To the best of
our knowledge, these are among the first theoretical
guarantees to kernel-based clustering methods without
assumptions on the form of the component distribu-
tions.

1. We provide an impossibility result for kernel
k-means: there exists a mixture distribution with
arbitrarily large separation between the compo-
nents such that for finite samples from this distribu-
tion kernel k-means fails to recover the underlying
clustering.

2. We establish sufficient separability conditions
under which kernel-based algorithms such as k-
center, farthest-first k-means (FFk-means++), or
kernel linkage algorithms can consistently recover
the true partition, given finite samples from a
mixture distribution.

3. We establish necessary conditions for consis-
tency of the kernel FFk-means++ and kernel
linkage algorithms and show that these separabil-
ity conditions are optimal, that is, the sufficient
conditions match the necessary conditions.

Kernel-based data clustering as distribution
clustering. We establish a key equivalence between
kernel-based data clustering and kernel-based density
clustering. In particular:

4. We show that Gaussian kernel-based data cluster-
ing is equivalent to density clustering, where, each
data point is first represented by a Gaussian prob-
ability density function and the densities are then
clustered using the maximum mean discrepancy
metric (with respect to a Gaussian kernel).

5. In addition to theoretical implications, this con-
nection could also have practical implications in
matters such as choosing the bandwidth of the
Gaussian kernel for clustering which has not been
systematically studied in literature so far. Our
analysis reveals that the bandwidth of the ker-
nel used for clustering needs to decrease with n
but, perhaps surprisingly, asymptotically remain
non-zero.

Non-parametric estimation of mixture models.
Due to this relationship between kernel data cluster-
ing and distribution clustering, any standard Gaussian
kernel clustering algorithm can be used to define an
estimation procedure of the mixture model. There-
fore, in addition to our primary contributions to kernel
clustering, we also make contributions related to non-
parametric estimation of mixture models.

6. We provide conditions under which the estima-
tion procedures corresponding to the kernel-based
clustering algorithms can consistently estimate the
true mixture model.

2 FORMAL SETTING AND
BACKGROUND

Consider the Euclidean space Rd of dimension d as the
input domain. Let P denote the space of all Borel prob-
ability measures on Rd that are absolutely continuous
with respect to the Lebesgue measure. In our analysis,
we use the framework of mixing measures to define
mixture distributions. This is fairly standard in the
analysis of non-parametric mixture models (Aragam
et al., 2020; Holzmann et al., 2006; Kimeldorf et al.,
1970; Nguyen et al., 2013; Teicher, 1963) primarily due
to the following reasons:

• Arbitrary mixture distributions are not identifi-
able. Mixing measures allow for the specification of
true components. Section 3.1 provides a thorough
discussion on identifiability of mixture models.

• In non-parametric clustering, one typically does
not make any assumptions on the form of the
component distributions. An elegant way to ac-
complish this is to allow arbitrary component dis-
tributions from P and impose restrictions on the
set of admissible mixing measures.
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Following the notation of Aragam et al. (2020), we
denote the space of all probability distributions (mixing
measures) over P supported on a finite (K) number of
elements in P by P2

K . Formally,

P2
K =

{
K∑

k=1

λkδγk : λk ∈ R+, γk ∈ P,
K∑

k=1

λk = 1

}
,

where δγ denotes the point mass concentrated at γ ∈ P
and [K] denotes the set {1, 2, · · ·K} for any K ∈ N.
Furthermore, assume that the coefficients (λk) of the
component measures (γk) are bounded away from 0.
Define m : P2

K → P to be the mapping that uniquely
associates a mixing measure to a mixture distri-
bution, that is,

∀ Λ ∈ P2
K : Λ =

K∑

k=1

λkδγk −→ m(Λ) =

K∑

k=1

λkγk.

The support of a mixing measure Λ specifies the true
components of the corresponding mixture distribution,
Γ = m(Λ).

We now describe the problem setup. Let Λ =∑
k∈[K] λkδγk be a mixing measure in P2

K . Con-

sider a finite sample X = {x1, x2, · · ·xn} drawn in-
dependently and identically (i.i.d) according to some

Γ = m(Λ) =
K∑
k=1

λkγk. We denote this by X ∼ Γn.

The component measures γk are absolutely continuous
with respect to the Lebesgue measure, and therefore
admit density functions. We use fk to denote the den-
sity function corresponding to the component measure

γk and f =
K∑
k=1

λkfk to denote the density function

corresponding to Γ. Given any density function h, we
use the term “probability distribution corresponding
to h” to denote the measure ψ which is defined as
ψi(A) =

∫
A
h(x)dx, for any Borel set A ⊆ Rd.

For any sample X = {x1, x2, · · ·xn}, we use a map
σ : [n] → [K] to represent a K−partition of X and
ck(σ) = {xi ∈ X : σ(i) = k} to denote the kth cluster
according to σ for all k ∈ [K]. When it is clear from
context, we drop the dependence on σ and simply use
ck to denote ck(σ). Given any X ∼ Γn, the “planted
partition” and the “Bayes partition” are of particular
interest.

Planted partition. Observe that, drawing a sample
X = {x1, x2, · · ·xn} according to a mixing measure
Λ =

∑
k∈[K] λkδγk is equivalent to the following proce-

dure. For each i ∈ [n],

1. sample index k ∈ [K] using the weights λ1, . . . , λk,

2. generate a sample xi from γk.

We refer to the partition induced by this process as the
planted partition and use σ∗X or σ∗n to denote it.

Bayes partition. We refer to the mapping b∗ : X →
[K] as the Bayes partition function, given by

σBayes(x) = arg max
k

λkfk(x).

We use σXBayes to denote the Bayes partition with re-
spect to a sample X ∼ m(Λ)n which is defined as the
Bayes partition function restricted to X.

Remark. In this work, any reference to a sample
should be understood as drawn i.i.d according to a
mixture distribution Γ.

We now describe the main objective of this work: clus-
tering of non-parametric mixture models.

Non-parametric clustering. Given a finite sample
X = {x1, x2, · · ·xn} drawn i.i.d according to Γn, the

central objective of non-parametric, model-based
clustering is to recover the planted partition up to a

permutation over the labels, [K].

Alternatively, one could also be interested in the con-
sistent estimation of the Bayes partition (Aragam et
al., 2020). We present our results with respect to the
former notion and they can easily be extended to the
latter by means of a simple modification of the algo-
rithms. We discuss this in more detail in Section 5.
The primary objective of this paper is to understand
the performance of kernel clustering algorithms under
the framework of non-parametric clustering. A brief
background on kernels is thus warranted for further
discourse on our analysis.

Background on kernels. Every symmetric positive
definite (p.d) kernel function g : Rd × Rd → R is
associated with a feature map φ : Rd → Hg, where
Hg is a Hilbert space with the inner product 〈·, ·〉Hg
such that 〈φ(x), φ(y)〉Hg = g(x, y), ∀x, y ∈ Rd. Hg
is a reproducing kernel Hilbert space (RKHS)
if the mapping f 7→ f(x) is continuous for every
x ∈ Rd, where f ∈ Hg. The Hilbert space Hg cor-
responding to a kernel g is of independent interest
while dealing with probability measures since it ad-
mits feature representations referred to as the kernel
mean embeddings. For any probability measure
P ∈ P, the kernel mean embedding with respect to
kernel g is defined as µP (·) =

∫
x∈Rd g(x, ·)dP , which

is an element of Hg. The RKHS norm ‖·‖Hg associ-

ated with Hg can be used to define a (semi-)metric
between the probability measures. Formally, the max-
imum mean discrepancy (MMD) between two prob-
ability measures P,Q ∈ P with respect to the ker-
nel g is given by ρ(P,Q) = ‖µP − µQ‖Hg . If g is

a characteristic kernel, such as the Gaussian kernel,
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then ρ is a metric on the space of probability mea-
sures P (Fukumizu et al., 2008; Sriperumbudur, Gret-
ton, et al., 2010). In our analysis, we consider the
space P metrized by the MMD corresponding to a
Gaussian kernel function, gζ : Rd × Rd → R, where

gζ(x, y) = exp
(
−‖x−y‖

2

ζ

)
∀x, y ∈ Rd with band-

width ζ > 0. The MMD metric enjoys several valu-
able properties, from both a theoretical and practical
point of view (Gretton et al., 2012; Muandet et al.,
2016). Kernel density estimation is a popular non-
parametric approach for density estimation. Given
any X = {x1, x2, · · ·xn} ∼ Γn, the kernel density esti-
mate (KDE) of the density function f , with respect to
Gaussian kernel gβ with bandwidth β > 0, is given by

f̂(x) =
1

n

n∑

i=1

f̃i (x) ; f̃i(x) =
exp

(
−‖x−xi‖

2

2β2

)

(2πβ2)d/2
. (1)

Let Γ̂, ψi ∈ P be the probability distributions corre-
sponding to f, f̃i respectively. Under the following
conditions on the bandwidth parameter β,

β → 0,
nβd

log n
→∞ as n→∞, (2)

the kernel density estimate f̂n converges to the true
density f in the l∞ norm (Giné et al., 2002; Einmahl
et al., 2005).

3 RECOVERY GUARANTEES FOR
KERNEL-BASED DATA
CLUSTERING

Identifiability. A key theoretical question concerning
both estimation and clustering under non-parametric
mixture models is that of identifiability, that is, any
mixture distribution can be decomposed in infinitely
many ways into component distributions (Teicher, 1963;
Holzmann et al., 2006; Vandermeulen et al., 2015; Miao
et al., 2016; Aragam et al., 2020). Therefore, non-
parametric clustering and estimation of mixture models
are ill-defined, even if the number of components K
is assumed to be known. The framework of mixing
measures as discussed earlier allow for the specification
of the “true components” and the “true planted/Bayes
partitions”. For any set of mixing measures L ⊆ P2

K ,
let m(L) denote the set of mixture distributions cor-
responding to L. Clearly, the mapping L 7→ m(L) is
not injective on the whole space L = P2 due to gen-
eral non-identifiability. This motivates the following
definition.

Definition 3.1 (Identifiablility). A subset L ⊆ P2
K

is called identifiable if the map L 7→ m(L) is injective.

The most common approach to deal with identifiabil-
ity is to make restrictive parametric assumptions on
the form of the component distributions, for example,
Gaussianity, which renders the mixture model identifi-
able (Bruni et al., 1985; Teicher, 1963). Recent work
by Aragam et al. (2020) uses regularity and separa-
bility criteria to achieve identifiability. Our analysis,
inspired by Aragam et al. (2020), also uses separabil-
ity criterion to deal with identifiability. However, our
analysis differs from theirs on several fronts since we
do not impose any regularity conditions on the mix-
ing measures and also consider a statistical approach
to identifiability. Moreover, the focus of their paper
(identifiability of non-parametric mixture models) is
very different from ours, which is providing recovery
guarantees for kernel-based clustering approaches.

Any non-parametric analysis of model-based clustering
(or estimation) is typically preceded by an identifia-
bility analysis for the mixture models. We do not
explicitly study identifiability, that is, identifying a set
L ∈ P2

K for which only one mixing measure can gener-
ate a mixture distribution. Instead, given finite samples
from the mixture distribution, we provide conditions
under which a particular algorithm (is biased toward
and hence) recovers the true mixing measure/partition.
In our analysis of kernel-based clustering algorithms,
we show that under appropriate separability condi-
tions, certain algorithms can consistently recover the
planted partition. Specifically, we present and analyze
the asymptotic behavior of four different kernel-based
clustering algorithms.

Algorithms. We present a brief description of the
algorithms here for completeness and include detailed
descriptions in the supplementary. Consider a finite
sample X = {x1, x2, · · ·xn} ∼ Γn.

• k-means (AKMN). The objective is to find a
partition σ̂ : [n] → [K] such that the sum of
squared within cluster distances on X is minimized.
We consider the optimal solution to the NP-Hard,
k-means problem in our analysis.

• FFk-means++ (AFFK). This algorithm is a
variant of k-means++ where the initial centers are
chosen in a deterministic, farthest-first order.

• k-center (ACTR). The objective seeks to obtain
a k-partition of X such that the maximal radius
of the clusters is minimized. The optimal solution
to the NP-Hard k-center problem is analyzed.

• Agglomerative linkage (ALNK). Given a sim-
ilarity function (single, average or complete link-
age), these algorithms generate a dendrogram es-
tablishing a hierarchy of clusters of the data in a
bottom up approach, starting out with each point
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Figure 1: Example to show that simple separation con-
ditions do not suffice to overcome identifiability. As
the distribution γ2,2 moves arbitrarily far from the re-
maining distributions, the distance between γ1 and γ2
also increases arbitrarily. However, without additional
assumptions, no clustering algorithm can recover the
desirable clusters as defined by the true compo-
nents γ1 and γ2.

as its own cluster and progressively combining
them into larger clusters until there is a single
cluster that contains the entire data.

Given a positive definite kernel g : Rd × Rd → R, the
kernelized versions of these algorithms are defined by
replacing the Euclidean inner product by the inner
product 〈·, ·〉g induced by g on the input space Rd,
which is given by

〈xi, xj〉g = g(xi, xj).

In this paper, we provide necessary and sufficient sepa-
rability conditions for the kernel-based clustering algo-
rithms AKMN, AFFK, ACTR, and ALNK.

Main results. For a finite sample X =
{x1, x2, · · ·xn} ∼ Γn, recall that ψxi refers to the prob-

ability distribution corresponding to f̃i as defined in
(1) with bandwidth parameter β > 0. Given a partition
σ : [n]→ [K] of probability distributions {ψi}ni=1, we
use γ̂k,σ to denote the mean of the kth cluster according
to σ, that is,

γ̂k,σ =
1

|ck(σ)|
∑

xi∈ck(σ)
ψxi .

Let ρ denote the MMD corresponding to the Gaussian
kernel gζ with respect to a bandwidth parameter ζ > 0
and let g denote the Gaussian kernel function with
the bandwidth parameter (4β2 + ζ). For readability,
when it is clear from context, we ignore the dependence
on the partition function, σ in the notation. We now
present one of our key results which establishes the
impossibility of cluster recovery for kernel k-means.
The result states that there is always a mixing measure
with arbitrarily large MMD separation between the
component distributions for which, given finite samples
from this mixture, kernel k-means fails to recover the
planted clustering.

Theorem 1 (Impossibility of clustering recovery
by AKMN). Fix ζ > 0. Let β be any sequence of

bandwidth parameters and let g be the Gaussian kernel
with bandwidth parameter 4β2 + ζ. For all C > 0, there
exists a mixing measure Λ ∈ P2

2 such that

ρ(γ1, γ2) > C sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) (3)

holds within all finite samples and yet AKMN with ker-
nel g w.h.p. fails to recover the planted partition σ∗.

Even though kernel k-means fails to provably recover
the planted partition for arbitrarily large separation
between the components, there is a sufficient separation
between the components beyond which kernel-based
k-center, FFk-means++, and hierarchical linkage al-
gorithms can provably and consistently recover the
planted partition.

Theorem 2 (Sufficient conditions for consis-
tency of ACTR, AFFK, and ALNK). Fix ζ > 0.
Let β be any sequence of bandwidth parameters satisfy-
ing (2) and let g be the Gaussian kernel with bandwidth
parameter 4β2 + ζ. For any Λ ∈ P2

K , if there exists
ε > 0 such that

PXn
(

inf
k 6=k′

ρ(γk, γk′) > 4 sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) + ε

)

n→∞−→ 1, (4)

then the algorithms ACTR, AFFK, and ALNK with ker-
nel g can w.h.p. recover the planted partition σ?.

The result states that, for recovery, the distance be-
tween any two component distributions in MMD (ρ)
needs to be larger than about twice the maximal within
cluster distance in the feature space: the RKHS (Hg)
corresponding to the kernel g, for clustering defined by
the planted partition. The conditions provided here
might appear to be weak, but perhaps more consequen-
tially, in Theorem 3 we show that under no additional
assumptions the constant 1/4 is in fact necessary and
hence cannot be improved for both AFFK and ALNK.

Theorem 3 (Necessary conditions for AFFK and
ALNK to consistently recovery the planted par-
tition). Fix ζ > 0. Let β be any sequence of bandwidth
parameters and let g be the Gaussian kernel with band-
width parameter 4β2 + ζ. For any ε > 0, there exists
Λ ∈ P2

2 such that

PXn
(
ρ(γ1, γ2) > 4 sup

x∈Xn
ρ(ψx, γ̂σ∗(x),σ∗)− ε

)
n→∞−→ 1

(5)
and the algorithms AFFK and ALNK with kernel g fail
to recover the planted partition σ∗ with probability ap-
proaching 1

2 and 1, respectively, as n→∞.

The proofs for the results appear in the supplementary.
For the kernel k-center problem, we can indeed show
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Figure 2: Illustration of the equivalence between kernel-based data clustering and distribution clustering. For
Gaussian kernel clustering algorithm A using a bandwidth parameter η > 0, decompose η to obtain any β > 0
and ζ > 0 satisfying 4β2 + ζ = η. Then A can equivalently be reformulated as a kernel-based density clustering
procedure as shown in the figure.

that the constant in the sufficient conditions (4) can
further be improved to 1/3 when K = 2. However,
we believe that for any arbitrary K, the conditions
provided in (4) cannot be further improved. This can
be shown for a linear kernel and we leave the more
general case of the Gaussian kernel as a conjecture.
Our results not only show that certain kernel-based
clustering algorithms can exploit separability to recover
the planted clustering but also clearly show that under
no additional assumptions very strong separability con-
ditions are necessary to obtain recovery guarantees for
kernel-based clustering. Furthermore, due to reasons
of identifiability, simple separation conditions between
the component distributions do not suffice to derive
consistent recovery guarantees. For instance consider a
simple example of a mixture distribution shown in Fig-
ure 1. As γ2,2 moves arbitrarily far from the remaining
distributions, the distance between the two component
distributions, γ1, γ2 becomes arbitrarily far. However,
without additional assumptions, it is not possible for a
clustering algorithm to recover the desirable clustering
even if we see infinite amount of data. Therefore, the
separability conditions on the component distributions
are necessarily dependent on the geometric properties
of the distribution and not merely on the sample size
or the dimension of the input space as it often is in the
parametric setting. Our results, providing necessary
and sufficient recovery conditions for kernel-based data
clustering algorithms (Theorems 1, 2 , and 3), are ob-
tained by analyzing an equivalent density/distribution
clustering procedure which is considerably easier to
analyze. Specifically, this equivalence allows us to ex-
ploit the metric geometry of the space of probability
measures on the Euclidean space. Our proof techniques
are motivated by the work of Aragam et al. (2020). We

now describe this relationship between kernel-based
data clustering and kernel-based density clustering.

4 EQUIVALENCE BETWEEN
KERNEL-BASED DATA
CLUSTERING AND
DISTRIBUTION CLUSTERING

In this section, we present a density clustering proce-
dure and describe its close relationship to kernel-based
data clustering. Given a finite sample X, the density
clustering procedure clusters the component probability
distributions (ψi) of the kernel density estimate with
respect to X using MMD as the metric between the
distributions. This procedure is illustrated in Figure 2.
As shown in Figure 2, the partition obtained by this
density clustering procedure can be used to define a
partition on the sample X. This partition can alterna-
tively be obtained by using a simple kernel-based data
clustering procedure. We now describe this density
clustering procedure, which we denote by AKDE.

Kernel-based density clustering AKDE. Consider
Gaussian kernel gζ for some ζ > 0. Given sample
X ∼ Γn:

• Estimate the density of Γ by f̂ = 1
n

n∑
i=1

f̃i as in (1)

with a bandwidth parameter β > 0.

• Consider MMD corresponding to the Gaussian
kernel gζ as the metric between the distributions.
Cluster the probability distributions {ψi}ni=1 corre-

sponding to
{
f̃i

}n
i=1

by means of a distance based

clustering algorithm (for example, k-means) to
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Figure 3: Illustration of the estimation procedure defined with respect to a kernel clustering algorithm. Any
Gaussian kernel clustering algorithm can be used to define a partition on component density functions {ψi}ni=1

which can in turn be used to define an estimator of the mixing measure Λ.

obtain a partition function σ̂.

This procedure is also illustrated in Figure 2. We
show that for appropriately chosen bandwidth parame-
ters, any kernel-based data clustering algorithm can be
equivalently formulated as a density clustering proce-
dure (AKDE). Recall that β and ζ are the bandwidth
parameters of the Gaussian kernels used in AKDE for
kernel density estimation and for defining the MMD
respectively. Then, let g : Rd × Rd → R be the Gaus-
sian kernel with bandwidth parameter 4β2 + ζ. The
following lemma shows that the maximum mean dis-
crepancy between the component distributions (ψi) is
closely related to kernel evaluations on the input data.

Lemma 1 (MMD between components is closely
related to kernel evaluations between input
data.). Given any sample X ∈ Rd, let the compo-
nent KDE distributions (ψi) be defined in the usual
way. For all xi, xj ∈ X,

ρ2(ψi, ψj) = Cβ,ζ,d(1− g(xi, xj))

where Cβ,ζ,d is a constant dependent on the bandwidths
β, ζ and the input dimension d.

We obtain this result by explicitly computing the MMD
between the component distributions. Theorem 4 is
then an immediate consequence of Lemma 1, which
states that every kernel based data-clustering algorithm
can equivalently be formulated as a kernel-based density
clustering procedure (see Figure 2).

Theorem 4 (Equivalence between kernel data–
clustering and AKDE). Any Gaussian kernel-based
(data) clustering algorithm can equivalently be formu-
lated as a clustering of the component KDE distribu-
tions with respect to the MMD metric corresponding to
a Gaussian kernel for appropriately chosen bandwidth
parameters.

This simple result is consequential for practical consid-
erations such as in the choice of bandwidth parameter
for kernel data clustering (see Section 6) as well as for
theoretical considerations. As it turns out, the density
clustering procedure (AKDE) of the component KDE

distributions can be used to define an estimator of the
true mixing measure, that is, true component distribu-
tions and the corresponding weights. The equivalence
between the two procedures, therefore, allows us to
derive consistency guarantees for the estimators by
analyzing the corresponding kernel-based clustering
algorithms.

5 CONSISTENCY OF ESTIMATING
MIXTURE MODELS

Estimation procedure. By an estimation procedure,
we refer to any algorithm that takes a sample X drawn
according to some mixing measure Λ, that is, X ∼
m(Λ)n and provides an estimate Λ̂ of Λ.

Identifiability. Identifiability is also a key issue for
estimation. Similar to our analysis of non-parametric
clustering, we circumvent an explicit analysis of identi-
fiability. Moreover, in the preceding discussion, iden-
tifiability is defined as a deterministic property of a
set of mixing measures. We introduce a statistical
notion of identifiability which can be defined as a prop-
erty of either a mixing measure or a set of mixing
measures. Additionally, in contrast to identifiability,
statistical identifiability is defined with respect to an
algorithm and therefore, it is a more intuitive and nat-
ural definition in the analysis of estimation procedures.
Intuitively, the set of all mixing measures which are
identifiable with respect to an estimation procedure E
encodes the inductive bias of E .

Definition 5.1 (Statistical identifiability). Let %
be some metric defined on the space of all mixing
measures P2

K . A mixing measure Λ is statistically iden-
tifiable with respect to an estimation procedure E if the

sequence of mixing measures
{

Λ̂n = E(Xn)
}

converges

in probability to Λ, where given Xn ∼ m(Λ)n.

Furthermore, a set of mixing measures L ⊂ P2
K is said

to be statistically identifiable with respect to estima-
tion procedure E if every mixing measure Λ ∈ L is
statistically identifiable with respect to E .
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Remark. The convergence of the mixing measures
can be defined with respect to any metric on P2

K . In
our results, we show convergence with respect to the
Wasserstien distance between mixing measures (see the
supplementary for a definition).

Estimation procedure based on kernel-based
data clustering. We describe the procedure to define
an estimator of the true mixing measure Λ. This pro-
cedure is illustrated in Figure 3. As usual, for some
β, ζ > 0, denote the Gaussian kernel with bandwidth
parameter 4β2 + ζ > 0 by g. The component probabil-
ity distributions of the KDE ψi are also defined in the
usual way with respect to the bandwidth parameter
β > 0. Given a sample Xn ∼ m(Λ)n,

(a) By means of a kernel-based data clustering pro-
cedure, with respect to g, obtain a partition
σ̂ : [n]→ [K] of Xn.

(b) Use σ̂ to define a partition of component KDE
distributions {ψi}ni=1.

(c) The estimator is defined as Λ̂n =
K∑
i=1

λ̂k,σ̂δγ̂k,σ̂ ,

where γ̂k,σ̂ = 1
|ck|
∑
xi∈ck ψi and λ̂k,σ̂ = |ck|

n .

Let ECTR, EFFK, and ELNK denote the estimation pro-
cedures corresponding to the kernel data clustering
algorithms, ACTR, AFFK, and ALNK respectively: the
estimation procedure that uses the respective kernel
clustering algorithm to obtain a partition σ̂ in (a).
Theorem 5 then immediately follows from the recov-
ery guarantees for the corresponding kernel-based clus-
tering algorithms (Theorem 2) and the equivalence
between kernel data clustering and density clustering
established in Theorem 4. We show that any mixing
measure satisfying the conditions provided in (4) is
statistically identifiable with respect to the estimation
procedures corresponding to ACTR, AFFK, and ALNK.

Theorem 5 (Statistical identifiability with re-
spect to ECTR, EFFK, and ELNK). Let ζ and β
be bandwidth parameters satisfying the conditions pro-
vided in Theorem 2. Then any Λ ∈ P2

K satisfying the
conditions provided in (4) is statistically identifiable
with respect to ECTR, EFFK, and ELNK.

Estimating the Bayes partition. For theoretical
considerations, it might be of interest to analyze con-
ditions under which kernel-clustering algorithms can
consistently estimate the Bayes partition. Given a
finite sample X = {x1, x2, · · ·xn}, let σ̂ denote the
partition generated by a kernel clustering algorithm
A. We can define an estimator of the Bayes partition
function σ̂b : Rd → [K] in the natural way:

σ̂b(x) = arg sup
k∈[K]

∑

j:σ̂(j)=k

Gβ(x, xj)
(∗)
= arg sup

k∈[K]

λ̂k,σ̂ f̂k,σ̂(x)

(6)
where (∗) follows from Lemma 1. Due to the equiva-
lence between kernel clustering and density-based clus-
tering, we can show that if a kernel-based algorithm A
can consistently recover the planted partition, then by
means of a single reassignment step given by (6), the
algorithm consistently recovers the Bayes partition.

Exceptional set. Given Λ =
∑
k∈[K] λkδγk , for any

t > 0, we define the exceptional set

E(t) =
⋃

k 6=k′

{
x ∈ Rd : |λkfk(x)− λk′fk′(x)| ≤ t

}
.

Theorem 6 (Estimating the Bayes partition).
Let ζ, and β be bandwidth parameters satisfying the
conditions provided in Theorem 2. Let Λ ∈ P2

K sat-
isfying the conditions provided in (4). For X =
{x1, x2, · · ·xn} ∼ m(Λ)n and let σ̂b,n be the partition
function obtained by ACTR, AFFK or ALNK followed
by the reassignment step in (6). Then, w.h.p over the

samples, there exists a sequence {tn} n→∞−→ 0 such that
σ̂n(x) = σBayes(x) for all x ∈ Rd − E0(tn).

6 DISCUSSION AND FUTURE
WORK

We show in this work that certain kernel-based clus-
tering algorithms can exploit separability conditions
to overcome identifiability. Our results also show that
strong separability conditions are indeed necessary for
provable recovery guarantees for clustering methods
under non-parametric conditions. To further elabo-
rate, we highlight a conceptually interesting insight
from our results, which is surprising on the first glance.
Even though kernel-based FFk-means++, which is a
relaxation of the NP-Hard kernel k-means can provably
recover the true clusters under the sufficient separa-
bility conditions (Theorem 2), our impossibility result
(Theorem 3) shows that the NP-Hard kernel k-means
algorithm fails to (provably) do so. This clearly shows
that for better recovery guarantees for a clustering al-
gorithm A, in the non-parametric setting, it is essential
to thoroughly characterize the inductive bias of the A,
that is, the set of mixing measures for which A can
recover the true clustering.

We also established a key connection between kernel
data clustering and distribution clustering when using
Gaussian kernels and MMD as a metric between the
distributions. As a consequence, we can interpret any
standard Gaussian kernel clustering algorithm as a
distribution clustering procedure. This is particularly
useful in theoretical analysis since, for instance, we can
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analyze kernel clustering algorithms by analyzing the
corresponding distribution clustering procedure and
vice versa. This connection could also have practical
implications on matters such as bandwidth selection
for kernel clustering.

Extending our results beyond the Gaussian ker-
nel. We believe that the relationship between kernel
data clustering and density clustering can indeed be
established for a larger class of kernel functions. For
instance, choosing kernel functions from conjugate fam-
ilies is one way in which the analysis could possibly be
extended to other kernels, that is, choosing the MMD
kernel function as the conjugate prior of the kernel
function used for density estimation. It would also be
of significant interest to characterize the class of kernels
for which the equivalence can be established. However,
a detailed study in this direction is reserved for future
work.

Bandwidth. There is little to no literature that pro-
vides a systematic approach to bandwidth selection
for kernel-based clustering. In contrast to kernel clus-
tering, bandwidth selection is a well studied problem
in the context of kernel density estimation (Giné et
al., 2002; Einmahl et al., 2005; Goldenshluger et al.,
2011; Chacón et al., 2013). By appropriating band-
width selection strategies from this work, we provide
the following guidance in bandwidth selection for
kernel-based data clustering. As it would be ex-
pected, our analysis suggests that the bandwidth pa-
rameter used for kernel-clustering (4β2 + ζ) needs to
decrease with n since our sufficient conditions for re-
covery require that β

n→∞−→ 0. Interestingly, however, it
suggests that the bandwidth parameter can asymptot-
ically remain non-zero since ζ is chosen to be a fixed
parameter greater than 0. We note that these condi-
tions are asymptotic and a more thorough analysis of
the convergence rates of the estimators is necessary
to provide the rate at which the bandwidth needs to
reduce with sample size. Moreover, the range of the
bandwidth parameter, which depends on the constant
terms, could be be data-dependent. We conducted
few small-sample experiments, and observed that the
dependence of clustering performance on bandwidth is
complex and requires more thorough investigation. We
leave this analysis for future work.
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Supplementary to Non-parametric kernel clustering

A Equivalence between Kernel-based data clustering and Kernel-
based density clustering.

A.1 Proof of Lemma 1

Lemma 1 (MMD between components is closely related to kernel evaluations between
input data.). Given any sample X ∈ Rd, let the component kde distributions (ψi) be defined in the
usual way. For all xi, xj ∈ X,

ρ2(ψi, ψj) = Cβ,ζ,d(1− g(xi, xj))

where Cβ,ζ,d is a constant dependent on the bandwidths β, ζ and the input dimension d.

Proof. Squared MMD ρ2(ψi, ψj) with respect to the Gaussian kernel gζ can be decomposed as follows:

ρ2(ψi, ψj) = ||µψi ||2Hgζ + ||µψj ||2Hgζ − 2〈µψi , µψj 〉Hgζ , (1)

where µψj denotes the kernel mean embedding of ψi with respect to the Gaussian kernel function gζ
which can be computed in closed form as shown in (2).

µψj (·) =

∫

Rd

1

(2πβ2)d/2
exp

(
−‖x− ·‖2

ζ

)
exp

(
−‖xj − ·‖2

2β2

)
dx

= (
ζ

ζ + 2β2
)d/2 exp

(
−‖xj − ·‖

2

2β2 + ζ

) (2)

By means of theorem 1 which provides a spectral characterization of the Gaussian RKHS and the
inner-product within, we compute 〈µψi , µψj 〉Hgζ , ∀i, j ∈ [n]. The computation uses the closed form

expressions of Fourier transforms of the kernel function and the kernel mean embeddings of the
component kde distributions given in (3). The closed form expression for the inner product between
the kernel mean embeddings of any two component kde distributions is given in Equation (4).

F [gζ ](ω) = (
ζ

2
)d/2 exp

(
−‖ω‖2 ζ

4

)
.

F [µψi ](ω) = (
ζ

2
)d/2 exp

(
−‖ω‖2 (2β2 + ζ)

4

)
exp


i
∑

l∈[d]
xliω

l


,

(3)

1
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where i denotes the imaginary unit and satisfies i2 = −1.

〈µψi , µψj 〉Hgζ =
1

(2π)d/2

∫ F [µψi ](ω)F [µψi ](ω)

F [gζ ](ω)
dω

=

(
ζ

4β2 + ζ

)d/2
exp

(
−‖xi − xj‖2

4β2 + ζ

) (4)

Substituting the values of 〈µψi , µψj 〉Hgζ for any i, j ∈ [n] we obtain

ρ2(ψi, ψj) = 2

(
ζ

4β2 + ζ

)d/2
(1− g(xi, xj)) (5)

The following result given by Kimeldorf et al. (1970) and Wendland (2004) provides a spectral
characterization of the RKHS corresponding to any translation-invariant kernel.

Theorem 1 (Spectral characterization of RKHS. (Kimeldorf et al., 1970; Wendland,
2004)). Let k be a translation-invariant kernel on Rd such that k(x, y) := ψ(x − y) where Φ ∈
C(Rd) ∩ L1(Rd). Then the corresponding RKHS H is given by

H =

{
f ∈ L2(Rd) ∩ C(Rd) : ‖f‖2Hg =

1

(2π)d/2

∫ |F [f ](ω)|2
F [ψ](ω)

dω <∞
}
, (6)

where | · | denotes the magnitude of the enclosed quantity and F [f ](ω) denotes the Fourier transform of

the function f . The inner product on H is defined as 〈f, g〉H = 1
(2π)d/2

∫ F [f ](ω)F [g](ω)
F [ψ](ω) dω, f, g ∈ H,

where F [g](ω) denotes the complex conjugate of F [g](ω).

A.2 Proof of Theorem 4

Theorem 4 immediately follows from Lemma 1. For any data clustering algorithm with respect
to the Gaussian kernel η > 0, decompose η into any two positive quantities β, ζ > 0 satisfying
η = 4β2 + ζ. Due to Lemma 1, the kernel clustering algorithm equivalently defines a clustering of
the component kde distributions {ψi}ni=1 .

B Algorithms

For completeness, we briefly describe the kernel-based clustering algorithms (AKMN, ACTR, AFFK,
and ALNK) here. In each of the algorithms, we describe the standard kernel data clustering procedure
as well as the equivalent kernel density clustering procedures (see Theorem 4). The component kde
distributions are defined in the usual way with respect to the bandwidth parameter β > 0 and ρ is
defined with respect to the Gaussian kernel with bandwidth parameter ζ > 0.

2
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B.1 Kernel k-means (AKMN)

Algorithm - Kernel k-means

• Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel function
g : Rd × Rd → R with bandwidth parameter 4β2 + ζ.

• Find the partition

σ̂ = arg max
σ:[n]→[K]

∑

k∈[K]

∑

i,j∈ck
g(xi, xj) = arg min

σ:[n]→[K]

∑

k∈[K]

∑

i∈ck
ρ(µψi ,

1

|ck|
∑

j∈ck
µψj )

2 (7)

B.2 FFk-means++ (AFFK)

Algorithm - Farthest first Kernel k-means ++

Phase one: Initializing the centers

• Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel function
g : Rd × Rd → R with bandwidth parameter 4β2 + ζ.

• Choose an initial center c1 uniformly at random and set C = {c1} .

• While t < K :

– let C = {c1, c2, · · · ct−1} be the current set of centers,

– for each x ∈ X, compute d(x) = min
c∈C

k(x, c) = max
c∈C

ρ(ψx, ψc)

– pick the new center ct = arg max
x∈X

d(x), and set C = C ∪ {ct} .

• For each k ∈ [K] :

– set
Ck = {x ∈ X : k(x, ck) ≥ k(x, ck′) ∀k 6= k′ ∈ [K]}

=
{
x ∈ X : ρ(ψx, ψck) ≤ ρ(ψx, ψc′k) ∀k 6= k′ ∈ [K]

}

Phase two: Standard kernel k-means algorithm

1. For each k ∈ [K], set Ck = {x ∈ X : condition (8) holds}

1

|Ck|2
∑

y,z∈Ck
k(x, z)− 1

|Ck|
∑

y∈Ck
k(y, x) ≤ 1

|Cl|2
∑

y,z∈l
k(y, z)− 1

|Cl|
∑

y∈Cl
k(y, x) ∀l 6= k ∈ [K]. (8)

(8) ⇐⇒ ρ(ψx,
1

|Ck|
∑

x′∈Ck
ψx′) ≤ ρ(ψx,

1

|Cl|
∑

x′∈Cl
ψx′) ∀l 6= k ∈ [K]. (9)

2. Repeat step (1) until convergence, that is, the set of centers C do not change anymore.

3
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B.3 Kernel K-center(ACTR)

Algorithm - Kernel K-center

• Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel function
g : Rd × Rd → R with bandwidth parameter 4β2 + ζ.

• Find the partition

σ̂ = arg max
σ:[n]→[K]

inf
l∈[n]

−1

|clk|2
∑

i,j∈clk

k(xi, xj) +
1

|clk|
∑

i∈clk

k(xi, xl)

= arg min
σ:[n]→[K]

max
i∈[n]

ρ(ψi, γ̂σ(i),σ)

B.4 Agglomerative hierarchical clustering (ALNK)

Given a sample X = {x1, x2, · · ·xn} ⊂ Rd and a similarity function S : Rd × Rd → R, hierarchical
clustering algorithms seek to generate a cluster tree (dendrogram) establishing a hierarchy of
relationships between the elements of the sample. Aggolomerative methods, in contrast to divisive
methods, seek a bottom up approach, starting out with each point as its own cluster and progressively
combining them into larger clusters until there is a single cluster that contains all the elements of
the sample X. The criterion for merging hinges on the underlying similarity function, which in our
case is the kernel matrix computed on the sample for a given kernel function k : Rd × Rd → R. We
discuss two of the popular hierarchical clustering algorithms that exist in literature: single linkage
and complete linkage methods. The distinguishing factor across the two methods is the choice of
the criterion C used to merge any two clusters c, c′ ⊂ X (c ∩ c′ = ∅), which are given below in 10.

C(c, c′) = max
x∈c,y∈c′

k(x, y) = min
x∈c,y∈c′

ρ(ψx, ψy)

︸ ︷︷ ︸
Single linkage

, and min
x∈c,y∈c′

k(x, y) = max
x∈c,y∈c′

ρ(ψx, ψy)

︸ ︷︷ ︸
Complete linkage

. (10)

By substituting the different criterion C(c, c′) to merge any two clusters c, c′ in Algorithm 1, we
obtain variants of the corresponding algorithms.

C Impossibility of recovery by kernel k-means(Proof of The-
orem 1)

Proof. Fix the kernel bandwidth parameter ζ > 0. Consider the following example in R, where
U([a, b]) denotes the uniform distribution on the real interval [a, b]. Let

γ1 = m

(
1

2
U([−ε, ε]) +

1

2
U([r − ε, r + ε])

)
(11)

and
γ2 = U([Dr − ε,Dr + ε]). (12)

4
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Algorithm 1: Agglomorative hierarchical kernel-clustering.

Given: A sample X = {x1, x2, · · ·xn} ⊂ Rd and for some β, ζ > 0 the Gaussian kernel
function g : Rd × Rd → R with bandwidth parameter 4β2 + ζ ;

Let S = {s1, . . . sn} be a collection of singleton trees with the root node of si = {i} .
while |S| > 1 do

Let sq, sr ∈ S be the pair of trees such that C(root(sq), root(sr)) is maximal ;
Generate sqr s.t, root(sqr) = root(sq) ∪ root(sr), left, right(sqr) = sq, sr ;
Add sqr and remove sq and sr from S ;

end
σ̂ ← Partition function obtained by cutting the only element in S, a dendrogram at a level
such that the resulting partition contains K clusters ;

return σ̂ ;

The mixing measure is given by Λ = λ1γ1 + λ2γ2. The constants D � 2� r � ε and λ1 � λ2 are
to be chosen later. The idea is that the interval [Dr − ε,Dr + ε] is separated from the rest of the
distribution via a large constant D, but the points in [Dr − ε,Dr + ε] will nevertheless be clustered
with the points in [r − ε, r + ε] because λ2 is so small. We first show that Λ satisfies the condition in
the theorem, namely that

ρ2(γ1, γ2)

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗)
> K2. (13)

Therefore, consider the numerator, which is simply the squared MMD between γ1 and γ2. We have

ρ2(γ1, γ2) = EX∼γ1,X̃∼γ1g(X, X̃) + EY∼γ2,Ỹ∼γ2g(Y, Ỹ )− 2EX∼γ1,Y∼γ2g(X,Y )

≥ 1

(2ε)2

∫

[−ε,ε]2
e−|x−y|

2/ζ dx dy − 2

(2ε)2

∫

[−ε,ε]2
e−|(D−1)r+x−y|

2/ζ dx dy.

At this point, assume that ε is sufficiently small compared to the kernel bandwidth parameter ζ,
namely that 4ε2 < η. This allows us to lower bound the first integral by 1

e . Similarly, choosing D
large enough in comparison to r allows us to make the second term arbitrarily small, whence we
conclude that

ρ2(γ1, γ2) ≥ 1

e
− 1

2e
≥ 1

2e
,

i.e. the numerator is at least 1
2e . Now consider the denominator, which is the maximum squared

MMD between an empirical cluster mean and a sampled point belonging to that cluster. This is at
most the squared MMD between any two points belonging to the same cluster

sup
x∈Xn

ρ2(ψx,
1

|σ∗(x)|
∑

y∈σ∗(x)
ψy) ≤ sup

x,y∈Xn,σ∗(x)=σ∗(y)
ρ2(ψx, ψy) (14)

which can be bound, independently of the sample Xn, by

ρ2(ψ0, ψr+2ε) = 2

√
ζ

4β2 + ζ

(
1− e

−(r+2ε)2

4β2+ζ

)

≤ 2
(r + 2ε)2

ζ
+ o(r4).

(15)
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Here r + 2ε is the maximum distance of any two points belonging to the same cluster and we used
(5). Thus, choosing a small r allows us to make the denominator arbitrarily small, and the fraction
in (13) can become larger than any fixed K2.
Now, we show that k-means does w.h.p. not recover the planted partition. The idea is to choose
λ1 � λ2. In our sample Xn from m(Λ), denote the number of points within [−ε, ε] by N1, the
number of points within within [r− ε, r+ ε] by N2, and the number of points within [Dr− ε,Dr+ ε]
by N3. Assume that n is large enough s.t. N1, N2, N3 > 0. We rely on the equivalence between
kernel-based data clustering and kernel-based density clustering and directly consider the MMD
between component distributions ψxi (compare section B.1). That is we consider k-means w.r.t. the
norm ‖ · ‖2 =< ·, · >Hgζ . The k-means objective of the planted partition is at least

N1

∥∥∥∥∥µψε−
N1 µψ−ε +N2 µψr−ε

N1 +N2

∥∥∥∥∥

2

+N2

∥∥∥∥∥µψr−ε−
N1µψε +N2µψr+ε

N1 +N2

∥∥∥∥∥

2

≥ N1N2

N1 +N2

∥∥∥µψε−µψr−ε
∥∥∥
2

+O(ε).

Similarly, the k-means objective of the alternative partition where the points in [r − ε, r + ε] and
[Dr − ε,Dr + ε] form a cluster is at most

N1

∥∥∥µψ0
− µψ2ε

∥∥∥
2

+N2

∥∥∥∥∥µψr−ε −
N2µψr+ε +N3µψDr+ε

N2 +N3

∥∥∥∥∥

2

+N3

∥∥∥∥∥µψDr+ε −
N2µψr−ε +N3µψDr−ε

N2 +N3

∥∥∥∥∥

2

≤N1

∥∥∥µψ0 − µψ2ε

∥∥∥
2

+
N2N3

N2 +N3

∥∥∥µψr−ε − µψDr+ε
∥∥∥
2

+O(ε).

Thus, k-means will choose the alternative partition if

N1

∥∥∥µψ0
− µψ2ε

∥∥∥
2

+
N2N3

N2 +N3

∥∥∥µψr−ε − µψDr+ε
∥∥∥
2

+O(ε) ≤ N1N2

N1 +N2

∥∥∥µψε − µψr−ε
∥∥∥
2

⇐⇒

∥∥∥µψr−ε − µψDr+ε
∥∥∥
2

∥∥∥µψε − µψr−ε
∥∥∥
2 +O(ε) ≤ N1

N3

N2 +N3

N1 +N2
− N1(N2 +N3)

N2N3

∥∥∥µψ0
− µψ2ε

∥∥∥
2

∥∥∥µψε − µψr−ε
∥∥∥
2

⇐⇒

∥∥∥µψr−ε − µψDr+ε
∥∥∥
2

∥∥∥µψε − µψr−ε
∥∥∥
2 +O(ε) ≤ N1

N3


N2 +N3

N1 +N2
−
(

1 +
N3

N2

)
∥∥∥µψ0

− µψ2ε

∥∥∥
2

∥∥∥µψε − µψr−ε
∥∥∥
2


 .

(16)

First note that the norms in equation (16) are deterministic quantities that depend on ε, r and
D. The Ni are Binomial random variables parametrized by λ1 and λ2, i.e. N1 ∼ Binom(n, λ1/2),
N2 ∼ Binom(n, λ1/2) and N3 ∼ Binom(n, λ2). All terms involving N ′is w.h.p. concentrate around
their expectation. Thus, choosing λ1 � λ2 allows us to make the fraction N1

N3
w.h.p. arbitrarily

large. Choosing ε small enough (in comparison to r) ensures that the O(ε) term on the LHS is small
enough, and that the bracketed term on the RHS is at least 1

4 .

6
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D Sufficient conditions for Consistency of ACTR, AFFK, and
ALNK. (Proof of Theorem 2)

Proof of Theorem 2: Consistency of ACTR. Let Λ be any mixing measure for which there
exists some ε > 0 such that,

PXn
(1

4
inf
k 6=k′

ρ(γk, γk′) < sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) + ε
)
n→∞−→ 0. (17)

Then, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 4 sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) + 4ε. (18)

If the bandwidth parameter β is chosen according to (19),

β → 0,
nβd

log n
→∞ as n→∞, (19)

it is known that the corresponding kernel density estimate f̂n converges to the true density f in
the l∞ norm (Giné et al., 2002; Einmahl et al., 2005). Observe that the density functions f̂k,σ∗

corresponding to the planted partitions γ̂k,σ∗ are the kernel density estimates of the density functions
corresponding to the component distributions γk. Furthermore by assumption, we have that the
corresponding component weights λk are bounded away from 0. Thus, for each k ∈ [K], we have

sup
x∈Rd

|f̂k,σ∗ − fk| P−→ 0 as n→∞.

An application of Scheffe’s theorem (or Reiz’s theorem) (Scheffé, 1947) implies that the corresponding
probability measures γ̂k,σ∗ also converge weakly to γk. Simon-Gabriel, Barp, et al. (2020, Theorem
4.2) provide a characterization of the class of kernels that metrize the weak convergence of probability
measures on locally compact domains (e.g., Rd). Following Simon-Gabriel and Schölkopf (2016,
Corollary 3) and Sriperumbudur et al. (2010, Proposition 5), one can verify that the Gaussian kernel
belongs to this class of kernel functions. Therefore, weak convergence of probability measures γ̂k,σ∗
to γk is equivalent to convergence in MMD with respect to (w.r.t) a Gaussian kernel, that is, for
every ε > 0,

P(ρ(γ̂k,σ∗ , γk) > ε)
n→∞−→ 0. (20)

Let t = 4ε/2 and δ = 1/n. Then, for every k ∈ [K], there exists some Nt ∈ N such that ∀ n > Nt,k,

P(ρ(γ̂k,σ∗ , γk) > 4ε/2) <
1

n
. (21)

Let Nt = supk∈[K]Nt,k. For all n > Nt, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 4 sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗) + 2ρ(γ̂k,σ∗ , γk). (22)

By assumption, we have that λk is bounded away from 0 for all k ∈ [K]. Therefore,

P( min
k∈[K]

|(σ∗)−1(k)| > 0) =
K∏

k=1

P(|(σ∗)−1(k)| > 0). (23)

7
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For any k ∈ [K], observe that |(σ∗)−1(k)| is a binomial random variable, Bin(n, λk). Using Hoeffding’s
inequality for binomial random variables,

P(|(σ∗)−1(k)| ≤ t) < exp (−2n(λk −
t

n
)2) (24)

Setting t = 0, for large enough n such that n/ log n > 1/λk, w.p.a.l 1− 1/n

|(σ∗)−1(k)| > 0

So w.h.p over the samples,

min
k∈[K]

|(σ∗)−1(k)| > 0

From Propositions 1, 2, and 3, we then have that w.h.p over Xn, the algorithms ACTR, AFFK, and
ALNKcan recover the planted partition σ∗ (upto a permutation over the labels).

D.1 Sufficient conditions for consistency of kernel k-center clustering
ACTR

Proposition 1 (Conditions for recovery of the true partition by kernel k-center algo-

rithm). For any Λ ∈ P2
K , let Γ = m(Λ). Let X = {x1, x2, · · ·xn} ∼ Γn. Define Γ̂ =

n∑
i=1

1
nψi as the

probability measure associated with the kde in the usual way. For any partition σ : [n]→ [K] such
that the following condition holds:

inf
k 6=k′

ρ(γk, γ
′
k) > 4 sup

i∈[n]
ρ(ψi, γ̂σ(i),σ) + 2 sup

k∈[K]

ρ(γ̂k,σ, γk,σ), (25)

and
inf
k∈[K]

|σ−1(k)| > 0 (26)

σ can be recovered by the kernel k-center algorithm on the sample kernel matrix G (defined in section
4 of the main paper).

Proof of Proposition 1. For any sample X = {x1, x2, · · ·xn} and a partition σ′, let

r = sup
i∈[n]

ρ(ψi, γ̂σ′(i),σ′) (27)

We first show that for any mixing measure satisfying the conditions provided in Equation (25) w.r.t
a sample X and a partition σ′, then for any i 6= j ∈ [n],

ρ(ψi, ψj) ≤ 2r ⇐⇒ σ′(i) = σ′(j)

ρ(ψi, ψj) > 2r ⇐⇒ σ′(i) 6= σ′(j)

1) σ′(i) = σ′(j) =⇒ ρ(ψi, ψj) ≤ 2r. For any i ∈ [n], by definition,

ρ(ψi, γ̂σ′(i),σ′) ≤ r (28)

Therefore, for any i, j ∈ [n],

σ′(i) = σ′(j) =⇒ ρ(ψi, ψj) ≤ ρ(ψi, γ̂σ′(i),σ′) + ρ(γ̂σ′(i),σ′ , ψj) ≤ 2r (29)

8
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2) σ′(i) 6= σ′(j) =⇒ ρ(ψi, ψj) > 2r. Let σ′(i) = k 6= k′ = σ′(j). Then, by triangle inequality,

ρ(ψi, ψj) ≥ ρ(γk, γk′)− ρ(γk, γ̂k,σ′)− ρ(γ̂k,σ′ , ψi)− ρ(ψj , γ̂k′,σ′)− ρ(γ̂k′,σ′ , γk′) > 2r (30)

Combining Equations (29) and (30), its easy to verify that

ρ(ψi, ψj) ≤ 2r ⇐⇒ σ′(i) = σ′(j)

ρ(ψi, ψj) > 2r ⇐⇒ σ′(i) 6= σ′(j)

For any partition σ, let
L(σ) = sup

i∈[n]
ρ(ψi, γ̂σ(i),σ). (31)

Then the partition σ̂ generated by the kernel k-center clustering algorithm is given by

σ̂ = arg min
σ:[n]→[K]

L(σ). (32)

Then, by definition,
L(σ̂) ≤ L(σ′) = r (33)

Therefore, from (33),

ρ(γ̂σ′(i),σ′ , γ̂σ̂(i),σ̂) ≤ ρ(γ̂σ′(i),σ′ , ψi) + ρ(γ̂σ̂(i),σ̂) ≤ 2r (34)

To show that the partitions σ′ and σ̂ coincide up to a permutation, we show that, for any i, j ∈ [n],
σ′(i) = σ′(j) =⇒ σ̂(i) = σ̂(j) and σ′(i) 6= σ′(j) =⇒ σ̂(i) 6= σ̂(j).

Consider i, j ∈ [n] such that σ′(i) 6= σ′(j). If σ̂(i) = σ̂(j), then from triangle inequality and (34),

ρ(γ̂σ′(i),σ′ , γ̂σ′(j),σ′) ≤ ρ(γ̂σ′(i),σ′ , γ̂σ̂(i),σ̂) + ρ(γ̂σ′(j),σ′ , γ̂σ̂(i),σ̂) ≤ 4r. (35)

However, from (25) we have that

ρ(γ̂σ′(i),σ′ , γ̂σ′(j),σ′) ≥ ρ(γσ′(i), γσ′(j))− ρ(γ̂σ′(i),σ′ , γσ′(i))− ρ(γ̂σ′(j),σ′ , γσ′(j)) > 4r, (36)

which is a contradiction. Therefore, for any i, j ∈ [n] such that

σ′(i) 6= σ′(j) =⇒ σ̂(i) 6= σ̂(j). (37)

Consider any i, j ∈ [n] such that σ′(i) = σ′(j) but σ̂(i) 6= σ̂(j). From (34) we know that

γ̂σ̂(i),σ̂ ∈ B(γ̂σ′(i),σ′ , 2r) and γ̂σ̂(j),σ̂ ∈ B(γ̂σ′(i),σ′ , 2r) (38)

where B(x, r) = {y : ρ(x, y) ≤ r} denotes the ball of radius r centered at x.

From the condition (44) that the clusters are non-empty, for each k ∈ [K], there exists ak such that
σ′(ak) = k. Then, for each k ∈ [K], we know that

γ̂σ̂(ak),σ̂ ∈ B(γ̂σ′(ak),σ′ , 2r) = B(γ̂k,σ′ , 2r) (39)

Furthermore, observe that for all k 6= k′ ∈ [K],

B(γ̂k,σ′ , 2r) ∩B(γ̂k′,σ′ , 2r) = ∅, (40)
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since otherwise there exists some x ∈ B(γ̂k,σ′ , 2r) ∩B(γ̂k′,σ′ , 2r), i.e.,

ρ(x, γ̂k,σ′) ≤ 2r and ρ(x, γ̂k′,σ′) ≤ 2r,

=⇒ ρ(γ̂k,σ′ , γ̂k′,σ′) ≤ ρ(x, γ̂k,σ′) + ρ(x, γ̂k′,σ′) ≤ 4r,

which is a contradiction.

Moreover, by definition, σ′(ak) 6= σ′(ak′) for all k, k′ ∈ [K], from (37), we have

σ̂(a1) 6= σ̂(a2) · · · 6= σ̂(aK) (41)

Since there are only K centers, (39), (40) and (41) imply that

• For any i ∈ [n], there exists some k ∈ [K] such that σ̂(i) = σ̂(ak), and

• γ̂σ̂(ak),σ̂ ∈ B(γ̂σ′(i),σ′ , 2r) =⇒ γ̂σ̂(ak′ ),σ̂ /∈ B(γ̂σ′(i),σ′ , 2r) for all k′ 6= k ∈ [K].

So, from (38),
σ′(i) = σ′(j) =⇒ γ̂σ̂(i),σ̂ = γ̂σ̂(j),σ̂ =⇒ σ̂(i) = σ̂(j), (42)

since, if σ̂(i) 6= σ̂(j), then ρ(γ̂σ̂(i),σ̂, γ̂σ̂(j),σ̂) > 4r.

Therefore, the partitions σ′ and σ̂ coincide up to a permutation over the labels.

D.2 Sufficient conditions for kernel kmeans++ algorithm - proofs

Proposition 2 (Sufficient conditions for recovery by kernel k-means ++). For any Λ ∈ P2
K ,

let Γ = m(Λ). Let X = {x1, x2, · · ·xn} ∼ Γn. Define Γ̂ =
n∑
i=1

1
nψi as the probability measure associated

with the kde in the usual way. For any partition σ′ : [n] → [K] such that the following condition
holds:

inf
k 6=k′

ρ(γk, γ
′
k) > 4 sup

i∈[n]
ρ(ψi, γ̂σ′(i),σ′) + 2 sup

k∈[K]

ρ(γ̂k,σ′ , γk,σ′), (43)

and
inf
k∈[K]

|(σ′)−1(k)| > 0 (44)

σ can be recovered by a (deterministic) kernel k-means++ algorithm on the sample kernel matrix G.

Proof of Proposition 2. Let,

r = sup
i∈[n]

ρ(ψi, γ̂σ′(i),σ′), and Bk = B(γ̂k,σ′ , r) ∀k ∈ [K]. (45)

Claim: Let C be the set of centers initialized in phase one of the k-means ++ algorithm as described.
Then, for each k ∈ [K],

ck ∈ Bk (46)

Proof: For every i ∈ [n], by definition,

ρ(ψi, γ̂σ′(i),σ′) ≤ r =⇒ ψi ∈ Bσ′(i). (47)
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Therefore, without loss of generality (W.L.O.G), let c1 ∈ B1. For any t < K, assume that Ct =
{c1, c2, · · · ct} and ck ∈ Bk ∀k ∈ [t] (upto a permutation over the labels). Note that Bk is non-empty
for every k ∈ [K].
From the proof of Proposition 1, for any mixing measure satisfying the conditions provided in (43),

ρ(ψi, ψj) ≤ 2r ⇐⇒ σ′(i) = σ′(j) (48)

ρ(ψi, ψj) > 2r ⇐⇒ σ′(i) 6= σ′(j) (49)

Therefore, since ck ∈ Bk for all k ∈ [K], d(ψi) = ρ2(ψi, ck) ≤ 2r for all σ′(i) = k. Therefore,

d(ψi) is

{
≤ 2r ∀ψi ∈ Bk, and k ≤ t,
> 2r otherwise.

(50)

Since ct+1 = arg max
ψi

d(ψi), ct+1 ∈ Bs for some s /∈ Ct.
�

Claim: Kernel k-means algorithm does not affect the centers obtained in Phase one of the algorithm.
Proof: From claim 1, in phase one of the algorithm, the centers C = {c1, c2, · · · cK} are obtained such
that ck ∈ Bk for all k ∈ [K]. For each k ∈ [K], clusters {C1, C2, · · ·CK} are then defined as follows.

Ck =
{
i ∈ [n] : ρ2(ck, ψi) ≥ ρ2(ck′ , ψi) ∀k 6= k′ ∈ [K]

}
(51)

From (48), we have that

ρ2(ψi, ck) ≤ 4r2 if σ′(i) = k

ρ2(ψi, ck) > 4r2 otherwise .

Therefore, the partition obtained in the Phase 1 of the algorithm coincides with σ′ up to a permutation
over the labels, that is,

Ck = {ψi ∈ X : σ′(i) = k} , (52)

and ∑

i:σ′(i)=k

ψi = γ̂k,σ′ ∈ Bk. (53)

Clearly,
ρ(ψi, γ̂σ′(i),σ′) ≤ 2r ≤ ρ(ψi, γ̂k,σ′) > 2r ∀k 6= σ′(i).

Therefore, the clusters obtained in the phase 1 of the algorithm do not change in the Phase 2 of the
algorithm and the partition obtained by AFFKcoincides with that of σ′ up to a permutation over the
labels.

�

D.3 Sufficient conditions for kernel linkage clustering algorithms (Proof
of Theorem 2 - Part III)

Proposition 3 (Recovery by single linkage clustering). For any Λ ∈ P2
K , let Γ = m(Λ). Let

Xn = {x1, x2, · · ·xn} ∼ Γn be a sample. Define Γ̂ =
n∑
i=1

1
nψi as the probability measure associated

with the kde in the usual way. For any partition σn such that the following condition holds:

inf
k 6=k′

ρ(γk, γ
′
k) > 3 sup

k
sup

l 6=l′∈σ−1
n (k)

ρ(ψl, ψl′) + 2 sup
k∈[K]

ρ(γ̂k,σn , γk,σn), (54)
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σn can be recovered by the kernel single (and complete) linkage clustering algorithms with respect to
the Gaussian kernel with bandwidth para using the sample kernel matrix G (defined in section 4 of
the main paper).

Proof of proposition 3. For any partition σ, let

δ = sup
k∈[K]

sup
i,j′∈σ−1(k)

ρ(ψi, ψj).

We first show that for any partition σ satisfying the conditions stated in Proposition 3,

∀l, l′ ∈ [n] σ(l) = σ(l′) ⇐⇒ ρ(ψl, ψl′) ≤ δ,
σ(l) 6= σ(l′) ⇐⇒ ρ(ψl, ψl′) > δ.

Observe that, by definition,

∀l 6= l′ ∈ [n], σ(l) = σ(l′) =⇒ ρ(ψl, ψl′) ≤ δ. (55)

By subadditivity of ρ, for any l, l′ ∈ [n] such that σ(l) = k, σ(l′) = k′, and k 6= k′,

ρ(γk, γk′) < ρ(γk, γ̂k) + ρ(γ̂k, ψl) + ρ(ψl, ψl′) + ρ(ψl′ , γ̂k′) + ρ(γ̂k′ , γk′). (56)

Substituting (54) in (56), we obtain

σ(l) 6= σ(l′) =⇒ ρ(ψl, ψl′) > δ. (57)

Using the fact that ρ(·, ·) ≥ 0, from (55) and (57), we have

∀l, l′ ∈ [n] σ(l) = σ(l′) ⇐⇒ ρ2(ψl, ψl′) ≤ δ2,
σ(l) 6= σ(l′) ⇐⇒ ρ2(ψl, ψl′) > δ2.

All three linkage algorithms based on the matrix of squared MMD evaluations between the component
distributions {ψl}nl=1 or alternatively using the sample kernel matrix G (see Lemma 1) would first
group the components within the same cluster according to σ before grouping components belonging
to different clusters according to σ. Therefore, thresholding the dendrogram to obtain exactly K
clusters would recover the underlying partition σ upto a permutation over the labels. With a minor
modification of the proof, it is easy to see that the Proposition also holds under separbility conditions
provided in (43).

Proof of Theorem 5: Consistent recovery of the planted partition by ALNK. Let Λ be any
mixing measure for which there exists some ε > 0 such that,

PXn


 sup

x,x′∈Xn:
σ∗(x)=σ∗(x′)

ρ(ψx, ψx′) >
1

3
inf
k 6=k′

ρ(γk, γk′)− ε


 n→∞−→ 0, (58)

Then, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 3 sup
x,x′∈Xn:

σ∗(x)=σ∗(x′)

ρ(ψx, ψx′) + 3ε. (59)
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Furthermore, we know that for every ε > 0,

P(ρ(γ̂k,σ∗ , γk) > ε)
n→∞−→ 0. (60)

Let t = 3ε/2 and δ = 1/n. Then, for every k ∈ [K], there exists some Nt ∈ N such that ∀ n > Nt,k,

P(ρ(γ̂k,σ∗ , γk) > 3ε/2) <
1

n
. (61)

Let Nt = supk∈[K]Nt,k. For all n > Nt, with high probability (w.h.p) over the samples Xn,

inf
k 6=k′

ρ(γk, γk′) > 3 sup
x,x′∈Xn:

σ∗(x)=σ∗(x′)

ρ(ψx, ψx′) + 2ρ(γ̂k,σ∗ , γk). (62)

From Proposition 3, we have that w.h.p over Xn, kernel single linkage clustering algorithm recovers
the true partition σ∗ (upto a permutation over the labels).

E Necessary conditions for consistency of AFFK and ALNK.
(Proof of Theorem 3)

E.1 Proof for AFFK

Fix the kernel bandwidth parameter ζ > 0. Let r, ε and K be small constants that satisfy
1 > r > 2K > 16ε. Consider the following example in R, where U([a, b]) denotes the uniform
distribution on the real interval [a, b]. Let

γ1 = m

(
1

2
U([−ε, ε]) +

1

2
U([r − ε, r + ε])

)
(63)

and

γ2 = m

(
1

2
U([2r −K − ε, 2r −K + ε]) +

1

2
U([3r −K − ε, 3r −K + ε])

)
. (64)

The mixing measure is given by Λ = 1
2γ1 + 1

2γ2. The idea is that because K > 0, the two clusters
are just not separated enough.
To see that AFFK fails to recover the planted partition with probability approaching 1

2 , consider the
case where the first cluster center is initialized with a point c1 ∈ [r − ε, r + ε]. The farthest first
heuristic then chooses a second cluster center c2 ∈ [3r −Kε, 3r −K + ε]. Since K > 4ε, the initial
clusters will be given by

C1 = {x : x ≤ 2r −K + ε} and C2 = {x : x ≥ 3r −K − ε}.

Consequently, in the first iteration of phase two of the algorithm (compare section B.2), the new
cluster centers satisfy

c̃1 ≥
rN2 + (2r −K)N3

N1 +N2 +N3
− ε and c̃2 ≥ 3r −K − ε,
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where Ni denotes the number of points within the respective intervals. Now the clusters themselves
do not change if

(2r −K) + ε− c̃1 ≤ c̃2 − (2r −K)− ε

⇐⇒ 2N1 +N2

N1 +N2 +N3
r − N1 +N2

N1 +N2 +N3
K ≤ r − 4ε,

an event that occurs asymptotically almost surely as the Ni concentrate around their expectation.
Conditional on this event, the algorithm terminates with clusters C1 and C2, i.e. it does not recover
the planted partition. Due to symmetry, the same holds if the first cluster center is initialized with a
point in [2r−K − ε, 2r−K + ε]. As n→∞, the probability to initialize the first cluster center with
a point in either [r − ε, r + ε] or [2r −K − ε, 2r −K + ε] approaches 1

2 .
We now show that the condition in the theorem is satisfied, namely that as n→∞, it holds that

ρ(γ1, γ2)

sup
x∈Xn

ρ(ψx, γ̂σ∗(x),σ∗)
> 4− ε̂. (65)

A simple way to evaluate the LHS is to express both numerator and denominator as sums of inner
products between Gaussians. We have

ρ(γ1, γ2) ≥ ρ(γ̂1,σ∗ , γ̂2,σ∗)− ρ(γ1, γ̂1,σ∗)− ρ(γ2, γ̂2,σ∗),

and as n→∞ and β → 0, the latter two terms converge in probability to 0. Hence, for all ε1 > 0, it
holds that

ρ2(γ1, γ2) ≥ ρ2(γ̂1,σ∗ , γ̂2,σ∗)− ε1.
Furthermore, since ρ2 is bounded, for all n large enough

ρ2(γ1, γ2) ≥ E
[
ρ2(γ̂1,σ∗ , γ̂2,σ∗)

]
− 2ε1.

A straightforward if somewhat lengthy calculation shows that

E
[
ρ2(γ̂1,σ? , γ̂2,σ?)

]
≥ 2

ζ
(2r −K)2 +O(ε) + o(r4). (66)

Similarly, for the denominator,

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗) ≤
2

ζ

1

4
r2 +O(ε). (67)

Hence,

ρ2(γ̂1,σ? , γ̂2,σ?)

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗)
≥ (2r −K)2 +O(ε) + o(r4)− 2ε1

1
4r

2 +O(ε)

≥ 16− 2Kr +O
(
ε
r2

)
+ o(r2) + 2ε1

r2

1 +O
(
ε
r2

) .

Thus, in order to satisfy (65), we have to choose r small enough, and K, ε and ε1 small enough in
comparison to r. We now derive the expression for the numerator. First define the sets I1 = {x ∈
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Xn : x ∈ [−ε, ε]}, I2 = {x ∈ Xn : x ∈ [r− ε, r+ ε]}, I3 = {x ∈ Xn : x ∈ [2r−K − ε, 2r−K + ε]} and
I4 = {x ∈ Xn : x ∈ [3r −K − ε, 3r −K + ε]}. Denote Ni = |Ii|. We have

ρ2(γ̂1,σ∗n , γ̂2,σ∗n) = < γ̂1,σ∗n , γ̂1,σ∗n > + < γ̂2,σ∗n , γ̂2,σ∗n > −2 < γ̂1,σ∗n , γ̂2,σ∗n >

=

∑
x,y∈I1 < ψx, ψy > +2

∑
x∈I1,y∈I2 < ψx, ψy > +

∑
x,y∈I2 < ψx, ψy >

(N1 +N2)2

+

∑
x,y∈I3 < ψx, ψy > +2

∑
x∈I3,y∈I4 < ψx, ψy > +

∑
x,y∈I4 < ψx, ψy >

(N3 +N4)2

− 2

∑
x∈I1,y∈I3 < ψx, ψy > +

∑
x∈I1,y∈I4 +

∑
x∈I2,y∈I3 < ψx, ψy > +

∑
x∈I2,y∈I4 < ψx, ψy >

(N1 +N2)(N3 +N4)

≥
√
ζ

η

[
N2

1 (1− 4ε2

η ) + 2N1N2(1− (r+2ε)2

η ) +N2
2 (1− 4ε2

η )

(N1 +N2)2

+
N2

3 (1− 4ε2

η ) + 2N3N4(1− (r+2ε)2

η ) +N2
4 (1− 4ε2

η )

(N3 +N4)2

− 2
N1N3(1− (2r−K−2ε)2

η ) +N1N4(1− (3r−K−2ε)2
η )

(N1 +N2)(N3 +N4)

− 2
N2N3(1− (r−K−2ε)2

η ) +N2N4(1− (2r−K−2ε)2
η )

(N1 +N2)(N3 +N4)

]
+ o(r4)

Where we used (4) and the Taylor expansion ex = 1 + x+ o(x2). The inequality sign stems from the
fact that we have replaced the exact locations of sampled points with interval boundaries. Taking
expectations,

E
[
ρ2(γ̂1,σ∗n , γ̂2,σ∗n)

]
≥
√
ζ

η

1

η

[
−4ε2 − 2(r + 2ε)2 − 4ε2

4
+
−4ε2 − 2(r + 2ε)2)− ε2

4

+ 2
(2r −K − 2ε)2 + (3r −K − 2ε)2

4
+ 2

(r −K − 2ε)2 + (2r −K − 2ε)2

4

]
+ o(r4)

=
2

η

√
ζ

η
(2r −K)2 +O(ε) + o(r4).

We now derive the expression for the denominator. By symmetry, it suffices to consider the case
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x ∈ [−ε, ε].

ρ


ψx,

1

N1 +N2


 ∑

x′∈[−ε,ε]
ψx′ +

∑

x′∈[r−ε,r+ε]
ψx′






=
1

N1 +N2
||

∑

x′∈[−ε,ε]
(ψx′ − ψx) +

∑

x′∈[r−ε,r+ε]
(ψx′ − ψx)||

≤ N1

N1 +N2
ρ(ψ−ε, ψε) +

N2

N1 +N2
ρ(ψ−ε, ψr+ε)

≤ρ(ψ−ε, ψ+ε) +
N2

N1 +N2
ρ(ψ0, ψr)

=

√√√√2

√
ζ

η

(
1− e− 4ε2

η

)
+

N2

N1 +N2

√√√√2

√
ζ

η

(
1− e− r

2

η

)

≤ N2

N1 +N2
r

√
2

η
4

√
ζ

η
+O(ε)

where we used (5) and the inequality 1− e−x ≤ x. It follows that asymptotically almost surely

sup
x∈Xn

ρ2(ψx, γ̂σ∗(x),σ∗) ≤
2

η

√
ζ

η

1

4
r2 +O(ε).

E.2 Proof for ALNK

Consider the same example as in the above proof for AFFK. At first, a hierarchical linkage algorithm
(compare section B.4) will merge all points within 2ε-intervals. This leaves us with 4 trees. Then,
the linkage algorithm does not return the planted partition if the trees belonging to the intervals
[r − ε, r + ε] and [2r −Kε, 2r −K + ε] are merged in the next step. For r � K � ε, it can be easily
seen that this is the case.

F Statistical identifiability with respect to ECTR, EFFK, and
ELNK

Proof of Theorem 5: Consistency implies statistical identifiability. Let Λ be
For appropriate choice of bandwidths, we know that

lim
n→∞

ρ(γ̂k,σ∗n , γk)
P
= 0 and lim

n→∞
|λ̂k,σ∗n − λk|

P
= 0. (68)

From Aragam et al. (2020, Lemma A.3), convergence of component measures and the corresponding

component weights implies that the sequence of estimators defined by Λ̂ =
K∑
i=1

λ̂k,σ∗nδγ̂k,σ∗n converges

in probability to the true mixing measure Λ w.r.t the Wasserstein metric.
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G Estimating the Bayes partition

Given a finite sample X = {x1, x2, · · ·xn}, let σ̂ denote the partition generated by a kernel clustering
algorithm A. We can define an estimator of the Bayes partition function σ̂b : Rd → [K] in the natural
way:

σ̂b(x) = arg sup
k∈[K]

∑

j:σ̂(j)=k

Gβ(x, xj)
(∗)
= arg sup

k∈[K]

λ̂k,σ̂ f̂k,σ̂(x) (69)

where (∗) follows from Lemma 1. Due to the equivalence between kernel clustering and density-based
clustering, we can show that if a kernel-based algorithm A can consistently recover the planted
partition, then by means of a single reassignment step given by (69), the algorithm consistently
recovers the Bayes partition.
Exceptional set. Given Λ =

∑
k∈[K] λkδγk , for any t > 0, we define the exceptional set

E(t) =
⋃

k 6=k′

{
x ∈ Rd : |λkfk(x)− λk′fk′(x)| ≤ t

}
.

Theorem 2 (Estimating the Bayes partition). Let ζ, and β be bandwidth parameters satisfying
the conditions provided in Theorem 2. Let Λ ∈ P2

K satisfying the conditions provided in (17). For
X = {x1, x2, · · ·xn} ∼ m(Λ)n and let σ̂b,n be the partition function obtained by ACTR, AFFK or
ALNK followed by the reassignment step in (69). Then, w.h.p over the samples, there exists a

sequence {tn} n→∞−→ 0 such that σ̂n(x) = σBayes(x) for all x ∈ Rd − E0(tn).

Proof of Theorem 2. The proof of this Proposition is adapted with minor changes from the proof
of Aragam et al. (2020, Theorem 5.2). For this reason, we borrow some of the notation from Aragam
et al. (2020). Since Λ satisfies the separability conditions given in equation (58), from Theorem 2,
we know that w.h.p over the samples the algorithms ACTR, AFFK, and ALNKrecover the planted
partition up to a permutation over the labels, that is, σ̂ = σ∗. For appropriate choice of bandwidths,
we know that w.h.p over the samples,

lim
n→∞

fk,σ∗
P
= fk, (70)

where the convergence is defined pointwise and uniformly over Rd.
Let,

tn = 2 sup
k∈[K]

sup
x∈Rd

|λ̂k,σ∗n f̂k,σ∗n(x)− λkfk(x)| ≥ 0. (71)

From (70), we know that tn
P−→ 0. Moreover, by definition, we have that

|λkfk(x)− λk′fk′(x)| > tn =⇒ λσBayes(x)fσBayes(x)(x) > λkfk(x) + tn ∀x 6∈ E0(tn), k 6= σBayes(x).
(72)

Therefore, it follows that for any x ∈ RD − E0(tn) and any k 6= σBayes(x),

λ̂σBayes(x),σ∗n f̂σBayes(x),σ∗n(x)
(1)
> λσBayes(x)fσBayes(x) −

tn
2

(2)
> λkfk(x) +

tn
2

(3)
> λ̂k,σ∗n f̂k,σ∗n(x), (73)

where, (1) and (3) follow from (71) and (2) follows from (72). This implies that σ̂b(x) = arg sup
k∈[K]

λ̂k,σ∗ f̂k,σ∗(x) =

σBayes(x) for all x 6∈ E0(tn).

17
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Abstract

Despite the increasing relevance of forecasting
methods, causal implications of these algorithms
remain largely unexplored. This is concerning con-
sidering that, even under simplifying assumptions
such as causal sufficiency, the statistical risk of
a model can differ significantly from its causal
risk. Here, we study the problem of causal gener-
alization—generalizing from the observational to
interventional distributions—in forecasting. Our
goal is to find answers to the question: How does
the efficacy of an autoregressive (VAR) model in
predicting statistical associations compare with its
ability to predict under interventions? To this end,
we introduce the framework of causal learning
theory for forecasting. Using this framework, we
obtain a characterization of the difference between
statistical and causal risks, which helps identify
sources of divergence between them. Under causal
sufficiency, the problem of causal generalization
amounts to learning under covariate shifts albeit
with additional structure (restriction to interven-
tional distributions under the VAR model). This
structure allows us to obtain uniform convergence
bounds on causal generalizability for the class of
VAR models. To the best of our knowledge, this is
the first work that provides theoretical guarantees
for causal generalization in the time-series setting.

1 INTRODUCTION
Forecasting algorithms are increasingly relevant in a va-
riety of applications including meteorology, climatology,
economics, and business. While traditional economic mod-

*Part of this work was completed during an internship at
Amazon Research.

Figure 1: An example time series with predictions of two
DeepAR models (top) under an intervention in red (bottom)
on the Traffic dataset. While we do not know the ground-
truth, we see that two models disagree when faced with an
intervention more than on the in-distribution forecasting.
Since at most one of them can be right, we conclude that at
least the other one makes a notable forecasting error under
the intervention.

elling relies on relatively simple time series models (Brock-
well et al. 1991), e.g., autoregressive models, or meth-
ods like co-integration, modern business planning heavily
uses neural networks for forecasting (Faloutsos et al. 2018;
Januschowski et al. 2020; Salinas et al. 2020). Despite the
advancements of forecast quality, causal implications are
not yet well understood. There has been notable progress
in ‘explainable’ models in the sense of feature relevance
(Lundberg et al. 2017; Molnar 2019; Janzing et al. 2020;
Wang et al. 2020) with potential applications in forecasting.
Furthermore, specialized models (Hatt et al. 2021; Bica et al.
2020; Lim et al. 2018) have shown remarkable success for
causal inference in forecasting.

It is common practice in business and econometrics to learn
statistical forecasting models and interpret them causally.
In practice, while forecasting models tend to agree on their
statistical predictions, they can differ substantially on their
causal predictions (see Figure 1 for an example). In partic-
ular, this practice is considered justified under simplifying
assumptions such as causal sufficiency and the absence of
contemporaneous effects (see for instance Hyvärinen et al.
(2010, Section 1)). Here, we are interested in the funda-
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mental question: what is the relation between the statistical
predictability of a forecasting model and its causal general-
izability — ability to predict under interventions.

We argue that even for very simple models and even un-
der simplifying assumptions such as causal sufficiency and
absence of contemporaneous influence, causal interpreta-
tion of forecasting models is non-trivial. To appreciate the
challenges, consider a simple example of a process with
strongly correlated observations where xt ≈ xt−1, and
hence xt ≈ xt−2. These observations can be explained ei-
ther by a causal model with a strong influence of xt−1 on xt
or a causal model with a strong influence from xt−2 on xt.
The difference between the models gets apparent when an in-
tervention randomizes xt−1 and xt−2 independently. Then,
predictions become hard, particularly when xt−1 and xt−2

are set to significantly different values. While both models
are similar in their statistical predictions, they differ sub-
stantially in their causal predictions. This example already
shows that, even in a simple setting, causal and statistical
predictability can differ significantly. The question of causal
generalization is thus practically relevant and non-trivial
and begs for a better theoretical understanding.

Specifically, we consider the simple class of vector autore-
gressive models (VAR) and ask the question

How does the efficacy of an autoregressive model in
predicting statistical associations compare with its ability

to predict under interventions?

These models are widely applied in domains ranging from
econometrics (Lütkepohl 2009; Grabowski et al. 2020) and
finance (Zivot et al. 2006) to neuroscience (Valdés-Sosa
et al. 2005).

Connection to Covariate Shift. The problem of causal gen-
eralization is closely related to the problem of covariate shift.
To see this, we first ignore the time series setting and con-
sider the scenario where a variable Y should be predicted
from a variable X , which is known not to be an effect of Y .
If there is no common cause of X and Y , that is, we assume
causal sufficiency (Spirtes et al. 1993), the statistical relation
betweenX and Y is entirely due to the influence ofX on Y .
Therefore, the observational and interventional condition-
als coincide (PY |x=x∗ = PY |do(x=x∗) in Pearl’s language
(Pearl 2009)) and the true parameters would be optimal
both from a statistical and causal perspective. However, due
to estimation bias, a prediction model learned using finite
samples from Px may perform poorly when randomized
interventions draw x-values from a different distribution
P̃X , which is the usual covariate shift scenario (Sugiyama
et al. 2012). In our setting, X and Y are represented by the
past and the present values of a (possibly multivariate) time
series, respectively. Accordingly, we focus on interventional
distributions that are natural for this setting: independent
interventions at different time points and components of the

multivariate process. Hence, we have additional structure in
comparison with the standard covariate shift problem. We
are not aware of any theoretical work on covariate shift in
the time-series setting. Nevertheless, we describe the con-
nections to learning theory in the standard covariate shift
setting and other related work in Section 6.

Our Contributions. Our central goal in this work is to
develop a formal and thorough understanding of causal
generalization for the class of VAR models.

a. To this end, we introduce a framework of causal learning
theory for forecasting to analyze when forecasting models
can generalize from the observational to the interventional
distributions (Section 2). This is closely related to the
setting of learning under domain adaptation.

b. Using this framework, we provide a characterization of
the difference in the statistical and causal risks (Section 3).
Such a characterization allows us to identify the sources of
divergence between the two quantities. Our results show
that the strength of correlation of the underlying process
plays a key role in determining causal generalizability.
They also highlight that already for simple models, causal
and statistical errors can even diverge.

c. Further, we provide finite-sample, uniform convergence
bounds on causal generalization for the class of VAR
models (Section 3). Our simulations demonstrate that our
bounds indeed capture the key drivers of causal generaliza-
tion. To the best of our knowledge, this is the first work that
provides theoretical guarantees for causal generalization
of any kind in the time-series setting.

d. As a by-product of our analysis, we provide an explicit
characterization of the powers of a companion matrix (see
Section 2) using symmetric Schur polynomials (Macdon-
ald 1998) of its eigenvalues (Lemma 2) which, to the best
of our knowledge, has not been noted in the literature.
This result could be of independent interest in theoreti-
cal endeavors that build upon companion matrices which,
for instance, are ubiquitous in stochastic processes and in
Linear-Time-Invariant dynamical systems (Davison 1976;
Melnyk et al. 2016).

e. We conduct experiments with a variety of deep neural net-
works on real data. Our experiments approach causal risks
in this setting and explore its relationship to uncertainty.

2 CAUSAL LEARNING THEORY FOR
FORECASTING

In this section, we introduce a framework to formally eval-
uate the quality of a forecasting model with respect to pre-
diction and the validity of its causal implications. We refer
to this framework as causal learning theory for forecasting.
First, we introduce some relevant notation.

Notation. For any stochastic process {xt}t∈Z ∈ Rd, we
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use xnt−ω = {xt−ω−n+1, · · · , xt−ω−1, xt−ω} to denote
the set of xt−ω and the n − 1 variables in the past of
xt−ω. We distinguish this from ynt which denotes the vec-
tor
(
xt, xt−1, · · · , xt−n+1

)T ∈ Rnd. When it is clear from
context, to reduce cumbersome notation, we simply use
yt. For any random variable x, E[x] denotes its expecta-
tion. For any matrix A, we use Ai: and A:j to denote the
ith row and jth column of A respectively. We use Aj1k to
denote the (1, k)th element of Aj . For any vector xt at
time t, we use xt,i to denote the ith element of xt. We use
λmax(A), λmin(A), κ(A) = λmax(A)/λmin(A) to denote
the maximum and minimum eigenvalues and the condition
number of A respectively. Ip denotes the identity matrix of
size p, N,Z denote the set of natural numbers and integers
respectively and [n] denotes the set {1, 2, · · ·n}.
To evaluate the statistical and causal efficacy of an estimator
we introduce the notions of statistical and causal forecast
risks. To define statistical forecast risk, we consider the
setting of ω−step forecasting where the goal is to predict
xt from observations xnt−ω drawn from a stochastic process
{xt}t∈Z for some ω ∈ N. To define the causal forecast risk,
we consider interventions on xt−ω,i for some i ∈ [d].1

Definition 2.1 (Statistical forecast error). The statistical
forecast error of an estimator f̂ in the prediction of a tar-
get variable xt from xnt−ω, drawn from the observational
distribution, can be defined as

Sω = EP(xt,xn
t−ω)

[(
xt − f̂(xnt−ω)

)2]
. (1)

The empirical counterpart (Ŝω), is defined naturally by re-
placing the expectation by the empirical mean.

For causal questions, we want to investigate the behavior
of a model under interventions. Here, we consider atomic
interventions. Using Pearl’s do notation (Pearl 2009), an
atomic intervention do(x = x∗) refers to setting the variable
x to some value x∗.

Definition 2.2 (Causal errors). The interventional fore-
cast error of f̂ in predicting the effect of an intervention
do(xt−ω,i = x∗t−ω,i), on target variable xt is defined as

Gdoω,i
= EPdoω,i

(xt,xn
t−ω)

[(
xt − f̂(xnt−ω)

)2]
, (2)

where doω,i is shorthand for do(xt−ω,i = x∗t−ω,i) and
Pdoω,i

denotes the distribution induced by the intervention
do(xt−ω,i = x∗t−ω,i). To isolate from the dependence on
specific values that the intervened variables are set to, we
present our results via the notion of average causal error. It
is defined as the expected interventional error for interven-
tions drawn from the marginal distribution of xt−ω,i since

1The results for simultaneous interventions are qualitatively
similar to those of interventions on single variables, and for ease
of exposition, we present our discussion in the latter case.

it provides a natural scale at which the statistical and causal
errors can be compared.

Gω,i = Ex∗t−ω,i∼P(xt−ω,i)

[
Gdoω,i

]
. (3)

Statistical and Causal Learning Theory. Consider the
standard framework of statistical learning in time-series
prediction. For any stochastic process {xt}t∈Z taking val-
ues in X , given a loss function l : X × X → R+, the goal
of statistical learning is to learn a function f∗S that achieves
the optimal statistical risk Sω(f): Since the true process
is unknown, the empirical average (Ŝω) of generalization
risk is used to estimate Sω . Statistical generalization bounds
of the form: Sω(f) < Ŝω(f) + C(F , n) are then used to
provide guarantees on the uniform deviation of empirical
risk from expected risk given sufficiently many samples and
when the “complexity” of the function class is small.

Analogously, the goal of causal learning is to find a function
f∗G that achieves the optimal causal risk Gω(f) In contrast
to statistical learning, the empirical averages of the causal
error cannot be utilized to estimate Gω since we often do
not have access to data from the interventional distributions.
Instead, we are only provided with data from the observa-
tional/statistical distribution of the stochastic process and
the goal of causal learning theory is to understand, to what
extent is it possible to provide causal generalization guaran-
tees of the form: Gω(f) < Ŝω(f) + C(F , n).

To summarize, we ask: Can the predictors in F generalize
from the empirical observational distribution to the true in-
terventional distribution assuming that we control the com-
plexity of F and that we observe sufficiently many samples
drawn from the observational distribution? One cannot ad-
dress this question in a very general setting and would need
model assumptions to make any meaningful statements. To
this end, we now formally introduce our problem setup and
some preliminaries. We provide additional relevant back-
ground in the Appendix A.

Statistical and Causal Models. We assume that the
stochastic process {xt}t∈Z ∈ Rd follows a weakly station-
ary vector autoregressive model(VAR(p)) of order p for
some p, d ∈ N which is defined as

xt = A1xt−1 +A2xt−2 + · · ·APxt−p + εt, (4)

where xt ∈ Rd is a vector-valued time-series, for all i ∈ [p],
Ai ∈ Rd×d are the coefficients of the VAR model, and
εt ∈ Rd denotes the noise vector such that E[εt] = 0 and
E[εtε

T
t+h] = Σε if h = 0 and 0 otherwise. For some σ2

ε >
0, we simply set Σε = σ2

ε I for enhanced readability. Our
results can be easily generalized to arbitrary covariance
matrices by means of the spectral properties (λmin, λmax)
of Σε. The autocovariance matrix of {xt}t∈Z plays a central
role in our results and analysis. For any n ∈ N, we use Σn
to denote the autocovariance matrix of size n defined as
E[(ynt − E[ynt ])(ynt − E[ynt ])T ]. It is convenient to rewrite
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a VAR model of order p in Equation (4) as a VAR(1) model,
yt = Ayt−1 + et, where yt ∈ Rdp, et ∈ Rdp are defined as
yt =

(
xt, xt−i, · · · , xt−p+1

)T
, et =

(
εt, 0, · · · , 0

)T
, and

A ∈ Rdp×dp is a (multi) companion matrix defined as:

A =




A1 A2 · · · Ap−1 Ap
I 0 · · · 0 0
0 I · · · 0 0
...

... · · ·
...

...
0 0 · · · I 0



. (5)

The eigenvalues of the multi-companion matrix A fully
characterize the stability and stationarity of the VAR process.
For a VAR(p) process to be weakly stationary, that is for the
mean and the covariance of the process to not change over
time, the eigenvalues of A, which satisfy

det|Idλp −A1λ
p−1 −A2λ

p−2 − · · · −Ap| = 0, (6)

are constrained to not lie on the unit circle. If the magnitude
of all the eigenvalues are |λi| < 1, then the process is stable,
that is, its values do not diverge (Lütkepohl 2013).

Causal Models. Under the assumptions of causal suffi-
ciency and absence of contemporaneous influences, a causal
interpretation of the VAR model in (4) as structural equa-
tions naturally yields the corresponding causal model. We
consider the family of all VAR models as our function class
F of statistical and causal estimators.

3 CAUSAL GENERALIZATION FOR VAR

In this section, we present causal generalization bounds for
the family of VAR models under atomic interventions. We
first provide an overview of our results in the more general
case of VAR(p) models and later provide a thorough inter-
pretation of the results, often by deriving simplified versions
of the results for AR(p) models. We begin by providing
an exact characterization of the difference in statistical and
causal errors in terms of the model and estimated parameters
and the autocovariance matrix of the underlying process.

Lemma 1 (Difference in Causal and Statistical er-
rors (VAR)). Consider a vector-valued time series
{xt}t∈Z ∈ Rd, following a VAR(q) process parameterized
by {A1, A2, · · ·Aq}. Let ν = max {p, q}. For any VAR(p)
model f with parameters {Â1, Â2, · · · Âp},

|Gω,i − Sω| = 2

∣∣∣∣(Aωii − Âωii)
dν∑

k 6=i
(Aωik − Âωik)Σνik

∣∣∣∣,

where Σν denotes the autocovariance matrix of xt of size ν,
A is a multi-companion matrix of the form described in (5)
with the first d rows populated by {A′1, A′2, · · ·A′ν}, with
A′l defined as Al for all l ≤ p and as 0d×d for all l > p. Â
is analogously defined.

Building on Lemma 1, we establish that the condition num-
ber of the autocovariance matrix of the underlying process
controls causal generalizability from the observational to
interventional distributions.

Proposition 1 (Stability Controls Causal Generalization
(VAR)). Let {xt}t∈Z follow a VAR(q) process for some
q ∈ N. For any VAR(p) model,

|Gω,i − Sω| ≤ (2κ(Σν)− 1)(Sω − σ2
ε ), (7)

where κ(Σν) denotes the condition number of the autoco-
variance matrix Σν . Further, one can construct processes
where equality holds upto a small constant factor.

The result states that the difference in expected causal and
statistical errors is controlled by the condition number of the
autocovaraince matrix of size max {p, q}. It also states that
without incorporating additional information, one cannot
obtain a much tighter bound which is also verified by our
experiments in Section 4. The condition number of the au-
tocovariance matrix can get arbitrarily large as the process
gets closer to the boundary of the stability domain. This
result therefore shows that even for very simple classes of
forecasting models, causal interpretations can get challeng-
ing. We later provide a detailed interpretation of this result
and provide an explicit bound on κ(Σν) in terms of the
stability parameter for AR(p) models (Corollary 2).

Proposition 1 allows us to employ generalization bounds
for time-series (Yu 1994; Meir 2000; Mohri et al. 2009;
McDonald et al. 2017) to derive finite-sample causal gener-
alization bounds for VAR models. In particular, we utilize
Rademacher complexity bounds for generalization in time-
series under mixing conditions (Mohri et al. 2009) to derive
Theorem 1.

Theorem 1 (Finite sample bounds for VAR(p) models).
Let F denote the family of all VAR models of dimension d
and order p. For any n > max {p, q} ∈ N, let µ,m > 0 be
integers such that 2µm = n and δ > 2(µ−1)ρm for a fixed
constant 0 < ρ < 1 determined by the underlying process.
Let {x1, x2, · · ·xn} ∈ Rd be a finite sample drawn from
a VAR(q) process. Then, simultaneously for every f ∈ F ,
under the square loss truncated at M , with probability at
least 1− δ,

Gω,i ≤ ζŜω + ζR̂µ(F) + 3ζM

√
log 4

δ′

2µ
(8)

where ζ = 2κ(Σν), δ′ = δ − 2(µ − 1)ρm, and R̂µ(F)
denotes the empirical Rademacher complexity of F .

Our causal generalization bound in Theorem 1 suggests that,
given sufficiently many samples, the true causal error can
be guaranteed to be close to empirical statistical error if our
VAR models come from a class with a small Rademacher
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complexity, particularly when the process is associated with
a small stability parameter.

We now focus on providing a detailed interpretation of our
results. First, we take a minor detour to present a technical
result (Lemma 2) which is useful both in deriving some of
our main results as well as in interpreting them.

Lemma 2 (Expressing powers of a companion matrix
using symmetric polynomials). For a companion matrix
A with distinct eigenvalues, for any k ∈ [p], the (1, k)th
element of Aj , can be expressed using Schur polynomials of
the eigenvalues λ = {λ1, λ2, · · ·λp} of A, that is, Aj1,k =
Sj,k(λ), where Sj,k(λ) refers to the Schur polynomial in-
dexed by K = {j, 1, · · · k − 1 times · · · , 1, 0, · · · , 0}.

Lemma 2 shows that the coefficients of the powers of a com-
panion matrix can be fully characterized using symmetric
Schur polynomials of its eigenvalues. A good overview of
these polynomials can be found in Chaugule et al. (2019).
An advantage of expressing the coefficients using symmet-
ric Schur polynomials is that these polynomials have been
a subject of extensive research in combinatorics and an
equivalence between several alternate definitions has been
established. To name a few, Cauchy’s bialternant expression,
(Cauchy 1815; Jacobi 1841), the combinatorial formula
(Macdonald 1998) or Jacobi–Trudi identity (Jacobi 1841)
are all equivalent ways to define Schur polynomials. It is
therefore possible and often beneficial to choose the def-
inition that yields the most useful notion for the context.
We utilize this connection to interpret our results. First, for
easier interpretation, we simplify Lemma 1 to the following
result for scalar AR models.

Corollary 1 (Difference in Causal and Statistical errors
(AR)). Let {xt}t∈Z follow an AR(q) process. Then, for any
AR(p) model with parameters Â,

|Gdoω −Sω| = 2

∣∣∣∣(Aω11− Âω11)
ν∑

k=2

(Aω1k− Âω1k)γk−1

∣∣∣∣, (9)

where, for any k ∈ N, γk denotes the autocovariance of
{xt}t∈Z with lag k. A and Â are the corresponding com-
panion matrices of the model and estimated parameters as
defined in Lemma 1.

Lemma 1 identifies factors that control causal generalizabil-
ity. We now describe them.

Correlations control causal generalizability. Recall our
motivating example of the two highly correlated time-series
where the casual and statistical errors diverge. Intuitively,
one would therefore expect that large correlations among
time series potentially induce large differences between ob-
servational and interventional distributions. The quantitative
dependence of causal generalizability on the correlation
structure of the process is, however, less obvious. Lemma 1

confirms the intuition and shows that correlations between
the intervened time-series xt−ω,i across both the compo-
nents and time instances in xt−ω control generalizability
from observational to the interventional distributions.

High-dimensional and higher-order processes can hurt
generalization. For high-dimensional processes it is not un-
likely to have strong correlations across components, which
may obscure causal relations in the same way as strong cor-
relations across time does for univariate processes. Lemma
1 also supports this intuition and shows that strong corre-
lations across components as well as time instances play a
role. With increasing order or dimension of the processes,
larger orders of covariances across time and dimensions
could entail poor causal generalizability.

Dependence on ω. The dependence of the error on ω arises
through the elements of the matrix powerAk. A simple com-
putation shows that, even for an AR(2) model, the depen-
dence of these coefficients on the model parameters is asym-
metric and highly intricate. However, using the Cauchy’s
bialternant formulation of Schur polynomials, we have that
for any AR(p) model, the coefficients Aω1k can be expressed

as Aω1k = (−1)k+1

∑p
i=1 λ

p+ω−1
i ek(λi)

det
∣∣{λp−k′k

}
k,k′∈[p]

∣∣ , where ek(λi)

refers to the elementary symmetric polynomial of order
k and with variables {λ1, · · ·λi−1, λi+1, · · · , λp}. While
this is not the most interpretable definition per se, the de-
pendence of the coefficients on ω is easily understood and it
is easy to verify that if the underlying model as well as the
estimated model are both stable (|λ| < 1), the coefficients
and hence the difference in errors exponentially decays with
interventions arbitrarily in the past of the target variable and
if either of the process is not stable (|λ| > 1), the difference
can indeed diverge.

Proposition 1 allows us to obtain a high-level perspective on
causal generalizability. It states that the condition number of
the autocovariance matrix controls causal generalizability.
Both the maximum and the minimum eigenvalue of the
autocovariance matrix (and hence the condition number)
can be used as a measure of stability and hence determine
the strength of correlation of the underlying process (Basu
et al. 2015; Melnyk et al. 2016). As the process gets closer to
the boundary of stability domain, the autocovariance matrix
gets singular and hence the condition number of the auto-
covariance matrix can get arbitrarily large. Proposition 1,
therefore, can be interpreted as if the underlying process
gets closer to the boundary of the stability domain the causal
and statistical errors can diverge.

For intuition, let us revisit our motivating example from
the introduction with strongly correlated observations in
an AR(p) process. Let, without loss of generality p = q.
Introducing the vectors a := (a1, a2, . . . , ap) and â :=
(â1, â2, . . . , âp) and the covariance matrix Σp = Σmax{p,q}.
Then the quotient between causal and statistical error for
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predicting one time step ahead i.e. (ω = 1) reads:

Gdoω
Sω

=
(â− a)T (â− a) + σ2

ε

(â− a)TΣp(â− a) + σ2
ε

, (10)

Where we have assumed Xt to have unit variance without
loss of generality. The quotient is maximized if (â− a) is a
multiple of the eigenvector to the smallest eigenvalue of Σp.
This aligns with the intuition that causal loss diverges when
the auto-covariance matrix gets singular. Moreover, we see
that the vector (â − a) can be large with little observable
effect when it mainly consists of eigenvectors with small
eigenvalues of Σp. In the extreme case, if the minimum
eigenvalue of the autocovariance matrix is 0, it is possible to
arbitrarily deviate from the true model parameters along the
direction of the corresponding eigenvector which can signifi-
cantly affect the causal error without affecting the statistical
error at all. For an AR(2) process, for instance, we obtain

Σp =

(
1 a1/(1− a2)

a1/(1− a2) 1

)
, which becomes

singular for a1 = ±(1− a2) which indeed is the boundary
of the stability domain (see for example, Lütkepohl (2009)).
This is the limit in Section 1 where Xt = ±Xt−1. The
eigenvector for eigenvalue 0 reads (1,∓1). Accordingly, the
quotient (10) diverges when â differs from a by (1,∓1).

This further highlights that even for simple classes of fore-
casting models and with simplifying assumptions such as
causal sufficiency, causal risks may even diverge from sta-
tistical risks. To show this formally, by means of Lemma 2,
we can derive an explicit upper bound on the condition num-
ber of the autocovariance matrix κ(Σmax{p,q}) for AR(p)
models and arrive at Corollary 2.

Corollary 2 (Stability Controls Causal Generalization
(AR)). Consider an AR(q) process, such that eigenvalues
of its companion matrix satisfy |λ| < δ < 1. For any AR(q)
model f ,

|Gω,i − Sω| ≤ KpSω(f)ν(1 + δ)2ν/(1− δ2), (11)

where Kp is some finite constant that depends on the order
p of the underlying process.

The bound in Corollary 2 is elegant due to its simplicity
and generality. However, the cost of generality of the bound
that relies only on the stability parameter is clearly that
it cannot explain the variations in behavior exhibited by
individual processes with the same stability parameter.
For instance, consider an AR(2) model with parameters
a1 and a2 with a2 ≈ 0 so that it is essentially an AR(1)
model. Then, it is easy to verify that λ2 ≈ 0. The combi-
natorial definition of the Schur polynomials (Macdonald
1998) allows us to express the coefficients as follows:
Aω11 =

∑ω
i=0 λ

ω−i
1 λi2, Aω12 =

∑ω−1
i=1 λω−i1 λi2. Combin-

ing this with Corollary 1, it is easy to see that if the estimated
model is also close to AR(1), then the coefficients Aω12 and

Âω12 and hence the difference in statistical and causal errors
is close to 0. The bound in (11) which relies on the stability
parameter does not capture this. For tighter bounds that
utilize additional information about the spectrum of the
companion matrix, we can exploit the connection to Schur
polynomials to arrive at the following bound.

|Gω,i − Sω| ≤ Kp,q max
{
δ, δ̂
}ω ν∑

k=2

(
Sλωk − Sλ̂ωk

)
γk−1,

where Kp,q is a constant that depends on p, q, δ and δ̂ are
the stability parameters of the true and estimated processes
respectively and λ and λ̂ denote the set of eigenvalues of A
and Â respectively.

4 SIMULATIONS

To verify the practical behavior of causal and statistical risks,
we provide some simple simulations to study the errors of
different estimators under AR processes. For each presented
plot, we draw parameters for 10,000 stationary AR(p) pro-
cesses using rejection sampling. We draw the coefficients
of each process independently and uniformly from [−2, 2]
and reject sets of parameters that yield a non-stationary pro-
cess. For each process, we draw a training sample with 100
timesteps and a test sample with 1000 timesteps. For all
figures in the main paper we set ω = 1. To estimate the coef-
ficients we use Ordinary Least Squares (OLS). In Appendix
E we provide additional plots with hidden confounder, as
well as varying order, sample size, ω and other estimators:
Ridge, Lasso, and Elastic Net regressors. OLS minimizes the
empirical statistical error, that is,

∑
yi,ŷi

(yi − ŷi)2, where
ŷi denotes the model prediction with estimated parameters
â.

In line with our theoretical results, we find that even for
simple scalar AR processes of small orders, the causal er-
ror of the estimators is often several times larger than the
statistical error (see Figure 2). In Figure 3 we sorted the ran-
domly drawn datasets by their autocorrelation (measured by
the condition number κ of the autocorrelation matrix) and
split the sorted list into buckets of 500 dataset. For each we
calculated the maximum, mean and 90% quantile of the dif-
ference in causal and statistical error for the OLS and Ridge
estimators. The plots corresponding to the other estimators
are provided in Appendix E We can see that upto constant
factors, our theoretical finite sample causal generalization
bound matches the difference in causal and statistical risks
observed empirically.

5 EXPERIMENTS ON REAL DATA

Data. We conduct experiments on the m4 hourly dataset
(Makridakis et al. 2018) that includes timeseries from a
diverse set of sources. The datasets has a hourly frequency

causal generalization in autoregressive models 97



Figure 2: The causal error G versus the statistical error S for AR(p) processes with p = 3, 5, 7.

Figure 3: The maximal difference between statistical error S and causal error G as well as an estimate for the generalization
bound in Theorem 1 for increasing condition number κ for process orders p = 3, 5, 7 (from left to right). The maximum is
taken over 500 datasets with the closest κ. Our theoretical bounds (orange) closely match the empirical evaluations up to
constant factors (blue).

Figure 4: Results of the evaluation of three different deep
neural network architectures on the m4hourly dataset. The
“RMSE“ is computed comparing prediction on the observa-
tional data against the ground truth. The disagreement from
Def. 5.1 compares the root-mean-square deviation between
the predictions of two models of the same architecture on
the observational data (“Statistical Disagreement“) and in-
terventional distributions (“Causal Disagreement Across TS“
sampling interventions from all of time-series and “Causal
Disagreement Within TS“ sampling interventions from prior
points within the time series). The results are averaged over
5 runs of training and evaluation and include standard devi-
ation in black.

and a prediction length of 48. To create an interventional
distribution without a generative model, for each time series

we replace the last time step prior to the evaluation window
by sampling at random either from all time-series at that
time step (referred to as across-ts) or from previous values
of the same time series (referred to as within-ts). Appendix F
records results for additional datasets.

Models. We include three popular deep neural network
architectures in our evaluation. DeepAR consists of an RNN
that takes the previous time steps as inputs and predicts
the parameters of an auto-regressive model (Gasthaus et al.
2019). Wavenet is a hierarchical CNN developed for speech-
to-text (Oord et al. 2016). Transformer is an attention-based
deep neural network widely applied to NLP tasks including
translation (Vaswani et al. 2017). For all these models we
use AutoGluonTS’s default hyperparameters.

Metrics. For the observational distribution, we compute
the root-mean-square error (RMSE) comparing average pre-
diction for each time point with the ground truth in the eval-
uation set. For the interventional distribution we are lacking
ground truth. Therefore, we train two separate models and
compute their disagreement.

Definition 5.1. The disagreement is the average root-mean-
square deviation of the mean forecasts of two models. The
average is taken over a set of time-series. If the time-series
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come from the original dataset, we call it the statistical
disagreement. If they come from one of the interventional
datasets, we call it causal disagreement and specify the type
of intervention as across time-series or within time-series.

This disagreement is a measure of uncertainty introduced
by the randomness in the training and evaluation procedure.
Here, however, we use it to approach the causal risk, that
we cannot compute directly. If the disagreement is high on
the interventional distribution at least one of the models
must have a high causal risk. For comparison, we also in-
cluded this disagreement measure for examples from the
observational distribution. Finally, to explore the relation-
ship between causal forecasting error and uncertainty, we
also compute the width of the 80% prediction interval for
both the observational and interventional distribution.

Definition 5.2. The 80% prediction width of a forecasting
model is the absolute distance between the 0.9 quantile and
0.1 quantile of the forecast distribution. It is averaged over
a set of time-series that can come from the observational or
the interventional distritibutions.

The experiments were conducted using GluonTS (Alexan-
drov et al. 2019) with default hyperparameters on instances
with 4 virtual CPUs and a 2.9 GHz processor.

Limitations. The dataset and models have clear shortcom-
ings. Likely, the dataset is not causally sufficient. Also, we
did not tune the models. Moreover, we are lacking sam-
ples from the marginal distribution for the interventions
and groundtruth on what happens under these interventions.
Nevertheless, we hope to get a sense for how popular deep
learning networks can behave on real data for relevant pre-
diction tasks under interventions.

Results. Figure 4 shows the results of the metrics when
we evaluate the models on the datsets for both observation
and interventional distributions. We see that the causal dis-
agreement between two models of the same architecture
and hyper-parameters can be much higher than their dis-
agreement on the observational distribution. While there are
only smaller differences in the statistical risk between the
model architectures, their causal disagreement differs more.
Overall, the the causal disagreement can be high, which
implies high causal risk, but it varies across datasets and
model architectures. Wavenet’s disagreement is an order of
magnitude larger when sampling interventions from other
time-series. For transformer models their interventional dis-
agreement is close to the observational one.

Uncertainty.

When we compare the width of the 80% interval of pre-
dictions in Table 2 we see that this uncertainty measure is
higher for the interventional distribution compared to the
observational one. Moreover, directionally it relates to the
causal disagreement across models. Unlike the disagreement

Model observ. across-ts interv. within-ts interv.
DeepAR 940.0 ± 126.2 1329.2 ± 187.5 953.1 ± 124.2
wavenet 1253.9 ± 96.6 3444.7 ± 649.4 1612.7 ± 257.7

transformer 1259.3 ± 139.3 1355.1 ± 129.6 1255.7 ± 139.3

Table 1: 80% prediction width, see Def. 5.2, for observa-
tional and interventional forecasts. Averaged over 5 runs
with std.

that requires a second model to be trained, this uncertainty
measure is readily available from the predicted forecasts.

6 RELATED WORK
Our work intersects with domain adaption, RL, and
treatment effect estimation, reviewed separately below.

Domain Adaptation. The literature that is perhaps most
relevant to our context is that of learning theory for domain
adaptation, in particular, for covariate shift. Theoretical anal-
ysis of domain adaptation when labelled samples from the
source distribution and unlabelled samples from the target
distribution are generated i.i.d was initiated by Ben-David
et al. (2007), who provided VC bounds for binary clas-
sification under covariate shifts based on a discrepancy
measure dF between source and target distributions that
depends on the hypothesis class F and is estimable from
finite samples. Mansour et al. (2009) extended the work to
the context of regression in the i.i.d setting by adapting the
discrepancy measure for more general loss functions and
by providing tighter, data-dependent Rademacher bounds.
Despite the i.i.d assumption that is necessary to derive their
finite-sample bounds, the results in Mansour et al. (2009)
are perhaps the most relevant to our setting. We can uti-
lize one of the main results from Mansour et al. (2009,
Theorem 8) which does not rely on the i.i.d assumption to
arrive at the following population-level bound for our set-
ting: |Gω,i(f, f∗)−Sω(f, f∗)| ≤ supf,f ′∈F |Gω,i(f, f ′)−
Sω(f, f ′)|. These bounds are clearly non-informative in our
context since they do not incorporate structural knowledge
of the class of interventional distributions under a VAR
model.

Estimation of Treatment Effects. A related problem is that
of estimating treatment effects in the potential outcomes
framework (Hill et al. 2006; Shi et al. 2019), where the goal
is to estimate the effects of binary-valued treatments from
observational data under a multivariate confounding model.
Our setting is more general in that variables in the multi-
variate process can take a continuum of interventions and
play a multiplicity of roles — each variable plays the role of
treatment, confounder, and the target variable. Of particular
relevance is the work of Shalit et al. (2017) and Johans-
son et al. (2020), who prove generalization error bounds on
estimating individual-level treatment effects in terms of stan-
dard generalization error and a distance measure between
the treated and control distributions. This result is similar
to domain adaptation bounds in Ben-David et al. (2007)
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and Mansour et al. (2009) and may be interpreted as causal
learning theory in the sense of our paper.

Reinforcement Learning. The ratio of observational ver-
sus interventional densities in our setting play a similar role
as the state density ratio in off-policy evaluation in reinforce-
ment learning(RL) (Bennett et al. 2021). In RL, however,
the clear separation between the state of actions and the state
space acted on admits techniques that we do not see for our
problem, e.g., deconfounding (Hatt et al. 2021), or learning
representations of the history that are independent of the
actions (Bica et al. 2020), which overcomes the problem of
high inverse probability weightings (Lim et al. 2018).

7 DISCUSSION AND CONCLUSION

Our work highlights that even for very simple models
and even under simplifying assumptions such as causal
sufficiency, causal and statistical errors can diverge. It
emphasizes the need for providing guarantees for causal
generalization in a similar vein as providing guarantees for
statistical learning. To this end, we initiate a first analysis
in this direction by introducing a framework for causal
learning theory for forecasting and providing conditions
under which one can guarantee generalization in the causal
sense for the class of VAR models. We hope that this work
inspires more theoretical work that allows certifying the
validity of the causally interpreting forecasting models.

Our theoretical as well as empirical results challenge the
causal interpretation of forecasting models used in practice
which are typically far more complex. Our experiments
show that causal disagreement can be high for some models
which implies a high causal risk. This cautions against the
use of statistical deep learning models for causal forecasting.
The difference we observe in causal disagreement across
models motivates further development of specific model
architectures suitable for causal forecasting. For existing
models, the uncertainty measure considering the width of
the prediction interval can be an indicator for causal risk.
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A BACKGROUND

Notation. We recall the notation and some key definitions here for the reader’s convenience. For any stochastic process
{xt}t∈Z ∈ Rd, we use xnt−ω = {xt−ω−n+1, · · · , xt−ω−1, xt−ω} to denote the set of xt−ω and the n − 1 variables

in the past of xt−ω. We distinguish this from ynt which denotes the vector
(
xt, xt−1, · · · , xt−n+1

)T ∈ Rnd. When it
is clear from context, to reduce cumbersome notation, we simply use yt. For any random variable x, E[x] denotes its
expectation. For any matrix A, we use Ai: and A:j to denote the ith row and jth column of A respectively. We use Aj1k
to denote the (1, k)th element of Aj . For any vector xt at time t, we use xt,i to denote the ith element of xt. We use
λmax(A), λmin(A), κ(A) to denote the maximum and minimum eigenvalues and the condition number of A respectively,
where κ(A) = λmax(A)/λmin(A). Ip denotes the identity matrix of size p, N,Z denote the set of natural numbers and
integers respectively and [n] denotes the set {1, 2, · · ·n}.

Definition A.1 (Vector Autoregressive Model). A vector autoregressive model (VAR(p)) of dimension d and order p is
defined as

xt = A1xt−1 +A2xt−2 + · · ·APxt−p + εt, (12)

where xt ∈ Rd is a vector-valued time-series, for all i ∈ [p], Ai ∈ Rd×d are the coefficients of the VAR model, and εt ∈ Rd
denotes the noise vector such that E[εt] = 0 and E[εtε

T
t+h] = Σε if h = 0 and 0 otherwise. For some σ2

ε > 0, we simply set
Σε = σ2

ε I for enhanced readability. Our results can be easily generalized to arbitrary covariance matrices by means of the
spectral properties (λmin, λmax) of Σε.

Definition A.2 (Weak Stationarity). A stochastic process {xt}t∈Z is weakly stationary if the mean and the covariance of
the process does not change over time, that is, for all t, τ ∈ Z

E[xt] = E[xt+τ ], Cx(t, t+ τ) = Cx(0, τ), (13)

where Cx(t, t+ τ) = E[(xt − E[xt])(xt+τ − E[xt+τ ])] denotes the autocovariance function.

The autocovariance matrix of {xt}t∈Z plays a central role in our results and analysis. For any n ∈ N, we use Σn to denote
the autocovariance matrix of size n defined as E[(ynt − E[ynt ])(ynt − E[ynt ])T ].

It is often quite convenient to rewrite a VAR model of order p in Equation (12) as a VAR(1) model, yt = Ayt−1 + et,
where yt ∈ Rdp, et ∈ Rdp are defined as yt =

(
xt, xt−i, · · · , xt−p+1

)T
, et =

(
εt, 0, · · · , 0

)T
, and A ∈ Rdp×dp is a (multi)

companion matrix defined as:

A =




A1 A2 · · · Ap−1 Ap
I 0 · · · 0 0
0 I · · · 0 0
...

... · · ·
...

...
0 0 · · · I 0



. (14)

The eigenvalues of the multi-companion matrix A fully characterize the stability and stationarity of the VAR process. For a
VAR(p) process to be weakly stationary, the eigenvalues of A, which satisfy

det|Idλp −A1λ
p−1 −A2λ

p−2 − · · · −Ap| = 0, (15)

are constrained to not lie on the unit circle. If the magnitude of the eigenvalues are |λi| < 1 for all i ∈ [dp], then the
underlying process is stable, that is, its values do not diverge (Lütkepohl 2013).

xtxt−1
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Figure 5: Causal DAG of an AR(2) model
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do(xt−4 = x∗t−4)

Figure 6: Graphical representation of the effect of an intervention do(xt−4 = x∗t−4) on an AR(2) model. Incoming edges
into xt−4 are removed in the new DAG which are in red.

Definition A.3 (Empirical Rademacher Complexity). Given a finite sample X = {x1, x2, · · · , xn} ∈ Rd, the empirical
Rademacher complexity of a hypothesis class F of functions f : Rd → R is defined as:

ˆR(F) =
2

n
Eσ

[
sup
f∈F
|
n∑

i=1

σif(xi)|
]
,

where σ = (σ1, σ2, · · · , σn) and for all i ∈ [n], σi are independent random variables drawn from the Rademacher
distribution, that is, a uniform distribution over {−1,+1} .

B PROOFS OF MAIN RESULTS

Lemma 3 (Expressing powers of a companion matrix using symmetric polynomials). For a companion matrix A with
distinct eigenvalues and for any k ∈ [p], the (1, k)th element of Aω, can be expressed as a Schur polynomial of the
eigenvalues λ = {λ1, λ2, · · ·λp} of A. in particular, |Aω1,k| = Sµω,k,λ where Sµω,k,λ refers to the Schur polynomial over λ
indexed by {ω, 1, · · · k − 1 times · · · , 1, 0, · · · , 0}.

Proof. For convenience, we use the notation λ and λ/λi to denote the sets {λ1, λ2, · · · , λp} and
{λ1, λ2, · · · , λi−1, λi+1, · · · , λp} respectively.

Assuming that the eigenvalues λ = {λi}pi=1 of a companion matrix A are distinct, it can be diagonalized as A = V ΛV −1,
where Λ = diag(λ1, · · · , λp) is the diagonal matrix of eigenvalues of A and V is a vandermonde matrix (Brand 1964) given
by

Vλ =




λp−1
1 λp−1

2 · · · λp−1
p

λp−2
1 λp−2

2 · · · λp−2
p

...
...

...
...

λ1 λ2 · · · λp
1 1 · · · 1



. (16)

For any i ∈ [p], let ek(λ/λi) denote the elementary symmetric polynomial of order k with variables in λ/λi and let

αi =
1∏

j 6=i
(λi − λj)

. (17)

The inverse of the Vandermonde matrix V can then be explicitly computed (El-Mikkawy 2003) to obtain

V −1 =




α1 −α1e1(λ/λ1) · · · (−1)p−1α1ep−1(λ/λ1)
α2 −α2e1(λ/λ2) · · · (−1)p−1α2ep−1(λ/λ2)
...

...
...

...
αp −αpe1(λ/λp) · · · (−1)p−1αpep−1(λ/λp)


, (18)
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Using the diagonalization of A, we can compute its power Aω as

Aω = V ΛωV −1 (19)

and the coefficients Aω1k can be computed as

(−1)k−1

p∑

i=1

αiλ
p+ω−1
i ek−1(λ/λi)

Claim. |Aω1k| is the Schur polynomial S{ω,1,1,··· k−1times··· 1, 0,0,··· ,0}

For any µ = {µ1, µ2, · · · , µp} such that µ1 ≥ µ2 ≥ · · · ≥ µp consider the generalized Vandermonde matrix Vµ,λ defined
as

Vµ,λ =




λp−1+µ1

1 λp−1+µ1

2 · · · λp−1+µ1
p

λp−2+µ2

1 λp−2+µ2

2 · · · λp−2+µ2
p

...
...

...
...

λ
1+µp−1

1 λ
1+µp−1

2 · · · λ
1+µp−1
p

λ
µp

1 λ
µp

2 · · · λ
µp
p



. (20)

The Bilaternant formulation defines Schur polynomial Sµ,λ as

Sµ,λ =
det(Vµ,λ)

det(Vλ)
. (21)

It can be shown that the determinant of the vandemonde matrix Vλ can be given as

det(Vλ) =
∏

1≤ i < j≤n
(λi − λj). (22)

A proof of this statement can be found in most standard texts on Matrix analysis, for example, see Horn et al. (2012).

For any i, k ∈ [p], consider the generalized Vandermonde matrix Vµk,λ/λi
, where µk =

{1, 1, · · · k − 1times · · · 1, 0, 0, · · · , 0}. That is,

Vµk,λ/λi
=




λp−1
1 λp−1

2 · · · λp−1
i−1 λp−1

i+1 · · · λp−1
p

λp−2
1 λp−2

2 · · · λp−2
i−1 λp−2

i+1 · · · λp−2
p

...
... · · ·

...
... · · ·

...

λ
p−(k−1)
1 λ

p−(k−1)
2 · · · λ

p−(k−1)
i−1 λ

p−(k−1)
i+1 · · · λ

p−(k−1)
p

λ
p−(k+1)
1 λ

p−(k+1)
2 · · · λ

p−(k+1)
i−1 λ

p−(k+1)
i+1 · · · λ

p−(k+1)
p

...
... · · ·

...
... · · ·

...

1 1 · · · 1 1 · · · 1




. (23)

From (21), we know that

det(Vµk,λ/λi
) = det(Vλ/λi

)Sµk,λ/λi
,

where Sµk,λ/λi
is the Schur polynomial of variables λ/λi indexed by µk = {1, 1, · · · k − 1times · · · 1, 0, 0, · · · , 0}. Using

a combinatorial definition of a Schur polynomial as a summation over semi-standard representations over a Young’s Tableaux
(see Macdonald (1998) for an exposition), it is easy to verify that

(24)
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Sµk,λ/λi
= ek−1(λ/λi).

Therefore, combining (22) and (24) we can write

det(Vµk,λ/λi
) = det(Vλ/λi

)ek−1(λ/λi) = ek−1(λ/λi)
∏

1≤l<l′≤p
l,l′ 6=i

(λl − λl′)

Now, observe that we can rewrite Aω1k as

Aω1k = (−1)k−1

p∑

i=1

αiλ
p+ω−1
i ek−1(λ/λi),

= (−1)k−1

p∑

i=1

(−1)i+1λp+ω−1
i ek−1(λ/λi)

∏

1≤l<l′≤p
l,l′ 6=i

(λl − λl′)/det(Vλ),

= (−1)k−1

p∑

i=1

(−1)i+1λp+ω−1
i det(Vµk,λ/λi

)/det(Vλ).

Finally, letting µω,k = {ω, 1, 1, · · · k − 1times · · · 1, 0, 0, · · · , 0}, consider the generalized Vandermonde matrix Vµω,k,λ

given by

Vµω,k,λ =




λp−1+ω
1 λp−1+ω

2 · · · λp−1+ω
p

λp−1
1 λp−1

2 · · · λp−1
p

λp−2
1 λp−2

2 · · · λp−2
p

...
... · · ·

...

λ
p−(k−1)
1 λ

p−(k−1)
2 · · · λ

p−(k−1)
p

λ
p−(k+1)
1 λ

p−(k+1)
2 · · · λ

p−(k+1)
p

...
... · · ·

...

1 1 · · · 1




. (25)

Using the Laplace expansion to compute the determinant along the first row of Vµω,k,λ and observing that for any i ∈ [p],
the minor of Vµω,k,λ(1, i) is given by det(Vµk,λ/λi

), we have

p∑

i=1

(−1)i+1λp+ω−1
i ek−1(λi)

∏

1≤l<l′≤p
l,l′ 6=i

(λl − λl′) = det(Vµω,k,λ)

and once again by invoking the bialternant formulation for Schur polynomials, we have

|Aω1k| =
p∑

i=1

αiλ
p+ω−1
i ek−1(λi) =

det(Vµω,k,λ)

det(Vλ)
= Sµω,k,λ.

Lemma 4 (Form of Interventional Autocovariance matrix). Consider a vector-valued time series {xt}t∈Z ∈ Rd, follow-
ing a VAR(q) process with autocovariance matrix of size nd×nd denoted by Σn. Consider simultaneous atomic interventions
on components {l1, l2, · · · , lr} ⊂ [d] of xt−ω, that is, consider the intervention do(xt−ω,l1 = x∗t−ω,l1 , · · · , xt−ω,lr =
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x∗t−ω,lr ). Then, the autocovariance matrix of size nd × nd (Γ′n) of the corresponding joint interventional distribution,
denoted by Pdoω (xnt−ω) is given by

Γ′n(i, j) =





0 if i 6= j, i = lm, j = lm ∀m ∈ [r]

x∗2t−ω,lm if i = j = lm ∀m ∈ [r]

Σn(i, j) otherwise
. (26)

Moreover, let
Γn = E{x∗t−ω,lm}m∈[r]∼

∏
m∈[r]

P(xt−ω,lm)Γ
′
n.

Then,

Γn(i, j) =

{
0 if i 6= j, i = lm, j = lm ∀m ∈ [r]

Σn(i, j) otherwise
. (27)

The autocovariance matrix of the interventional distribution under simultaneous interventions on consecutive time-steps can
be analogously obtained.

Proof of Lemma 4.. Note that due to time ordering and since instantaneous effects are not modelled by a VAR model,
there is no directed path from any of the variables xt−ω,l1 , xt−ω,l2 , · · · , xt−ω,lr to xnt−ω−1 as well as to variables in
{xt−ω,1, xt−ω,2, · · · , xt−ω,d} /xt−ω,l1 , xt−ω,l2 , · · · , xt−ω,lr . Peters et al. (2017, Proposition 6.14) provides graphical
criterion for determining the existence of a total causal effect from a variable x to a variable y under interventions on x.
Absence of a directed path from x to y implies there is no total causal effect from x to y and from Proposition 6.12 of
Peters et al. (2017), we know that x ⊥⊥ y under the corresponding interventional distribution. As a consequence of these
Propositions, we have our desired result.

Lemma 5 (Difference in Causal and Statistical error (VAR(p))). Consider a vector-valued time series {xt}t∈Z ∈ Rd,
following a VAR(q) process with model parameters {A1, A2, · · ·Aq}. Assuming n > max {p, q}, for any VAR(p) model f
with parameters {Â1, Â2, · · · Âp},

|Gdoω (f)− S(f)| =
d∑

i=1

(Aωi: − Âωi:)T (Γ− Σ)(Aωi: − Âωi:), (28)

Proof of Lemma 5. Let A denote the multi-companion matrix corresponding to the true VAR(q) process with model
parameters {A1, A2, · · · , Aq} of the form described in (14) with the first d rows populated by {A′1, A′2, · · ·A′max{p,q}},
where A′l is defined as Al for all l ≤ q and as 0d×d for all l > q. Define Â(max{p,q}) analogously as the multi-companion

matrix corresponding to parameters
{
Â1, Â2, · · · , Âp

}
of the estimated VAR(p) model f obtained independently from

some statistical estimation procedure E .

Using (12) recursively, we can write

y
(max{p,q})
t = Aωy

(max{p,q})
t−ω +Aωe

(max{p,q})
t−ω+1 +Aω−1e

(max{p,q})
t−ω+2 + · · ·+Ae

(max{p,q})
t−1 + e

(max{p,q})
t (29)

To reduce cumbersome notation, we let ζt = Aωet−ω+1 +Aω−1et−ω+2 + · · ·+Aet−1 + et ∈ Rdp and write

Yt = Aωyt−ω + ζt. (30)

Let x̂t denote the prediction of the target variable xt corresponding to the estimated model f . Then, Statistical error Oω
defined with respect to the squared norm can be computed as follows:
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Oω = EP(xn
t−ω,xt)[‖xt − x̂t‖

2
]

=
d∑

i=1

E[xt,i − x̂t,i]2 (Subscript omitted for convenience)

=
d∑

i=1

E[Aωi,:yt−ω + ζt,ω,i − Âωi,:yt−ω]2

=
d∑

i=1

(Aωi: − Âωi:)TE[yt−ωy
T
t−ω](Aωi: − Âωi:) + E[ζ2

t,ω,i] (E[xt−iε
T
t ] = 0, ∀i ∈ N )

=
d∑

i=1

(Aωi: − Âωi:)TΣmax{p,q}(A
ω
i: − Âωi:) + E[ζ2

t,ω,i]

Similarly,

Gdoω = EPdoω (xn
t−ω,xt)(‖xt − x̂t‖

2
) (31)

=
d∑

i=1

EPdoω (xn
t−ω)Pdoω (xt|xn

t−ω)

[
xt,i − x̂t,i

]2
(32)

=
d∑

i=1

EPdoω (xn
t−ω)Pdoω (xt|xn

t−ω)

[
x2
t,i + x̂2

t,i − 2xt,ix̂t,i
]2

(33)

=

d∑

i=1

EPdoω (xn
t−ω)Pdoω (xt|xq

t−ω)

[
x2
t,i + x̂2

t,i − 2xt,ix̂t,i
]2

(34)

=
d∑

i=1

EPdoω (xn
t−ω)P(Xt|xq

t−ω)

[
x2
t,i + x̂2

t,i − 2xt,ix̂t,i
]2

(35)

=

d∑

i=1

EPdoω (xq
t−ω)

[
EP(xt|xq

t−ω)[x
2
t,i] + (Âωi:)

T yt−ω)2 − 2EP(xt|xq
t−ω)[xt,i](Â

ω
i:)
T yt−ω

]2
(36)

=
d∑

i=1

EPdoω (xn
t−ω)

[
((Aωi:)

T yt−ω + ζt)
2 + (Âωi:)

T yt−ω)2 − 2((Aωi:)
T yt−ω)((Âωi:)

T yt−ω)
]2

(37)

=
d∑

i=1

(
(Aωi: − Âωi:)TEdoω (yt−ωy

T
t−ω)(Aωi: − Âωi:) + E(ζ2

t,i)
)

(E(xt−iε
T
t ) = 0, ∀i ∈ N ) (38)

=
d∑

i=1

(Aωi: − Âωi:)TΓ′max{p,q}(A
ω
i: − Âωi:) + E(ζ2

t,i) (39)

To see why Equation (35) holds, note that the structural equations that specify the dependence of xt on xqt−ω remain un-
changed under interventions on xt−ω and therefore the conditional distributions remain unchanged under these interventions.

Therefore,

Ex∗t−ω∼P(xt−ω)EPdoω (xn
t−ω,xt)(‖xt − x̂t‖

2
) =

d∑

i=1

(Aωi: − Âωi:)TΓmax{p,q}(A
ω
i: − Âωi:) + E(ζ2

t,i),

where Γ can be obtained using Lemma 4.

Corollary 3 (Difference in Causal and Statistical errors (AR)). Let {xt} follow an AR(q) process. Then, for any AR(p)
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model f with parameters {â1, â2, · · · , âp},

|Gdoω (f)− Sω(f)| = 2

∣∣∣∣(Aω1,1 − Âω1,1)

max{p,q}∑

k=2

(Aω1,k − Âω1,k)γk−1

∣∣∣∣, (40)

where, for any k ∈ N, γk denotes the autocovariance of {xt} with lag k. A and Â are the corresponding companion
matrices of the model and estimated parameters as defined in Lemma 5.

Proof of Corollary 3. Corollary 1 directly follows from Lemmas 4 and 5.

Proposition 2 (Stability Controls Causal Generalization (VAR)). Consider a VAR(q) process. Assuming n > max {p, q},
for any VAR(p) model f ,

|Gω,i(f)− Sω(f)| ≤ 2κ(Σmax{p,q})(Sω(f)− σ2
ε ), (41)

where κ(Σmax{p,q}) denotes the condition number of the autocovariance matrix Σmax{p,q}.

Proof. From Lemma 5, it remains to prove that

|
d∑

j=1

(Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:)| ≤ (2κ(Σ)− 1)(Sω(f)− σ2
ε ).

First, we show that

|(Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:)| ≤ (2λmax(Σ))
∥∥∥Aωj: − Âωj:

∥∥∥
2

. (42)

Case 1. (Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:) ≥ 0.

|(Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:)| = (Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:), (43)

≤ (λmax(Γ)− λmin(Σ))
∥∥∥Aωj: − Âωj:

∥∥∥
2

. (44)

where (44) holds by an application of Rayleigh’s principle. We still need to show that λmax(Γ) ≤ 2λmax(Σ).

Without loss of generality, assume that i = 1, that is the component of xt−ω that is intervened upon is indexed by 1. Note
that, this merely simplifies notation and the following steps also hold simultaneous interventions on multiple components
and consecutive time instances without any additional steps.

Representing Σ and Γ in block matrix form, we have

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Γ =

(
Γ11 Γ12

Γ21 Γ22

)
. (45)

From Lemma 4, we have

Γ11 ∈ R1×1 = σ2 = E(X2
t ), ΓT12 = Γ21 ∈ R1×dmax{p,q}−1 = 0, and Γ22 = Σ22.

We can write Γ as follows:

Γ = Γ′1 + Γ′2, (46)

where

Γ′1 =

(
σ2 01×dmax{p,q}−1

0dmax{p,q}−1×1 0dmax{p,q}−1×dmax{p,q}−1

)
, (47)

and

Γ′2 =

(
01×1 01×dmax{p,q}−1

0dmax{p,q}−1×1 Σ22

)
. (48)
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Since Γ′1 and Γ′2 are Hermitian matrices, λmax(Γ) ≤ λmax(Γ′1) + λmax(Γ′2).

Observe that Γ2 is a principal sub-matrix of Γ obtained by deleting the first row and column, by Cauchy’s interlacing
theorem (Fisk 2005), we have

λmax(Γ′2) ≤ λmax(Σ). (49)

Note that, when we intervene simultaneously on multiple components and time instances, instead of setting the first row to
0, the covariance matrix of the corresponding interventional distribution Γ can be obtained by deleting the off-diagonal
elements of the corresponding rows and columns. It remains to show that σ2 ≤ λmax(Σ). Note that

λmax(Γ′2) = σ2 = Σ11 = eT1 Σe1 ≤ λmax(Σ), (50)

where ei denotes the ith standard basis vector. Combining (49) and (50) we have

λmax(Γ) ≤ 2λmax(Σ) (51)

and
|(Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:)| ≤ (2λmax(Σ)− λmin(Σ))

∥∥∥Aωj: − Âωj:
∥∥∥

2

. (52)

Case 2. (Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:) ≤ 0.

|(Aωj: − Âωj:)T (Γ− Σ)(Aωj: − Âωj:)| = (Aωj: − Âωj:)T (Σ− Γ)(Aωj: − Âωj:), (53)

≤ (λmax(Σ)− λmin(Γ))
∥∥∥Aωj: − Âωj:

∥∥∥
2

. (54)

Using the same arguments used in deriving upper bounds for λmax(Γ), we can show that λmin(Γ) ≥ λmin(Σ). Therefore,
we have

|Gdoω,i
(f)− Sω(f)| ≤

∑

j∈[d]

(2λmax(Σ)− λmin(Σ))
∥∥∥Aωj: − Âωj:

∥∥∥
2

(55)

≤ (2λmax(Σ)− λmin(Σ))
∑

j∈[d]

∥∥∥Aωj: − Âωj:
∥∥∥

2

(56)

≤ (2κ(Σ)− 1)(Sω(f)− σ2
ε ). (57)

To see why (57) holds, observe that

Sω(f)− σ2
ε =

d∑

j=1

(Aωj: − Âωj:)TΣ(Aωj: − Âωj:) (58)

≥
d∑

j=1

(Aωj: − Âωj:)TΣ(Aωj: − Âωj:) (59)

≥
d∑

j=1

λmin(Σ)
∥∥∥Aωj: − Âωj:

∥∥∥
2

. (60)

We now show that we can construct AR(2) processes such that the bound in Proposition 1 is tight upto a small constant
factor. Consider an AR(2) process with true model parameters a1 and a2. The autocorrelation matrix Σ2 of this process is

given by Σp =

(
1, γ
γ, 1

)
where γ = a1

1−a2 . The eigenvalues of Σ2 are given by λ1 = 1 + γ and λ2 = 1− γ corresponding

to eigenvectors u1 and u2 respectively. Without loss of generality assume γ > 0 which yields λ1 ≥ λ2. Denote vectors
a = (a1, a2) and â = (â1, â2). Consider an AR(2) process with parameters â1, â2 such that (a− â) = u2. Then assuming
ω = 1, we have that

Gdo1 − S1

S1 − σ2
ε

=
‖a− â‖2 − (a− â)TΣ(a− â)

(a− â)TΣ(a− â)
=

γ

1− γ = (κ(Σ)− 1)/2.

As a approaches the boundary of the stability domain, the process gets more strongly correlated and λmin approaches 0 and
the relative difference in causal and statistical errors diverges.
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Lemma 6 (Bounds on ak). For any AR(p) model such that the non-zero eigenvalues of the companion matrix are distinct
and satisfy |λ| ≤ δ < 1,

|ak| ≤
(
p

k

)
δk. (61)

Proof of Lemma 6. From Lemma 3, we know that

|ak| = |S{1,1,···k times 1,0,··· ,0}({λ1, λ2, · · · , λp})|
= |

∑

{i1<i2<···<ik}∈[p]

λi1λi2 · · ·λik |

≤
∑

{i1<i2<···<ik}∈[p]

|λi1λi2 · · ·λik | (|x+ y| ≤ |x|+ |y|)

≤
∑

{i1<i2<···<ik}∈[p]

δk (|λi| ≤ δ)

=

(
p

k

)
δk.

Lemma 7 (Bounds on γk). For any stochastic process {xt}t∈Z following an AR(p) model the non-zero eigenvalues of the
companion matrix are distinct and satisfy |λ| ≤ δ < 1

|γk| ≤
Cσ2

ε δ
k

1− δ2

Proof of Lemma 7. Using the infinite-moving average representation of Xt (See Brockwell et al. (1991)), we have

xt =

∞∑

i=0

Ai11εt−i (62)

|E[xl, xr]| = |E[(
∞∑

i1=0

Ai111εl−i1)(
∞∑

i2=0

Ai211εr−i2)]| (63)

= |
∞∑

i=0

Ai11A
i+|l−r|
11 E[εtε

T
t ]| (64)

= |σ2
ε

∞∑

i=0

Ai11A
i+|l−r|
11 | (65)

≤ Kpδ
|l−r|σ2

ε

∞∑

i=0

δ2i (66)

≤ Kpσ
2
ε

δ|l−r|

1− δ2
(67)

To see why (66) holds observe that, from Lemma 3,

Ai11 = S{i,0,··· ,0} ≤
∑

{i1≤i2≤···≤ik}∈[p]

|λi1λi2 · · ·λik | ≤ ppδi

Lemma 8 (Lower Bounds on λmin(Σ)). For any stochastic process {xt}t∈Z following an AR(p) model the non-zero
eigenvalues of the companion matrix are distinct and satisfy |λ| ≤ δ < 1

λmin(Σ) ≥ σ2
ε

(1 + δ)2p
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Proof. First, note that

(1 +

p∑

k=1

|ak|) ≤
p∑

k=0

(
p

k

)
δk = (1 + δ)p(Binomial Theorem).

Combining this with the results from Lemma 11 and Proposition 3, we have

λmin(Σ) ≥ 2π inf
ω
f(ω) ≥ σ2

ε

νmax(A)
≥ σ2

ε

(1 +
p∑
k=1

|ak|)2

λmin(Σ) ≥ σ2
ε

(1 +
p∑
k=1

|ak|)2

≥ σ2
ε

(1 + δ)2p
.

Lemma 9 (Upper Bounds on λmax(Σ)). For any stochastic process {xt}t∈Z following an AR(p) model the non-zero
eigenvalues of the companion matrix are distinct and satisfy |λ| ≤ δ < 1

λmax(Σ) ≤ 2Kpσ
2
εn

1

1− δ2

Proof. By Gershgorin’s theorem (Varga 2010), we can derive an upper bound on the maximum eigenvalue of Σn as follows:

λmax(Σn) ≤ max
i∈[n]

(Σii +
∑

j 6=i
|Σij |).

Note that the autocovariance matrix of an AR process which is defined as Σi,j = γ|i−j| (the autocovariance of lag |i− j|)
has a Toeplitz structure. Due to this Toeplitz structure of the autocovariance matrix, we can see that

λmax(Σn) < 2

n∑

i=1

|γi−1| < 2Kpσ
2
ε

n∑

i=1

δi−1

1− δ2
≤ 2Kpnσ

2
ε

1

1− δ2

Corollary 4 (Stability Controls Causal Generalization (AR(p))). Consider an AR(q) process, such that eigenvalues of
its companion matrix satisfy |λ| < δ < 1. For any AR(q) model f ,

|Gω,i(f)− Sω(f)| ≤ KpSω(f)
max {p, q} (1 + δ)2 max{p,q}

(1− δ2)
, (68)

where Kp is some finite constant that depends on the order p of the underlying process.

Proof of Corollary 4. From Proposition 2, we already know that

|Gω,i(f)− Sω(f)| ≤ 2κ(Σmax{p,q})(Sω(f)− σ2
ε ), (69)

From Lemma 8 and Lemma 9, we have that

λmin(Σmax{p,q}) ≥
σ2
ε

(1 + δ)2p

and
λmax(Σmax{p,q}) ≤ 2Kp max {p, q}σ2

ε

1

1− δ2

.

Combining these results, we have the desired result.
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Theorem 2 (Finite sample bounds for VAR(p) models). Let F denote the family of all VAR models of dimension d and
order p. For any n > max {p, q} ∈ N, let µ,m > 0 be integers such that 2µm = n and δ > 2(µ−1)ρm for a fixed constant
0 < ρ < 1 determined by the underlying process. Let {x1, x2, · · ·xn} ∈ Rd be a finite sample drawn from a VAR(q) process.
Then, simultaneously for every f ∈ F , under the square loss truncated at M , with probability at least 1− δ,

Gω,i ≤ ζŜω + ζR̂µ(F) + 3ζM

√
log 4

δ′

2µ
(70)

where ζ = 2κ(Σν), δ′ = δ − 2(µ− 1)ρm, and R̂µ(F) denotes the empirical Rademacher complexity of F .

Proof of Theorem 2. From Proposition , we already have that

|Gω,i(f)− Sω(f)| ≤ (2κ(Σmax{p,q})− 1)(Sω(f)− σ2
ε ). (71)

Additionally, processes that follow VAR models are known to be β mixing and in particular, they are geometrically
completely regular, that is, there exists some 0 < ρ < 1 such that β(k) = Cρk for some constant C, where β(k) denotes
the β mixing coefficient of the process (Mokkadem 1988). Theorem 2 then follows by applying Rademacher bounds (Mohri
et al. 2009, Theorem 1) for generalization in time-series under mixing conditions.

C RELATIVE INTERVENTIONS

xtxt−1

xt−2

xt−3

xt−4

xt−5

xt−6

Figure 7: Causal DAG of an AR(2) model

xtxt−1

xt−2

xt−3

xt−4

xt−5

xt−6

do(xt−4 = xt−4 + α)

Figure 8: Graphical representation of the effect of an intervention do(xt−4 = xt−4 + α) on an AR(2) model. Dependencies
are retained.

Assume for simplicity p = q and d = 1. Let A and Â denote the companion matrices corresponding to the true and estimated
parameters respectively. Then, rewriting the VAR(p) model as a VAR(1) model, we have

xt = Aω11xt−ω +Aω12xt−ω−1 + · · ·+Aω1pxt−ω−p+1 +Aω−1
11 εt−ω+1 + · · ·+A11εt−1 + εt. (72)

Let ζt = Aω−1
11 εt−ω+1 + · · ·+A11εt−1 + εt. Then, Statistical error Sω can be computed as

E[xt − x̂t]2 = E[

p∑

i=1

(Aω1i − Âω1i)xt−ω−i+1 + ζ2
t ] (73)

=

p∑

ij=1

(Aω1i − Âω1i)(Aω1j − Âω1j)Σij + E[ζ2
t ] (74)
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The causal error Gdoω due to the effect of an intervention do(xt−ω = xt−ω + α) can be computed as

Edoω [xt − x̂t]2 = E[

p∑

i=1

(Aω1i − Âω1i)xt−ω−i+1 + (Aω11 − Âω11)α+ ζ2
t ] (75)

=

p∑

ij=1

(Aω1i − Âω1i)(Aω1j − Âω1j)Σij + (Aω11 − Âω11)2α2 + E[ζ2
t ] (76)

To see why (76) holds, recall that E[xt] = 0,E[εt] = 0,E[xt−iεt] = 0 ∀i ∈ N.

Lemma 10 (Difference in Causal and Statistical errors (AR) under Relative Interventions). Let {Xt} follow an AR(q)
process. Then, for any AR(p) model f with parameters {â1, â2, · · · , âp},

Gdoω (f)− Sω(f) = (Aω1,1 − Âω1,1)2α2, (77)

where, A and Â are the corresponding companion matrices of the model and estimated parameters.

D OTHER RESULTS

Proposition 3. (Basu et al. 2015, Proposition 2.2) Consider a (matrix-valued) polynomial A(z) = Id −
p∑
k=1

Akz
k, x ∈

C, p ∈ N, satisfying det(A(z)) 6= 0 for all |z| < 1, µmax(A) ≤ (1 + (νrow + νcol)/2)
2, where

νrow =

p∑

k=1

max
1≤i≤d

d∑

j=1

|Ak(i, j)|, νcol =

p∑

k=1

max
1≤i≤d

d∑

i=1

|Ak(i, j)|.

Lemma 11 (Bounds on spectrum of Σ). Let {Xt} be a second-order stationary time series with spectral density f(ω)
and let Σn denote the autocorrelation matrix of size n × n given by Σn(i, j) = γ|i−j| = E(xt+i, xt+j) for any i, j ∈ Z.
Then the extremal eigenvalues of Σ are bounded as follows.

λmin(Σn) ≥ 2π inf
ω
f(ω) and λmax(Σn) ≤ 2π sup

ω
f(ω) ∀n ∈ N

Furthermore, the bound holds uniformly for all n ∈ N. See Brockwell et al. (1991, Proposition 4.5.3) for a proof of the
Lemma.

E ADDITIONAL EXPERIMENTAL RESULTS

In section 5 we described experiments with simulated autoregressive processes. Here, we provide additional plots from these
experiments.

E.1 STATISTICAL AND CAUSAL ERRORS

In the main paper we have seen that even in very simple AR models the causal error of an OLS regression estimator can be
several times larger than its statistical error. In Figures 9, 10 and 11 we can see that this is also the case for OLS, Lasso
and ElasticNet regression and different process orders. All methods can be seen as the solution to an optimization problem,
minimizing the empirical statistical error plus some penalty term Ω(â), that is,

∑
yi,ŷi

(yi − ŷi)2 + λΩ(â), where ŷi denotes
the model prediction with estimated parameters â and λ > 0 the strength of the regularization. For OLS, the penalty term is
zero. For Ridge and Lasso the penalty is the l2 and l1 norm respectively, i.e. Ω(â) = ‖â‖2 for Ridge and Ω(â) = ‖â‖1 for
Lasso. For ElasticNet we have Ω(â) = µ · ‖â‖1 + (1− µ) · ‖â‖2, where µ is a parameter balancing the l1 and l2 penalty.

We used standard grid-search and 5-fold cross-validation to find the optimal regularization strength. For ElasticNet, we
additional optimized µ with the grid search. Except for Figures 12, we use 100 training and 1000 test samples. For all
experiments, we simulate our processes with noise variance σ2 = 1.
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Figure 9: The causal error G plotted against the statistical error S for process orders p = 3, 5, 7 (from left to right) and
estimators OLS, Lasso and ElasticNet (from top to bottom).

Figure 10: Histogram of the difference |G − S| for orders p = 3, 5, 7.
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Figure 11: The maximal difference of statistical and causal error |G − S| plotted against the condition number of the
autocorrelation matrix κ for process orders p = 3, 5, 7 (from left to right) and estimators OLS, Lasso and ElasticNet (from
top to bottom).
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Figure 12: The absolute difference |G − S| of causal and statistical error plotted against the sample size for process orders
p = 5, sample sizes 10, 100, 1000 using Ridge regression. The blue bars mark the 0, 0.5 and 1 quantile and the black block
goes from the 0.25 to the 0.75 quantile.

Figure 13: The maximal difference of errors |G − S| as well as the generalization bound from Theorem 2 plotted against
condition number of the autocorrelation matrix for process order p = 5, steps predicted ahead ω = 1, 5, 7 (from left to right).
The top row show interventions only on the most recent timestep xt−1 where the bottom row shows interventions on all
previous timesteps before the prediction.
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Dataset electricity traffic
Model observ. across-ts interv. within-ts interv. observ. across-ts interv. within-ts interv.

DeepAR 381.550 ± 21.647 449.781 ± 27.536 375.632 ± 20.851 0.0282 ± 0.0015 0.0288 ± 0.0017 0.0294 ± 0.0018
wavenet 470.691 ± 15.886 799.307 ± 65.722 588.469 ± 39.911 0.0246 ± 0.0003 0.0279 ± 0.0003 0.0299 ± 0.0003

transformer 413.174 ± 31.243 575.946 ± 35.456 407.372 ± 29.073 0.0282 ± 0.0023 0.0312 ± 0.0031 0.0328 ± 0.0033

Table 2: 80% prediction width for observational and interventional forecasts. Averaged over 5 runs with std.

Increasing sample size. As one would expect, in Figure 12, we can see that the absolute difference of the errors decreases
for larger training samples. We show this result for the ridge regression estimator. Results for other estimators are similar.
The respective means are 13.28, 0.48 and 0.18 from left to right and the standard deviations are 264.54, 4.35 and 0.27, which
is hard to read from the plot due to the scale of the outliers.

Violations of causal sufficiency. In Figure 14 we violated the causal sufficiency assumption by introducing a hidden
confounder. To this end we draw a two-dimensional AR(1) process by drawing each entry of the parameter matrix A
independently and uniformly from [−2, 2] and reject matrices that yield non-stationary processes. We then only use one of
the two dimensions as training and test sample. The other one acts as hidden confounder. We also use only the sample of the
observed dimension to estimate the autocorrelation of the process, which is the x-axis of the plots in Figure 14.

Figure 14: The maximal difference of errors |G − S| as well as the generalization bound from Theorem 2 plotted against
condition number of the autocorrelation matrix for process order p = 5, steps predicted ahead ω = 1, 5, 7 (from left to
right).

F ADDITIONAL EXPERIMENTS ON REAL DATA

Following the setup from Section 5, we added two datasets. Data. We conduct additional experiments on the traffic dataset
that records the occupancy rates of car lanes on freeways in the San Francisco Bay Area (Dua et al. 2017) and the electricity
dataset (Dua et al. 2017) that records the electricity consumption of 370 customers hourly.

Results. The additional results on these two datasets in Figure 15 confirm our previous discussion, that the causal disagree-
ment between two models of the same architecture and hyper-parameters can be much higher than their disagreement on the
observational distribution. While there are only smaller differences in the statistical risk between the model architectures,
their causal disagreement differs more. Wavenet continues to have a high causal disagreement. The disagreement can
be viewed as an uncertainty measure over the model training. An additional uncertainty measure can be derived from
the forecasts themselves which represent a distribution over future time-series continuations. Table 2 reports the average
width that captures 80% of the samples drawn from the forecast distribution. We see that this it is yields similar results to
those of Figure 15: The prediction width is wider for the interventional distributions and varies across datasets and model
architectures.

The causal disagreement can be high for some models which implies a high causal risk. This cautions against the use of
statistical deep learning models to forecast what will happen under interventions. The difference we observe in causal
disagreement across models motivates further development of specific model architectures suitable for causal forecasting.
For existing models, the uncertainty measure considering the width of the prediction interval can be an indicator for causal
risk.
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Figure 15: Results of the evaluation of three different deep neural network architectures on the electricity dataset on the
top row and the traffic dataset on the bottom row. The RMSE is computed comparing prediction on the observational data
against the ground truth and comparing the predictions across two models of the same architecture on the observational and
interventional distributions. The results are averaged over 5 runs of training and evaluation and include standard deviation.
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Abstract

Recent work shows that in complex model classes, interpolators can achieve statis-
tical generalization and even be optimal for statistical learning. However, despite
increasing interest in learning models with good causal properties, there is no
understanding of whether such interpolators can also achieve causal generalization.
To address this gap, we study causal learning from observational data through the
lens of interpolation and its counterpart—regularization. Under a simple linear
causal model, we derive precise asymptotics for the causal risk of the min-norm
interpolator and ridge regressors in the high-dimensional regime. We find a large
range of behavior that can be precisely characterized by a new measure of con-
founding strength. When confounding strength is positive, which holds under
independent causal mechanisms—a standard assumption in causal learning—we
find that interpolators cannot be optimal. Indeed, causal learning requires stronger
regularization than statistical learning. Beyond this assumption, when confounding
is negative, we observe a phenomenon of self-induced regularization due to positive
alignment between statistical and causal signals. Here, causal learning requires
weaker regularization than statistical learning, interpolators can be optimal, and
optimal regularization can even be negative.

1 Introduction

We consider the problem of learning the causal influence of multivariate covariates x ∈ Rd on a scalar
target variable y ∈ R purely from observational data and under the presence of hidden confounders.
Formally, given finite samples {(xi, yi)}ni=1 drawn independently and identically (i.i.d) from the
joint observational distribution p(x, y) = p(x)p(y|x), the goal of causal learning is to predict the
effects on the target variable y under interventions on the covariates x. In other words, the goal is to
learn a predictive model that minimizes the expected loss on a random draw from the interventional
distribution pdo(x, y) = p(x)p(y|do(x)), which can be different from the observational distribution.

Recently, Janzing (2019) established a close analogy between statistical and causal learning (albeit
under a highly constructed confounded model). As a consequence, Janzing (2019) suggested that
standard statistical learning-theoretic techniques (such as norm-based regularization) may also help
learn good causal models. However, the classical statistical principles of bias-variance trade-off have
been challenged in recent years by highly complex classes of models that are trained to interpolate the
data and yet achieve remarkable generalization properties across a broad range of problem domains
(Zhang et al., 2021). A large volume of recent work suggests that interpolation can be compatible
with and may even be necessary to achieve optimal statistical generalization in the high-dimensional
regime (Belkin et al., 2018; Belkin et al., 2019a; Liang et al., 2020; Feldman, 2020). Despite the
surge in interest, causal properties of such interpolators have not yet been explored. In this work, we

* denotes equal contribution.
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consider a simple linear causal model in the high-dimensional regime (n, d→∞, d/n ∈ O(1)) and
ask: can interpolators achieve good causal generalization?

1.1 Motivation and Related Work

Resemblance between statistical and causal generalization Causal learning can be regarded
as an instance of the general problem of learning under distribution shifts, where the training
(observational) distribution is shifted from the test (interventional) distribution. In the framework
of out-of-distribution generalization, an interesting proposition for causal learning arises from the
following high-level idea. Observing small sample sizes may induce a similar bias as distribution
shifts. Therefore, techniques for learning models with good out-of-sample generalization (such
as regularization) may also help to learn models with good out-of-distribution generalization and
vice-versa. The literature provides plentiful evidence to support this general principle for different
classes of distribution shifts. For instance, under a broad class of distribution shifts, distributionally
robust optimization is equivalent to norm-based regularization (Xu et al., 2009; Shafieezadeh Abadeh
et al., 2015; Gao et al., 2017; Shafieezadeh-Abadeh et al., 2019; Blanchet et al., 2019; Kuhn et al.,
2019). Analogously, distributionally robust optimization techniques are also employed for statistical
learning under limited samples (Zhu et al., 2020). Particularly relevant to our work is Janzing (2019),
which formally establishes a close analogy between “generalizing from empirical to observational
distributions” and “generalizing from observational to interventional distributions” under a highly
constructed confounding model. This analogy suggests that standard norm-based regularization such
as lasso or ridge, typically used for statistical learning, may also help learn better causal models.

Interpolation can be compatible with statistical learning Explicit norm-based regularization
techniques were initially motivated by the classical learning theory principle of bias-variance trade-
off, which is characterized by a U-shaped generalization curve. This principle recommends to avoid
interpolation and instead suggests to balance data fitting with the complexity of the hypothesis class.
Recently, however, these classical principles have been challenged by deep learning models. Despite
being highly complex with the ability to fit even random labels and often trained to interpolate the
training data, they achieve state-of-the-art out-of-sample generalization across many domains (Zhang
et al., 2021). A partial explanation is provided by the double-descent phenomenon (Belkin et al.,
2019b; Belkin, 2021). Extending the generalization curve beyond the interpolation threshold reveals
two regimes: the classical U-curve in the underparameterized regime and a decreasing curve in the
overparameterized regime. This behaviour is not limited to deep neural networks, but extends to
other settings such as random feature models and random forests (Belkin et al., 2019b; Hastie et al.,
2022; Mei et al., 2021). Follow-up work suggests that in the overparameterized regime, interpolators
can indeed achieve low statistical risk (Belkin et al., 2019a; Liang et al., 2020; Bartlett et al., 2020;
Tsigler et al., 2020; Muthukumar et al., 2020).

Is interpolation compatible with causal learning? On account of the parallels between statistical
(out-of-sample) and causal (out-of-distribution) learning, it is therefore natural to ask: can interpo-
lators also learn good causal models? One line of empirical work suggests that naively applying
distributionally robust learning techniques such as importance reweighting or distributionally robust
optimization approaches (which are equivalent to certain forms of regularization) offers vanishing
benefits over empirical risk minimization in overparameterized model classes (Byrd et al., 2019;
Sagawa et al., 2020; Gulrajani et al., 2021). However, there is also empirical evidence that suggests
that augmenting such techniques with additional explicit norm-based regularization may help to learn
distributionally robust models in the overparameterized regime (Sagawa et al., 2020; Donhauser et al.,
2021). In the context of causal learning, it has been suggested that explicit regularization can be
beneficial and might even need to be stronger than for statistical learning (Janzing, 2019; Vankadara
et al., 2021). Existing work, therefore, remains unclear about the role of explicit regularization in
causal learning, or correspondingly, whether interpolation is compatible with causal learning. In this
work, we take a theoretical approach to systematically address these questions.

1.2 Our Contributions

We provide a first analysis of causal generalization from observational data in the modern, overparam-
eterized and interpolating regime under a simple linear causal model. Specifically, we consider the
interpolating minimum l2 norm least-squares estimator and the family of regularized ridge regression
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estimators in the proportional asymptotic regime. We seek answers to the following questions: is there
a regime where the optimal causal regularization parameter is 0, that is, can we observe benign causal
overfitting? Furthermore, if the optimal causal regularization parameter is positive, how strongly do
we need to regularize? How does the optimal causal regularization compare to the optimal statistical
regularization? While our analysis is exhaustive, we emphasize the results under the assumption of
independent causal mechanisms (Janzing et al., 2010), a standard assumption in causal learning.

• Precise asymptotics of the causal risk (Section 3). We provide precise asymptotics of the
causal risk of the ridge regression estimator as well as the minimum l2 norm interpolator in
the high-dimensional setting: n, d→∞, d/n→ γ ∈ (0,∞). Our results confirm that, similar
to the statistical setting, the causal generalization curve of the min-norm estimator exhibits the
double-descent phenomenon. This is because the variance term diverges at the interpolation
threshold and is decreasing in the overparameterized regime (γ > 1).

• A measure of confounding strength ζ (Section 2.1). We introduce a new measure of confound-
ing strength ζ that quantifies the relative contribution of the “confounding signal” to the “causal
signal”. It can be interpreted as the strength of the distribution shift between the observational
and interventional distributions. While ζ can take any real value in general, it is restricted
to [0, 1] under the assumption of independent causal mechanisms. There, it induces a strict,
model-independent ordering of all causal models that entail the same observational distribution.

• Benign causal overfitting (Section 4). When the causal signal dominates the statistical signal
(ζ < 0), we observe a phenomenon of self-induced regularization due to the confounding
signal. As a consequence, the optimal causal regularization can be 0 or negative even if the
optimal statistical regularization is strictly positive. Under the assumption of independent causal
mechanisms, however, we show that there is no benign causal overfitting. This is in contrast to
benign statistical overfitting, which can occur in the highly underparameterized regime (γ → 0).

• Optimal causal vs. statistical regularization (Section 5). We show that causal learning requires
weaker regularization than statistical learning when the confounding strength ζ is negative.
However, when ζ > 0 and in particular under the principle of independent causal mechanisms,
we show that causal learning requires stronger regularization than statistical learning. More
specifically, the optimal causal regularization is strictly increasing in confounding strength.

2 Problem Setup

x

z

y

ε

β

M α

(a)

x y

ε̃

β̃

(b)

Figure 1: (a) Graphical model of
the causal model defined in (1).
(b) The usual statistical model.
In both figures, observed random
variables are shaded and unob-
served variables are white.

We consider a linear causal model with parameters M ∈ Rd×l, α ∈ Rl, β ∈ Rd with l ≥ d and
σ2 > 0 described via the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , x = Mz , y = xTβ + zTα+ ε . (1)

The covariates x ∈ Rd and the target y ∈ R are confounded through z ∈ Rl, which follows
a standard normal distribution. This structure implies that Ex = 0 and the covariance of x is
Σ := Cov x = MMT . A graphical representation of this causal model is given in Figure 1a.
The observational joint distribution of this causal model is given by p(x, y) = p(x)p(y|x), where
x ∼ N (0,Σ) and y|x ∼ N (xT β̃, σ̃2). Here, the statistical parameter β̃ := β + Γ consists of
the causal parameter β and a confounding parameter Γ := M+Tα, where M+T is shorthand
for (M+)T and M+ denotes the Moore-Penrose inverse of M . The statistical noise is given by
σ̃2 := σ2 + ‖α‖2 − ‖Γ‖2Σ, where ‖x‖2Σ := xTΣx denotes the generalized norm. 1 Note that the
observational distribution alone cannot distinguish the causal model from the one in Figure 1b. The

1Note that ‖α‖2 − ‖Γ‖2Σ = ‖α‖2I−M+M ≥ 0, where I −M+M is the orthogonal projection onto kerM .
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goal of statistical learning is to predict y after observing x, which is captured by the conditional
distribution p(y|x). In contrast, the goal of causal learning is to predict y after manipulating or
intervening on x. This is formally captured by Pearl’s do-calculus (Pearl, 2009), which describes
interventions on random variables as a shift in the joint distribution. Intervening on x with the value
x0, denoted as do(x = x0), removes all arrows to x and sets x = x0. In our causal model (1), the
intervention do(x = x0) removes the arrow z → x and yields the updated structural causal equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , x = x0 , y = xT0 β + zTα+ ε .

The corresponding distribution of y after intervening on x is therefore given by y|do(x = x0) ∼
N (xT0 β, σ̃

2 + ‖Γ‖2Σ). Since arbitrary interventions can introduce arbitrary distribution shifts, we
consider the natural class of interventions drawn from the observational marginal distribution on x.
This yields the interventional joint distribution pdo(x, y) = p(x)p(y|do(x)) with the slight abuse of
notation do(x) in which the random variable x and its value coincide.

Causal learning from observational data Assume we are given i.i.d. samples {(xi, yi)}ni=1 from
the observational joint distribution p(x, y), which we collect in X ∈ Rn×d and Y ∈ Rn. The
usual statistical learning aims for the observational conditional p(y|x), which means that train and
test distributions coincide. Causal learning aims for the interventional conditional p(y|do(x)), a
distribution shift problem for which train and test distributions differ. We define the corresponding
causal risk RC and statistical risk RS of any linear regressor β̂ ∈ Rd under the squared loss as

RC(β̂) := ExEy|do(x)(x
T β̂ − y)2 and RS(β̂) := ExEy|x(xT β̂ − y)2 . (2)

The following proposition (proven in Appendix A) characterizes the risks under the model (1).

Proposition 2.1 (Causal and Statistical Risk). For any β̂ ∈ Rd, the risks defined in Eq. (2) satisfy

RC(β̂) = ‖β̂ − β‖2Σ + σ̃2 + ‖Γ‖2Σ and RS(β̂) = ‖β̂ − β̃‖2Σ + σ̃2 .

Therefore, β is the optimal causal parameter and β̃ is the optimal statistical parameter. In the
following, we simply refer to them as causal and statistical parameters.

2.1 A New Measure of Confounding Strength

Since the interventional distribution generally differs from the observational distribution, we require
a measure that quantifies how this shift influences causal learning from observational data.

Signal-to-noise ratios (SNRs) Before we define our measure of confounding strength, we first
define the statistical and causal signal-to-noise ratios, which help to intuitively understand our
confounding strength measure. Recall that every causal model entails a statistical model since
the causal parameter β and the confounding parameter Γ jointly specify the statistical parameter
β̃ = β + Γ. The statistical SNR is defined as usual by SNRS := ‖β̃‖2/σ̃2. For the causal SNR, a
natural notion would be ‖β‖2/(σ̃2 + ‖Γ‖2Σ) if the learning algorithm had access to data from the
interventional distribution y|do(x) ∼ N (xTβ, σ̃2 +‖Γ‖2Σ); but since we are constrained to data from
the observational conditional y|x ∼ N (xT β̃, σ̃2), the corresponding causal SNR, which quantifies
the hardness of the learning problem, needs to take this into consideration. Accordingly, we consider
the causal SNR as the ratio of the alignment between the statistical and causal parameters and the
variance of the observational conditional. Formally, we define it as SNRC := 〈β, β̃〉/σ̃2. In what
follows, we therefore often refer to 〈β, β̃〉 as the causal signal and ‖β̃‖2 as the statistical signal.
Correspondingly, we refer to 〈β̃ − β, β̃〉 = 〈Γ, β̃〉 as the confounding signal, which is the alignment
between the confounding parameter Γ and the statistical parameter β̃.

Confounding strength Regression on observational data implicitly assumes that the interventional
distribution coincides with the observational distribution, while it can be shifted in general. To
quantify the impact of this distribution shift on the corresponding causal risk, we introduce a new
confounding strength measure ζ. It measures the relative contribution of the confounding signal to
the statistical signal and is defined by

ζ :=
〈Γ, β̃〉

〈Γ, β̃〉+ 〈β, β̃〉
=
〈Γ, β̃〉
‖β̃‖2

. (3)
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Other notions of confounding strength are possible, but we will see later that this definition is
well-suited to capture the shift strength for causal learning from observational data. Without further
restrictions, ζ can take any value in R. This measure divides the causal models into the following
three regimes, depending on the relationship between causal and statistical signal:

• ζ ≥ 1: the causal signal 〈β, β̃〉 is non-positive, which implies that causal and statistical parameters
are orthogonal or negatively aligned. Statistical learning is adversarial to causal learning.

• 0 < ζ < 1: causal and statistical parameters are positively aligned but the causal signal is weaker
than the statistical signal ‖β̃‖2, for example β = β̃/2.

• ζ ≤ 0: the causal signal dominates the statistical signal, for example β = 2β̃.

The SNRs are related to the confounding strength measure via SNRC = (1− ζ) SNRS. In particular,
the causal signal decreases as the confounding strength increases.

The regime 0 ≤ ζ ≤ 1 is practically most relevant Causal learning often requires strong as-
sumptions because causal models cannot be uniquely identified by their observational distribution.
A standard assumption is the principle of independent causal mechanisms (ICM) (Janzing et al.,
2010; Lemeire et al., 2013; Peters et al., 2017), which informally asserts that causal mechanisms
share no information. In our causal model (1), a corresponding assumption could be that the causal
mechanisms α and β are drawn from rotationally invariant distributions. This implies that 〈β,Γ〉 → 0
as d → ∞, which in turn falls in the regime 0 ≤ ζ ≤ 1. While our following analysis covers all
possible causal models, we pay special attention to this regime because it might be of highest practical
relevance. Note that for 〈β,Γ〉 = 0, our measure of confounding strength coincides with the measure
ζ ′ = ‖Γ‖2/(‖Γ‖2 + ‖β‖2) introduced by Janzing et al. (2017). It measures the relative contribution
of causal and confounding signal in terms of lengths rather than inner products.

3 Causal and Statistical Risk of High-Dimensional Regression Models

Causal learning is extremely challenging, because it requires scarcely available interventional data
or has to rely on other information such as exogenous (Rothenhäusler et al., 2021) or instrumental
variables (Angrist et al., 1991). In our setting where only observational data are available, causal
learning requires additional model assumptions. One such approach has been followed by the
Concorr method (Janzing, 2019) which leverages the ICM assumption to make an improved choice
of regularization parameter under a linear regression model. To fully characterize the effect of
regularization on causal generalization, we consider two estimators for learning causal models from
observational data (X,Y ) ∈ Rn×d × Rn: the min-norm interpolator and ridge regressors. The
min-norm interpolator is the minimum l2 norm solution to the least squares regression problem

β̂0(X,Y ) := arg min{‖β̂‖2 : β̂ ∈ arg min
β̂∈Rd

‖Y −Xβ̂‖2}. (4)

A closed form is given by β̂0(X,Y ) = (XTX)+XTY . For λ > 0, the ridge regressor solves

β̂λ(X,Y ) := arg min
β̂∈Rd

1

n
‖Y −Xβ̂‖2 + λ‖β̂‖2 , (5)

which has the explicit solution β̂λ(X,Y ) = (XTX+nλId)
−1XTY . The min-norm interpolator can

be obtained as a limiting case from the ridge regression solution via β̂0(X,Y ) = limλ→0+ β̂λ(X,Y ).
Whenever it is clear from the context, we drop the dependence of the predictors on X and Y .

Before proceeding with the analysis, we motivate the idea that appropriate regularization can help to
learn causal models from purely observational data. To this end, we compare regularization chosen
by statistical cross validation to regularization based on an interventional validation set in Figure 2.
Since cross validation implicitly assumes that there is no confounding, it is close to Bayes optimal for
ζ = 0 when n� d. However, as confounding increases, it falls behind regularization based on the
interventional validation set. The latter even yields Bayes optimal risk again in the purely confounded
setting ζ = 1, where the lack of causal signal (β = 0) is encoded by infinite regularization. While
we might not have access to an interventional validation set in practice, our theory will show that
knowledge of confounding strength is sufficient for choosing appropriate regularization. Finally, we
want to caution that even though regularization can help, it does not remove the hardness of causal
learning. Reliable causal inference still requires stronger assumptions or additional data.
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Figure 2: Causal excess risk of ridge predictors
based on n = 30, 000 samples from the obser-
vational distribution. Regularization is chosen
either by cross validation or based on a valida-
tion set from the interventional distribution of
same size. Each model has fixed dimensions
d = 300, l = 350 and SNRS = 5, but differ-
ent underlying confounding strengths under the
constraint 〈β,Γ〉 = 0. The benefits of optimal
regularization over cross validation increase with
confounding strength.

3.1 Precise Asymptotics of the Causal and Statistical Risks

In this section, we provide precise asymptotics for the causal and statistical risks of the min-norm in-
terpolator and ridge regression solutions in the high-dimensional regime. This regime is characterized
by both n, d→∞ such that d/n→ γ ∈ (0,∞), where γ is called the overparameterization ratio.
We distinguish between the underparameterized regime (γ < 1) and the overparameterized regime
(γ > 1). All proofs for this section are deferred to Appendix B. Since the predictors β̂ = β̂(X,Y )
are random variables in the training data X and Y , so is their corresponding causal risk. We consider
the expectation of this risk under Y conditioned on X . According to Proposition 2.1, it is given by
RCX(β̂) := EY |XRC(β̂) = EY |X‖β̂ − β‖2Σ + σ̃2 + ‖Γ‖2Σ . Due to its simple form, similar to the
usual statistical risk, the causal excess risk can be decomposed into bias and variance:

EY |X‖β̂ − β‖2Σ = ‖EY |X β̂λ − β‖2Σ︸ ︷︷ ︸
=:BCX(β̂λ)

+EY |X‖β̂λ − EY |X β̂λ‖2Σ︸ ︷︷ ︸
=:V CX (β̂λ)

. (6)

The next theorem is one of our main results. It gives a closed-form expression for the limiting
causal bias and variance of the min-norm interpolator and ridge regression estimators. We make the
simplifying assumption of isotropic covariance Σ = Id. The proof relies on recent techniques from
random matrix theory. It employs arguments similar to Dicker (2016), Dobriban et al. (2018), and
Hastie et al. (2022) and can correspondingly be extended to arbitrary covariances under boundedness
assumptions on the spectrum. We leave such extensions for future work and focus on thoroughly
understanding the isotropic causal model, because it already exhibits rather rich behavior.
Theorem 3.1 (Limiting Causal Bias-Variance Decomposition for the Ridge Estimator). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and fix σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it
holds almost surely in X for every λ > 0 that

BCX(β̂λ)→ BCλ = ω2 + r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) and (7)

V CX (β̂λ)→ VCλ = σ̃2γ(m(−λ)− λm′(−λ)) , (8)

where m(λ) = ((1− γ − λ)−
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. Therefore
RCX(β̂λ)→ RCλ = BCλ + VCλ + σ̃2 + ω2. The corresponding limiting quantities for the min-norm
interpolator can be obtained by taking the limit λ→ 0+ in (7) and (8).

From these limiting expressions we can see that the causal risk curve of the min-norm interpolator
exhibits the double descent phenomenon: it diverges at the interpolation threshold γ = 1 due to the
variance term and decreases again for γ > 1. A corresponding visualization is given in Figure 4.
Explicit regularization dampens the divergence of the variance term. While we are primarily interested
in the causal risk, the corresponding statistical risk serves as a natural baseline. An analogue set
of results for the statistical risk is given in Appendix C. These results have already been derived
by Hastie et al. (2022) and can also be recovered as a special case of our causal results: for fixed
statistical parameters β̃ and σ̃2, the statistical risk coincides with the causal risk of an unconfounded
causal model defined with β = β̃, σ2 = σ̃2, and α = 0. In particular, the corresponding statistical
limiting expressions are the same as in Theorem 3.1 after setting η = ω2 = 0.

Optimal statistical and causal regularization By directly optimizing the closed form expressions
for limiting causal and statistical risks we can find the optimal causal and statistical regularization.

6
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the constant σ̃2+ω2) of the min-norm interpolator
for different causal signal strengths S. Dashed
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Figure 4: Limiting bias-variance decomposition
and causal excess risk of the min-norm interpola-
tor (black) and optimally regularized ridge regres-
sion (red). Crosses indicate finite-sample risks of
n = d/γ samples with d = 300. The finite risks
are well-predicted by their theoretical limit.

For any γ ∈ (0,∞), the optimal statistical regularization λ∗S(γ) := arg infλ∈(0,∞)RSλ can be
expressed in closed-form as λ∗S(γ) = SNRS

−1 γ. The closed-form expression for the optimal causal
regularization parameter λ∗C(γ) := arg infλ∈(0,∞)RCλ is a root of a 4th order polynomial and as
such considerably intricate. For readability, we do not include it here. We investigate the behavior of
the optimal causal and statistical regularization in Section 4 and 5.

3.2 Basic Behavior of the Limiting Risk

We start to analyze the results by assessing the basic behavior of the limiting causal risk. The causal
risk of the null estimator β̂ = 0 serves as a natural baseline to evaluate the performance of the the
min-norm interpolator and the ridge regression estimators.

Regimes of the min-norm interpolator Theorem 3.1 characterizes the limiting causal risk of the
min-norm interpolator. Its behavior is controlled by the causal signal-to-noise ratio, which we defined
as SNRC = (1−ζ) SNRS. However, as we will later see, the causal risk of the min-norm interpolator
can be lower than null risk when ζ < 0.5. To distinguish the regimes of the min-norm interpolator, it
is therefore convenient to consider the closely related quantity S = (1− 2ζ) SNRS. It distinguishes
between three different regimes (visualized in Figure 3).

• For S > 1, the causal signal dominates the noise and the min-norm interpolator can perform
better than null risk in both under- and overparameterized regime.

• For 0 ≤ S ≤ 1, the causal signal is weaker than the noise. Only the underparameterized regime
can beat the null risk, whereas the overparameterized regime is always worse.

• The previous two cases resemble the behavior of the statistical risk in the corresponding regimes
of the statistical SNR. Contrary to the statistical risk, however, the causal risk admits a third
regime S < 0. In this case, the min-norm interpolator always performs worse than null risk.
Here, the causal signal 〈β, β̃〉 is dominated by the confounding signal 〈Γ, β̃〉, and interpolating
the observational data overfits to the confounding.

Bias and variance The bias-variance decomposition of the causal risk given in Theorem 3.1 is
visualized in Figure 4 for the min-norm interpolator and the optimally ridge-regularized regressor.
The figure also shows the causal risk based on finite samples from the model, which is in high
agreement with our asymptotic results. We compare the causal risk to the corresponding statistical
risk. First note that the causal and statistical variance terms coincide exactly for both the min-norm
interpolator and ridge regressors. This is because the variance term of the squared loss depends only
on the variance in the training data, but not on the target parameter β or β̃. Since the training data are
the same for both causal and statistical learning, the variance terms trivially coincide.
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For the min-norm interpolator, as in the statistical case, the variance term is responsible for the
double-descent behavior of the causal risk curve because it explodes at the interpolation threshold
γ = 1 and decreases in the overparameterized regime γ > 1. In the statistical setting, the bias strictly
increases in the overparameterized regime and, as a consequence, the best risk is always achieved
in the underparameterized setting. In contrast, the causal bias of the min-norm interpolator can be
decreasing in the overparameterized regime and therefore the optimal causal risk can be achieved
in the highly overparameterized regime γ →∞. However, this only happens in the regime S < 0
where the risk of the min-norm interpolator is always worse than null risk.

Figure 4 shows the causal risk of the optimally regularized ridge regression estimator which trivially
is always below that of the min-norm risk. Similar to the statistical setting, the corresponding
generalization curve does not exhibit the double descent phenomenon. There are qualitatively
different reasons for why regularization helps in statistical and causal learning. For both statistical
and causal learning, regularization decreases the shared variance, which corresponds to the finite-
sample error. However, while the statistical bias always increases with regularization, the causal bias
can actually decrease. This implies that regularization not only helps with the finite-sample error, but
can also reduce the error due to confounding.

Higher confounding implies higher causal risk for all λ So far, we have investigated the causal
risk under a single causal model. Now we can compare different causal models using the confounding
strength measure ζ introduced in Section 2.1. The next proposition shows that ζ governs the hardness
of causal learning from observational data. Specifically, the causal risk of the ridge regression for any
λ ∈ (0,∞) increases as the causal model becomes more confounded. A proof is given in Appendix D.

Proposition 3.2 (Causal Risk Increases with Confounding Strength). Consider the family of
causal models parameterized as in (1) that entail the same observational distribution. Let C1 and C2

be two such causal models with confounding strengths ζ1 and ζ2 and alignments η1 and η2 (defined
in Theorem 3.1), respectively. Then for all λ, γ ∈ (0,∞),

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1

λ > RC2

λ .

In particular, for any fixed η, the measure of confounding strength ζ establishes a strict ordering of
causal models. This includes the ICM under which η = 0.

4 Benign Causal Overfitting

A large number of recent works suggest that minimum-norm interpolators can be optimal for statistical
generalization (Belkin et al., 2018; Belkin et al., 2019a; Muthukumar et al., 2020). This phenomenon
is often referred to as benign overfitting. Moreover, the optimal statistical generalization may even be
achieved for negative regularization λ < 0 (Kobak et al., 2020; Bartlett et al., 2020; Tsigler et al.,
2020). It is unclear, however, if such interpolators, which have implicit small-norm biases, can also be
optimal when there is a shift between the training and test distributions. In particular, we ask: can the
optimal causal regularization be 0 or even negative, that is, do we observe benign causal overfitting?
To show that the optimal regularization can be negative, we simply show that the derivative of the
causal risk at 0 is positive. We summarize our key findings in Theorem 4.1.
Theorem 4.1 (Optimal Regularization can be Negative). For any causal model parameterized as
in (1), the following cases distinguish between whether the min-norm interpolator is optimal or not.

1. For negative confounding strength ζ < 0 the optimal causal regularization λ∗C can be 0 or even
negative. A necessary and sufficient condition for λ∗C ≤ 0 depends on the difference in causal
and statistical signal-to-noise ratios and is given by

SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
.

2. For positive confounding strength ζ > 0 the optimal causal regularization is positive λ∗C > 0
andRC0 > RCλ∗C , hence regularization is beneficial. This includes the ICM.

In the highly overparameterized regime (γ →∞), the benefit of explicit regularization vanishes and
both the causal and statistical risks of the ridge regression estimator converge to their corresponding
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null risks, independently of the regularization. We do not refer to this as benign overfitting. However,
we can observe benign causal overfitting when the causal SNR is larger than the statistical SNR
(ζ < 0), which happens when causal and statistical parameter are strongly aligned. This implies that
the norm of the statistical parameter is smaller than the norm of the causal parameter. Consequentially,
statistical regressors are implicitly biased towards solutions of smaller norm and causal learning
exhibits self-induced regularization. Compare this to benign statistical overfitting, which happens
for certain alignments between the regression parameter β̃ and the covariance matrix Σ. In our
isotropic setting Σ = Id, we can therefore never observe benign statistical overfitting, but we can
observe benign causal overfitting. This phenomenon occurs in both the underparameterized as
well as the overparameterized regime. The range of γ for which the optimal causal regularization
is negative increases with the dominance of the causal signal over the statistical signal. As γ
approaches the interpolation threshold, it becomes harder for the optimal causal regularization to
be negative. When the causal SNR is smaller than the statistical SNR (ζ > 0) and in particular
under the ICM (0 < ζ ≤ 1), the optimal causal regularization is strictly positive and the benefit
of explicit regularization does not vanish. This can be the case even when the optimal statistical
regularization vanishes. To see this consider the statistical risk in the highly underparameterized
regime γ → 0. In this regime, the benefit of explicit regularization vanishes and the min-norm
interpolator indeed achieves the optimal statistical risk. The optimal causal regularization is given
explicitly by λ∗C = ζ/(1 − ζ) for 0 ≤ ζ ≤ 1 and λ∗C = ∞ for ζ > 1. This is strictly positive and
increasing in the confounding strength ζ, and in fact diverges as ζ approaches 1 (see Theorem 5.2).

5 On Optimal Regularization

In this section, we investigate two key questions which are natural in the context of our work. How
does the optimal causal regularization λ∗C compare to the optimal statistical regularization λ∗S? What
is the dependence of the optimal causal regularization λ∗C on the confounding strength ζ?

Optimal statistical vs. causal regularization When the training and test distributions coincide,
approaches such as cross-validation or information criteria (for example AIC or BIC) can be used to
estimate the regularization parameter for optimal out-of-sample generalization. However, choosing
the correct regularization parameter for causal learning can be challenging without interventional data.
To understand the optimal causal regularization, it is natural to compare it to the optimal statistical
regularization, which can usually be estimated from data. Interestingly, our analysis reveals that when
confounding strength is positive ζ > 0 and in particular under the ICM one needs to regularize more
strongly for causal generalization than for statistical generalization. However, when the confounding
strength is negative, that is, when the causal signal dominates the statistical signal, the optimal causal
regularization λ∗C can actually be smaller than the optimal statistical regularization λ∗S . We formally
present this result in Theorem 5.1.
Theorem 5.1 (Optimal Statistical vs. Causal Regularization). For any causal model parameter-
ized as in (1), the condition ζ = 0 defines a phase transition for the optimal regularization via

ζ < 0 ⇐⇒ λ∗C < λ∗S , ζ = 0 ⇐⇒ λ∗C = λ∗S , and ζ > 0 ⇐⇒ λ∗C > λ∗S .

In particular under the ICM, the optimal causal regularization λ∗C is always strictly larger than the
optimal statistical regularization λ∗S , unless ζ = 0, in which case they coincide.

Dependence on confounding strength ζ The problem of causal learning from observational data
is a distribution shift problem where the distribution of the training data is shifted from that of the test
distribution. As discussed earlier in Proposition 3.2, the confounding strength measure ζ quantifies
the strength of this distribution shift. Therefore, we expect the optimal causal regularization to
increase with confounding strength. Theorem 5.2 indeed confirms this intuition.
Theorem 5.2 (Increasing Confounding Strength Requires Stronger Regularization). Consider
the family of causal models parameterized as in (1) that entail the same observational distribution.
The optimal causal regularization λ∗C only depends on the confounding strength ζ and λ∗C is an
increasing function in ζ. More specifically, using % = −SNRS

−1 γmax {1, γ}/(1− γ)2:

% < ζ < 1 =⇒ λ∗C ∈ (0,∞) with ∂ζλ∗C > 0 ,

λ∗C = 0 if ζ ≤ % and λ∗C =∞ for ζ ≥ 1.
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6 Summary and Extensions

We characterize the role of explicit regularization for causal learning from observational data by
computing the asymptotic risk of ridge-regularized regressors and the min-norm interpolator (Theorem
3.1). Under the principle of independent causal mechanisms (ICM), we find that causal learning
requires stronger regularization than statistical learning (Theorem 5.1). A practical implication is that
the regularization parameter for causal learning should be chosen larger than what is suggested by
cross-validation. We can precisely state how much larger based on an estimate of confounding strength
(Janzing et al., 2017; Janzing et al., 2018). Beyond ICM, we show that strong alignments between
causal and statistical parameters can cause self-induced regularization and lead to benign causal
overfitting (Theorem 4.1). One could consider generalizing our assumptions: arbitrary covariances,
shifts in the marginal distributions of covariates, soft interventions, more complex hypothesis classes,
or non-linear causal relationships. Since the linear model already exhibits rich behavior, we focus in
this paper on understanding the simple setting. Below, we briefly discuss extensions of our analysis
to causal learning under soft interventions, non-linearity, and non-Gaussianity.

Soft interventions It is not always appropriate to consider causal learning under hard interventions.
Instead, it is often of interest to consider soft interventions. In these settings, the qualitative statements
derived from our analysis still hold. To illustrate this, we consider the class of shift interventions
where the structural dependence of the covariates x is not destroyed as in the case of hard interventions
but the observed covariates are merely perturbed (i.e., interventions of the form do(x := x + ν)).
Then it turns out that Causal risksoft = Causal riskhard + Statistical risk. From our results, it then
follows that under ICM, λstatistical ≤ λcausal

soft ≤ λcausal
hard This also supports our intuition since under soft

interventions, we typically aim to achieve a tradeoff between statistical and causal predictability. We
include a complete analysis under shift interventions in Appendix F.

Extensions to non-linear models It is feasible to extend the analysis to structural causal models
that arise in a reproducing kernel Hilbert space corresponding to a positive definite kernel (i.e, where
the best statistical model f̃ and the best causal model f are functions in some RKHS). There are two
major technical challenges to deriving the theoretical analysis in such non-linear settings. Both are
beyond what can be done in this paper and are left for future work, but we briefly outline them below.

1. Extend the definition of confounding strength ζ beyond the linear setting. Since such a
definition is non-trivial already in the linear setting, it is challenging to meaningfully generalize
this to the non-linear setting. However, under non-linear causal models in the RKHS, we can
naturally extend this definition by replacing the Euclidean norms with functional norms in the
RKHS. Generalizing the analysis beyond this setting would require further careful consideration.

2. Derive limiting expressions for causal risk of regularized regressors in a non-linear hypoth-
esis class. In the case of kernel regression, this would still be feasible via recent random matrix
theory results [27]. By optimizing the limiting expressions with respect to the regularization
parameter, one can obtain the parameter that achieves the optimal causal risk and subsequently
identify the relationship between optimal causal regularization and confounding strength.

Beyond Gaussianity The analysis can be extended beyond the Gaussian setting by considering
random variables generated by finite mixtures of Gaussians. Due to the universality phenomenon in
the high-dimensional limit, we believe that our limiting expressions (and the qualitative messages
derived henceforth) would be rather robust to shifts in the marginal distribution as long as moments
of order (4 + δ) for some δ > 0 are bounded. We conducted experiments to verify this claim and the
corresponding results can be found in Appendix G. They show that for distributions with finite 4th
moments, the finite-sample risks of the min-norm interpolator and causally optimally regularized
ridge regressor closely match the theoretically derived asymptotic risks.
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Interpolation and Regularization for Causal Learning
Supplementary Materials

A Proof of Proposition 2.1

For the statistical risk, we first need one standard result about the distribution of a multivariate normal
random variable conditioned on an affine function:
Lemma A.1. Consider a multivariate normal random variable X ∼ N (µ,Σ) with mean µ ∈ Rd
and covariance Σ ∈ Rd×d. Then for any A ∈ Rk×d, b ∈ Rk, and y ∈ Rk it holds

X|(AX + b) = y ∼ N (µ+ ΣAT (AΣAT )+(y −Aµ− b),Σ− ΣAT (AΣAT )+AΣ) .

In particular, if X is a standard normal random variable (Σ = Id, µ = 0) and b = 0, it is

X|AX = y ∼ N (AT (AAT )+y, Id −AT (AAT )+A)

Proof. Let Y = AX + b. The joint distribution of X and Y is again a multivariate normal, because
it can be written as an affine transformation of X:(

X
Y

)
=

(
Id
A

)

︸ ︷︷ ︸
=:A′∈R(d+k)×d

X +

(
0d
b

)

︸ ︷︷ ︸
=:b′∈Rd+k

= A′X + b′ ,

which implies that
(
X
Y

)
= A′X + b′ ∼ N (A′µ+ b′, A′Σ(A′)T ) = N (

(
µ

Aµ+ b

)
,

(
Σ ΣAT

AΣ AΣAT

)
) .

The claim then follows from the standard formula for conditionals of multivariate normal distributions,

which states that if
(
Z1

Z2

)
∼ N (

(
µ1

µ2

)
,

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
), then

Z1|Z2 = z ∼ N (µ1 + Σ1,2Σ+
2,2(z − µ2),Σ1,1 − Σ1,2Σ+

2,2Σ2,1) .

Proposition 2.1 (Causal and Statistical Risk). For any β̂ ∈ Rd, the risks defined in Eq. (2) satisfy

RC(β̂) = ‖β̂ − β‖2Σ + σ̃2 + ‖Γ‖2Σ and RS(β̂) = ‖β̂ − β̃‖2Σ + σ̃2 .

Proof. The key step for this proof is to characterize the distribution of y under the do-intervention
y|do(x) and the usual observational conditional y|x. We start with the proof for the causal risk
under the do-intervention. Intervening on x under the causal model given by Eq. (1) corresponds to
removing all arrows to x, which corresponds to the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , y = xTβ + zTα+ ε .

In this model, z acts as additional independent noise on y through zTα ∼ N (0, ‖α‖2), which implies
that y|do(x) ∼ N (xTβ, ‖α‖2 + σ2). Equivalently, y|do(x) has the same distribution as xTβ + ε′

with ε′ ∼ N (0, σ̃2 + ω2) because ‖α‖2 + σ2 = σ̃2 + ω2. This lets us compute the causal risk of a
linear predictor β̂ ∈ Rd as

RC(β̂) = ExEy0|do(x)

(
xT β̂ − y

)2

= ExEε′
(
xT
(
β̂ − β

)
− ε′

)2

= Ex
(
xT
(
β̂ − β

))2

− 2Ex
[
xT
(
β̂ − β

)
Eε′ε′︸ ︷︷ ︸

=0

]
+ ExEε′ (ε′)

2

=
∥∥∥β̂ − β

∥∥∥
2

Σ
+ σ̃2 + ω2 , (ExxxT = Σ)

13

interpolation and regularization for causal learning 135



which proves the claim for the causal risk. The proof for the statistical risk is analogous once we
have characterized the conditional distribution y|x under the causal model. Recall that Σ = MMT ,
Γ = M+Tα, and ω2 = ‖Γ‖2Σ. We first observe that x = Mz is a linear map of the Gaussian
distribution z ∼ N (0, Il), for which Lemma A.1 yields

z|x ∼ N (MT (MMT )+x, I −MT (MMT )+M)

and therefore zTα|x ∼ N (αTMT (MMT )+x, ‖α‖2 − αTMT (MMT )+Mα)

= N (xTΓ, ‖α‖2 − ‖Γ‖2Σ) ,

where the last equality used the identity

αTMT (MMT )+Mα = αTM+MMTM+Tα = ΓTΣΓ = ‖Γ‖2Σ = ω2 .

Since y = xTβ + zTα+ ε, it follows that

y|x ∼ N (xT (β + Γ), σ2 + ‖α‖2 − ω2) = N (xT β̃, σ̃2) ,

which concludes the proof.

B Proofs for Section 3.1

The bias-variance decomposition of the causal risk is based on the following general lemma:
Lemma B.1 (Bias-Variance Decomposition for General Norm). Consider a random variable Z
on Rd, a constant c ∈ Rd, and the general norm ‖x‖2A = xTAx for some positive-definite A ∈ Rd×d.
Then we have the decomposition

EZ ‖Z − c‖2A = ‖EZ − c‖2A + EZ ‖Z − EZZ‖2A .

An alternative form of the variance term is given by EZ ‖Z − EZZ‖2A = Tr [CovZ ·A].

Proof. Let E := EZ and µ := EZ. It is

E ‖Z − c‖2A = E ‖(Z − µ) + (µ− c)‖2A
= E ‖Z − µ‖2A + E ‖µ− c‖2A + 2E(Z − µ)T︸ ︷︷ ︸

=0

A(µ− c)

= E ‖Z − µ‖2A + E ‖µ− c‖2A ,

which proves the first part of the statement. For the second part, let ΣZ := EZZT and denote the
Hadamard product between matrices A,B ∈ Rd×d by (A�B)i,j = Ai,jBi,j . It is

E ‖Z − µ‖2A = EZTAZ − 2EZTAµ+ µTAµ

=
n∑

i,j=1

(ΣZ �A)i,j − µTAµ

= Tr [ΣZ ·A]− µTAµ (
∑n
i,j=1(A�B)i,j = Tr(A ·B))

= Tr [ΣZ ·A]− Tr
[
AµµT

]
(Tr(baT ) = aT b)

= Tr
[
(ΣZ − µµT ) ·A

]
(Tr(B) = Tr(BT ) and linearity of trace)

= Tr [CovZ ·A] . (CovZ = EZZT − µµT )

Proposition B.2 (Causal Bias-Variance Decomposition for the Ridge Estimator). For any λ > 0,
the expectation over the causal risk of the ridge regression estimator β̂λ conditioned on X admits the
bias-variance decomposition

RCX(β̂λ) = ‖EY |X β̂λ − β‖2Σ︸ ︷︷ ︸
=:BCX(β̂λ)

+EY |X‖β̂λ − EY |X β̂λ‖2Σ︸ ︷︷ ︸
=:V CX (β̂λ)

+σ̃2 + ‖Γ‖2Σ , (9)

whereBCX(β̂λ) = ‖(I−(Σ̂+λId)Σ̂)β̃−Γ‖2Σ and V CX (β̂λ) = σ̃2

n Tr[Σ̂(Σ̂+λId)
−2Σ]. The empirical

covariance matrix of X is denoted by Σ̂ := XTX/n.
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Proof. Recall that RCX(β̂λ) = EY |X
∥∥∥β̂λ − β

∥∥∥
2

Σ
. The first part of the statement follows directly

from Lemma B.1 with β̂λ as a random variable in Y |X and β. The remainder of the proof consists
of computing expectation and covariance of the ridge regression solution β̂λ = β̂λ(X,Y ) under
the distribution Y |X . The samples (X,Y ) are drawn from the observational distribution of the
causal model defined in Eq. (1). As shown in the proof of Proposition 2.1, the corresponding
conditional distribution is y|x ∼ N (xT β̃, σ̃2). Since (X,Y ) consist of independent draws, this
implies Y |X ∼ N (Xβ̃, σ̃2In). Together with β̂λ = (XTX + nλI)−1XTY this yields

β̂λ|X ∼ N ((XTX + nλI)−1XTXβ̃, (XTX + nλI)−1XT σ̃2InX(XTX + nλI)−1)

= N (
(

Σ̂ + λId

)−1

Σ̂β̃,
σ̃2

n

(
Σ̂ + λId

)−1

Σ̂
(

Σ̂ + λId

)−1

) .

The characterizations of BCX(β̂λ) and V CX (β̂λ) then simply follow from plugging in expectation and
covariance of β̂λ:

BCX(β̂λ) =
∥∥∥EY |X β̂λ − β

∥∥∥
2

Σ
=

∥∥∥∥
(

Σ̂ + λId

)−1

Σ̂β̃ − β
∥∥∥∥

2

Σ

= ‖(I −Πλ) (β + Γ)− β‖2Σ

= ‖Πλβ − (I −Πλ)Γ‖2Σ
and, using the alternate form of the variance term from Lemma B.1,

V CX (β̂λ) = Tr
[
CovY |X β̂λ · Σ

]
= Tr

[
σ̃2

n

(
Σ̂ + λId

)−1

Σ̂
(

Σ̂ + λId

)−1

· Σ
]

=
σ̃2

n
Tr

[
Σ̂
(

Σ̂ + λId

)−2

Σ

]
,

where the last equality used that
(

Σ̂ + λId

)−1

commutes with Σ̂.

Theorem 2 (Limiting Causal Bias-Variance Decomposition for the Ridge Estimator). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and σ2

ε̃ = σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞),
it holds almost surely in X for every λ > 0 that

BCX(β̂λ)→ BCλ := ω2 + r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) and (7)

V CX (β̂λ)→ VCλ := σ̃2γ(m(−λ)− λm′(−λ)) , (8)

where m(λ) = ((1− γ − λ)−
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. Therefore
RCX(β̂λ)→ RCλ := BCλ + VCλ + σ̃2 + ω2. The corresponding limiting quantities for the min-norm
interpolator can be obtained by taking the limit λ→ 0+ in equations (7) and (8), which yields

BCX(β̂0)→ BC0 =

{
ω2, γ < 1

ω2 + (r2 − ω2)(1− 1
γ ), γ > 1

, V CX (β̂0)→ VC0 =

{
σ̃2 γ

1−γ , γ < 1

σ̃2 1
γ−1 , γ > 1

.

Therefore RCX(β̂0)→ RC0 = BC0 + VC0 + σ̃2 + ω2.

Proof. From Proposition B.2, the causal risk RCX(β̂λ) can be decomposed as a sum of the causal
bias BCX(β̂λ), and causal variance V CX (β̂λ). In what follows, we derive the limiting expressions for
BCX(β̂λ) and V CX (β̂λ) to obtain the limiting causal risk for any γ ∈ (0,∞).

Limiting expressions for causal bias

BCX(β̂λ) = ‖β − E|X β̂λ‖2Σ = ‖Πλβ − (I −Πλ)Γ‖2 (Σ = I)

= ‖Πλ(β + Γ)− Γ‖2

= ‖Πλβ̃‖2 + ‖Γ‖2 − 2〈Γ,Πλ(β̃)〉
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First, let us consider the sequence of functions given by

‖Πλβ̃‖2 = ‖(I − (Σ̂ + λI)−1Σ̂)β̃‖2

=
∥∥∥λ((Σ̂ + λI)−1)β̃

∥∥∥
2

(Add and subtract λI)

= λ2β̃T (Σ̂ + λI)−2β̃T

= λ2 Tr
[
β̃β̃T (Σ̂ + λI)−2

]

To derive the limiting expression for this sequence, we utilize the “derivative trick”. This technique
has been employed in a similar context in Dobriban et al. (2018). More generally similar terms
(although not identical) often also arise in the analysis of the statistical of the ridge regression
estimator and therefore one can find similar approaches to deriving the limiting expressions for such
terms in the statistical analysis for ridge regression (for example, Hastie et al. (2022), Dobriban et al.
(2018), and Dicker (2016)). Here, we include a self-contained proof of the result.

The idea relies on an application of Vitali’s convergence theorem (see Bai et al. (2010, Lemma 2.14))
to obtain the limit of derivatives of a sequence of functions analytic on some domain D ⊂ C by the
derivative of the limit of the sequence of functions. Observe that

Tr
[
(β + Γ)(β + Γ)T (Σ̂ + λI)−2

]
=

∂

∂λ
− Tr

[
(β + Γ)(β + Γ)T (Σ̂ + λI)−1

]

By recognizing the quantity (Σ̂ + λI)−1 as the resolvent Q(−λ), we can invoke the Marchenko-
Pastur Theorem due to Marčenko et al. (1967) and Silverstein (1995) which states that the Stieltjes
transform of the empirical distribution ˆm(z) of eigenvalues of Σ̂ converges almost surely to the
Stieltjes transform m(z) of the empirical spectral distribution given by the Marchenko-Pastur Law F
for any z ∈ C/R+. 2 That is, we have for all λ > 0,

1

d
Tr
[
(Σ̂ + λI)−1

]
a.s−−→ mF (−λ)

Rubio et al. (2011, Theorem 1) provide a generalization of this result which includes providing almost
sure convergence of quadratic forms of resolvents of the form uT (Σ̂− zI)v for sequences of vectors
{u} , {v} such that their outer product uvT has a bounded trace norm for any z ∈ C/R+. By this
result, it is easy to verify that for any λ > 0,

Tr
[
β̃β̃T (Σ̂ + λI)−1

]
a.s−−→ mF (−λ)r̃2

It is easy to see that the sequence of functions
{
fd(λ) = Tr

[
β̃β̃T (Σ̂ + λI)−1

]}
is analytic for

λ > 0. Furthermore, for any λ > 0, the absolute value of the sequence of functions {fd(λ)} is
uniformly bounded in d since

|fd(λ)| ≤ Tr[β̃β̃T ]
1

λ
≤ r̃2

λ
Therefore, by Vitali’s convergence theorem, it holds (almost surely) that for every λ > 0, the
derivatives of the sequence of functions f1, f2, · · · converges to the derivative of their limit and we
have

λ2 Tr
[
β̃β̃T (Σ̂ + λI)−2

]
→ λ2r̃2m′F (−λ),

where m′F (−λ) denotes the derivative of the Stieltjes transform of the Marchenko-Pastur Law
evaluated at −λ.

To obtain the limiting function of the sequence 〈Γ,Πλβ̃〉, observe that

〈Γ,Πλβ̃〉 = λ〈Γ, (Σ̂ + λI)−1β̃〉 = λTr[β̃ΓT (Σ̂ + λI)−1]
a.s−−→ λ(ω2 + η)mF (−λ),

2While the convergence result in Silverstein (1995) is stated for z ∈ C+ =
{z = u+ iv ∈ C|Im(z) = v > 0}, it can be extended to z ∈ C/R+ following standard arguments
for convergence of sequences of analytic functions (see Hachem et al. (2007, Proposition 2.2)) via Vitali’s
convergence theorem or Montel’s theorem. See Rubio et al. (2011, Proof of Theorem 1, Page 14) for an example
of this argument.
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where the limit is obtained by invoking Rubio et al. (2011, Theorem 1).

Therefore, we have that as n, d→∞ and d/n→ γ,

BCX(β̂λ)
a.s−−→ ω2 + r̃2λ2m′F (−λ)− 2(ω2 + η)λmF (−λ).

Limiting expressions for causal variance.

By recalling the expression for variance we have

V CX (β̂λ) =
σ̃2

n
Tr
[
Σ̂(Σ̂ + λI)−2

]

=
σ̃2

n
Tr
[
(Σ̂ + λI − λI)(Σ̂ + λI)−2

]

= σ̃2 d

n
Tr

[
1

d
(Σ̂ + λI)−1 − 1

d
λ(Σ̂ + λI)−2

]

By Marchenko-Pastur Theorem (Marčenko et al., 1967; Silverstein, 1995), we already know that for
any λ > 0

Tr

[
1

d
(Σ̂ + λI)−1

]
→ mF (−λ)

Further, recognizing that

−Tr

[
1

d
(Σ̂ + λI)−2

]
=

∂

∂λ
Tr

[
1

d
(Σ̂ + λI)−1

]

and that |Tr[ 1
d (Σ̂ + λI)−1]| ≤ 1

λ , we can again invoke Vitali’s convergence theorem to obtain the
limit of the derivatives by taking the derivative of the limit to obtain

V CX (β̂λ) = σ̃2γ(mF (−λ)− λm′F (−λ)).

Marchenko-Pastur Law admits an explicit form under our model assumptions (see for example, (Bai
et al., 2010, Page 52)) for any z ∈ C+ (which can be extended by analytic continuity arguments for
any z ∈ C/R+) and is given by

mF (z) =
1− γ − z −

√
(1− γ − z)2 − 4γz

2γz
.

Following arguments similar to Dobriban et al. (2018) and Hastie et al. (2022) for exchanging the
limits n, d→∞ and λ→ 0+, we can derive the limiting expressions for the causal bias and variance
of the min-norm estimator.

C Asymptotics for the Statistical Risk

The following theorems describes the limiting expressions for the statistical risk analogue to the
causal results from Theorem 3.1.
Theorem C.1 (Limiting Statistical Bias-Variance Decompositions). Let β̂0 be the min-norm in-
terpolator. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it holds almost surely in X that

BSX(β̂0)→ BS0 =

{
0, γ < 1

r̃2(1− 1
γ ), γ > 1

, V SX (β̂0)→ VS0 =

{
σ̃2 γ

1−γ , γ < 1

σ̃2 1
γ−1 , γ > 1

(10)

and therefore, RSX(β̂0)→ RS0 = BS0 + VS0 + σ̃2.
For λ > 0 and the corresponding ridge regression estimator β̂λ, it holds almost surely in X that

BSX(β̂λ)→ BSλ = r̃2λ2m′(−λ) , V SX (β̂λ)→ VSλ = σ̃2γ(m(−λ)− λm′(−λ)), (11)

where m(λ) =
(1−γ−λ)−

√
(1−γ−λ)2−4γλ

2γλ . Therefore, RSX(β̂λ)→ RSλ = BSλ + VSλ + σ̃2.

Proof. As stated in the main paper, this result for the statistical model was already proven in Hastie
et al. (2022).
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D Proof of Proposition 3.2

Proposition 3.2 (Causal Risk Increases with Confounding Strength). Consider the family of
causal models parameterized as in (1) that entail the same observational distribution. Let C1 and C2

be two such causal models with confounding strengths ζ1 and ζ2 and alignments η1 and η2 (defined
in Theorem 3.1), respectively. Then for all λ, γ ∈ (0,∞),

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1

λ > RC2

λ .

In particular, for any fixed η, the measure of confounding strength ζ establishes a strict ordering of
causal models. This includes the ICM under which η = 0.

Proof. For any fixed λ ∈ (0,∞), the difference in limiting causal risks incurred by β̂λ on causal
models C1 and C2 is given by

RC1 (γ, λ)−RC2 (γ, λ) = 2r̃2
(
(
ω2

1

r̃2
− ω2

2

r̃2
)− (ζ1 − ζ2)λm(−λ)

)

= 2r̃2
(
(ζ1 − ζ2)(1− λm(−λ))− (η1 − η2)

)

= 2r̃2
(
(ζ1 − ζ2)(1− λm(−λ))− (η1 − η2)

)

Since, as shown below, (1− λm(−λ)) > 0 for any λ, γ ∈ (0,∞), it holds that

ζ1 > ζ2, η1 ≤ η2 =⇒ RC1 (γ, λ) > RC2 (γ, λ).

1− λm(−λ) = 1− γ − 1− λ+
√

(1 + λ+ γ)2 − 4γ

2γ

=
(1 + γ + λ)−

√
(1 + λ+ γ)2 − 4γ

2γ

> 0 (since γ > 0)

E Proofs for Sections 4 and 5

We start with a technical lemma that we need in the proofs of the following theorems. It controls a
function that appears in the derivative of the limiting causal riks ∂λRCλ .
Lemma E.1. For λ ≥ 0 and γ, S > 0 consider the function

f(λ, γ, S) = 2γ
λ− S−1γ

(1 + λ+ γ −
√

(1 + λ+ γ)2 − 4γ)((1 + λ+ γ)2 − 4γ)
.

This function has the following properties

(i) f is increasing in λ,

(ii) f(λ, γ, S) −−−−→
λ→∞

1, and

(iii) f(λ, γ, S) −−−→
λ→0





−S−1 γ
(γ−1)2 , γ < 1

−∞, γ = 1

−S−1 γ2

(γ−1)2 , γ > 1

.

Proof. For readability, we use the shorthand notations x = 1 + λ+ γ and ϕ = x2− 4γ, under which
f is given by

f(λ, γ, S) = 2γ
λ− S−1γ

(x−√ϕ)ϕ
.
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(i) The partial derivative of f in λ is given by

∂λf(λ, γ, S) = 2γ
(x−√ϕ)ϕ− (λ− S−1γ)

[
(1− x√

ϕ )ϕ+ 2x(x−√ϕ)
]

(x−√ϕ)2ϕ2

=
2γ

(x−√ϕ)ϕ2

︸ ︷︷ ︸
>0

[
ϕ− (λ− S−1γ)(2x−√ϕ)

]
︸ ︷︷ ︸

=:g(λ)

,

where the first fraction is positive because ϕ > x2 and x−√ϕ > 0. It is therefore sufficient to show
g(λ) ≥ 0 for ∂λf(λ, γ, S) ≥ 0. We first get rid of the S term via

g(λ) = ϕ− (λ− S−1γ) (2x−√ϕ)︸ ︷︷ ︸
≥0

≥ ϕ− λ(2x−√ϕ) .

Finally, we lower bound
√
ϕ in two different ways depending on γ. For γ ≤ 1, it is ϕ = (1 + λ−

γ)2 + 4γλ and therefore
√
ϕ ≥ 1 + λ− γ = x− 2γ. This yields

g(λ) ≥ ϕ− λ(2x−√ϕ) ≥ ϕ− λ(x+ 2γ) = (1− γ)λ+ (γ − 1)2 ≥ 0 .

For γ > 1, it is ϕ = (−1 + λ+ γ)2 + 4λ and therefore
√
ϕ ≥ −1 + λ+ γ = x− 2. This yields

g(λ) ≥ ϕ− λ(2x−√ϕ) ≥ ϕ− λ(x+ 2) = (γ − 1)λ+ (γ − 1)2 ≥ 0 .

In summary, we have shown ∂λf(λ, γ, S) ≥ g(λ) ≥ 0.

(ii) With the first order Taylor approximation 1−
√

1− h = 1/2h+O(h2), we get

(x−√ϕ)ϕ =

(
1−

√
1− 4γ

x2

)
xϕ =

(
2γ

x2
+O(λ−4)

)
xϕ = 2γx+O(λ−1) = 2γλ+O(1) ,

which yields

f(λ, γ, S) = 2γ
λ− S−1γ

(x−√ϕ)ϕ
=

2γλ− 2S−1γ2

2γλ+O(1)
−−−−→
λ→∞

1 .

(iii) The denominator satisfies

(x−√ϕ)ϕ −−−→
λ→0

(1 + γ − |γ − 1|)(γ − 1)2 =





2γ(γ − 1)2, γ < 1

0, γ = 1

2γ − 1)2, γ > 1

.

Since λ− S−1γ −−−→
λ→0

S−1γ < 0, the claim follows.

Recall that the optimal causal regularization is defined as the minimizer of the causal risk λ∗C(γ) =
arg infλ∈(0,∞)RCλ . The following lemma distinguishes between three different regimes of the risk
functionRCλ depending on the confounding strength ζ.

Lemma E.2 (Regimes of the Optimal Causal Regularization). For any causal model parameter-
ized as in (1), we can distinguish the following regimes of λ∗C(γ):

1. The function λ 7→ RCλ is increasing (which implies λ∗C(γ) = 0), if and only if γ 6= 1 and

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2
.

2. For any γ > 0, the function λ 7→ RCλ is decreasing (which implies λ∗C(γ) = ∞) if and only if
ζ ≥ 1.
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3. For any ζ ∈ R, γ ∈ (0,∞) which do not satisfy the conditions 1. or 2., it is λ∗C(γ) ∈ (0,∞) and
it λC(γ) satisfies the critical point condition ∂λRCλ (λ∗C(γ)) = 0, or equivalently,

0 = λ∗C(γ)− SNRS
−1 γ − ζ

2γ

(
1 + λ∗C(γ) + γ −

√
ϕ(λ∗C(γ))

)
ϕ(λ∗C(γ)) ,

where ϕ(λ) = (1 + λ+ γ)2 − 4γ.

Proof. We use the shorthand notation ϕ(λ) = (1 + λ+ γ)2 − 4γ. Recall the confounding strength
ζ = (r2 + η)/r̃2 and the statistical signal-to-noise ratio SNRS = r̃2/σ̃2. The derivative of the
limiting causal riskRCλ in λ is given by

∂λRCλ =
2r̃2

ϕ(λ)3/2

(
λ− SNRS

−1 γ − ζ

2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

)

1. The first condition ∂λRCλ ≥ 0 for all λ > 0 can be equivalently rearranged for the confounding
strength as

ζ ≤ 2γ
λ− SNRS

−1 γ(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

= f(λ, γ, SNRS) ,

where f is the function investigated in Lemma E.1. This in turn is equivalent to taking the
infimum over λ, which is given by Lemma E.1 as

ζ ≤ inf
λ>0

f(λ, γ, SNRS) = −SNRS
−1 γmax{1, γ}

(1− γ)2
.

Note that for γ = 1 this infimum is −∞, so the condition cannot be satisfied for any ζ.

2. The proof of the second claim is analogue to the first with the reverse inequality ∂λRCλ ≤ 0.
Rearranging for ζ and using Lemma E.1 yields the equivalent condition

ζ ≥ sup
λ>0

f(λ, γ, SNRS) = 1 .

3. For the third claim, assume that the pair of ζ and γ satisfies neither of the first points. We will
use this to show that the derivative at 0 is negative ∂λRCλ (0) < 0 and the derivative ∂λRCλ for
sufficiently large λ is positive. This together then implies that the minimum λ∗C(γ) of the function
RCλ is indeed attained at a finite value in (0,∞), and RCλ satisfies the critical point condition
∂λRCλ (λ∗C(γ)) = 0.

For the derivative at 0, assume that the converse is true, that is, ∂λRCλ (0) ≥ 0. Rearranging this
condition for ζ yields similarly to the first case of this lemma that ζ ≤ f(0, γ, SNRS). However
Lemma E.1 states that f is increasing in λ, which means that this condition already implies
ζ ≤ f(λ, γ, SNRS) for all λ. This means that the pair ζ, γ would satisfy the condition of the first
case, which contradicts our assumption.

For the behavior of large λ, observe that the sign of the derivative is determined by the sign of the
term λ− SNRS

−1 γ − ζ
2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ). As derived in the proof of Lemma E.1,

we have the asymptotic behavior
(

1 + λ+ γ −
√
ϕ(λ)

)
ϕ(λ) = 2γλ+O(1) ,

which yields

λ− SNRS
−1 γ − ζ

2γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = (1− ζ)λ+O(1) .

Since the pair ζ, γ does by assumption not satisfy the conditions of the second case, we have
ζ < 1, which means that the above term is eventually positive.
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Theorem 4.1 (Optimal Regularization can be Negative). For any causal model parameterized as
in (1), the following cases distinguish between whether the min-norm interpolator is optimal or not.

1. For negative confounding strength ζ < 0 the optimal causal regularization λ∗C can be 0 or even
negative. A necessary and sufficient condition for λ∗C ≤ 0 depends on the difference in causal
and statistical signal-to-noise ratios and is given by

SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
.

2. For positive confounding strength ζ > 0 the optimal causal regularization is positive λ∗C > 0
andRC0 > RCλ∗C , hence regularization is beneficial. This includes the ICM.

Proof. The first statement of the theorem is a special case of Theorem 5.2. The necessary and
sufficient condition for λ∗C = 0 stated there is equivalently reformulated as

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2

⇔ −SNRS ζ ≥
γmax {1, γ}

(1− γ)2

⇔ SNRC−SNRS ≥
γmax {1, γ}

(1− γ)2
,

where the last part used the equality SNRC = (1− ζ) SNRS. The statement about negative λ∗C refers
to the fact that the derivative of the risk at 0 can be positive, that is, ∂RCλ (0) > 0. This was shown
in the proof of Lemma E.2 and suggests that without our restriction λ∗C ≥ 0, a negative value of λ
would yield an even smaller risk.

For the second statement, observe that the condition ζ > 0 implies the cases 2. or 3. from Lemma E.2.
In particular, this implies λ∗C > 0. The proof of Lemma E.2 showed that in both of these cases it
holds ∂λRCλ (0) < 0, which means that the causal limiting risk BCλ is strictly decreasing in a small
neighborhood around 0. In particular, this implies that the minimal risk is strictly smaller than the
risk at 0, that is,RC0 > RCλ∗C .

Theorem 5.1 (Optimal Statistical vs. Causal Regularization). For any causal model parameter-
ized as in (1), the condition ζ = 0 defines a phase transition for the optimal regularization via

ζ < 0 ⇐⇒ λ∗C < λ∗S , ζ = 0 ⇐⇒ λ∗C = λ∗S , and ζ > 0 ⇐⇒ λ∗C > λ∗S .

In particular under the ICM, the optimal causal regularization λ∗C is always strictly larger than the
optimal statistical regularization λ∗S , unless ζ = 0, in which case they coincide.

Proof. Lemma E.2 distinguishes between three different regimes of ζ. The first two regimes yield

ζ ≤ −SNRS
−1 γmax {1, γ}

(1− γ)2
=⇒ λ∗C = 0 and 1 ≤ ζ =⇒ λ∗C =∞ .

Combined with λ∗S = SNRS
−1 γ ∈ (0,∞), these regimes agree with the claim in the theorem. It

remains to show that the theorem also holds for the last regime −SNRS
−1 γmax {1,γ}

(1−γ)2 < ζ < 1. In
this regime according to Lemma E.2, the optimal causal regularization λ∗C satisfies the critical point
condition

0 = λ∗C − SNRS
−1 γ − ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C)

⇔ λ∗C − λ∗S =
ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C) .

Since the term 1/(2γ)
(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C) is positive, the sign of λ∗C−λ∗S is determined

by the sign of ζ as claimed in the theorem.
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Theorem 5.2 (Increasing Confounding Strength Requires Stronger Regularization). Consider
the family of causal models parameterized as in (1) that entail the same observational distribution.
The optimal causal regularization λ∗C only depends on the confounding strength ζ and λ∗C is an
increasing function in ζ. More specifically, using % = −SNRS

−1 γmax {1, γ}/(1− γ)2:

% < ζ < 1 =⇒ λ∗C ∈ (0,∞) with ∂ζλ∗C > 0 ,

λ∗C = 0 if ζ ≤ % and λ∗C =∞ for ζ ≥ 1.

Proof. The theorem follows directly from Lemma E.2, except for the statement about λ∗C being
strictly increasing in ζ. In the corresponding regime, Lemma E.2 states that λ∗C satisfies the critical
point condition ∂λRCλ (λ∗C) = 0, which we will use to show that the derivative of λ∗C in ζ is strictly
positive. For readability, we use the notation x(ζ) = 1 + λ∗C(ζ) + γ and ϕ(ζ) = x(ζ)2 − 4γ. The
optimal causal regularization λ∗C(ζ) satisfies the critical point condition

0 = x(ζ)− (1 + γ + SNRS
−1 γ)− ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)
ϕ(ζ) =: g(x(ζ), ζ) .

Rearranging this equation yields

ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)
=
x(ζ)− (1 + γ + SNRS

−1 γ)

ϕ(ζ)
. (12)

The partial derivatives of the function g = g(x, ζ) evaluated at (x(ζ), ζ) are given by

∂ζg(x(ζ), ζ) = − 1

2γ

(
x(ζ)−

√
ϕ(ζ)

)
ϕ(ζ) < 0

and

∂xg(x(ζ), ζ) = 1− ζ

2γ

[(
1− x(ζ)√

ϕ(ζ)

)
ϕ(ζ) + 2x(ζ)

(
x(ζ)−

√
ϕ(ζ)

)]

= 1− ζ

2γ

(
x(ζ)−

√
ϕ(ζ)

)(
2x(ζ)−

√
ϕ(ζ)

)

= 1− x(ζ)− (1 + γ + SNRS
−1 γ)

ϕ(ζ)

(
2x(ζ)−

√
ϕ(ζ)

)
(Using Eq. (12))

> 1− x(ζ)− 2
√
γ

ϕ(ζ)

(
2x(ζ)−

√
ϕ(ζ)

)
. (1 + γ + SNRS

−1 γ > 2
√
γ)

Since ϕ(ζ) = (x(ζ)− 2
√
γ)(x(ζ) + 2

√
γ) < (x(ζ) + 2

√
γ)2, it further follows

∂xg(x(ζ), ζ) > 1− x(ζ)− 2
√
γ

(x(ζ)− 2
√
γ)(x(ζ) + 2

√
γ)

(2x(ζ)− (x(ζ) + 2
√
γ))

= 1− x(ζ)− 2
√
γ

x(ζ) + 2
√
γ

> 0 .

With these results, we can take the derivative in ζ of the critical point condition 0 = g(x(ζ), ζ) and
obtain

0 =
d

dζ
g(x(ζ), ζ) = ∂xg(x(ζ), ζ)︸ ︷︷ ︸

>0

·dx
dζ

(ζ) + ∂ζg(x(ζ), ζ)︸ ︷︷ ︸
<0

·1 ,

which yields 0 < dx
dζ (ζ) =

dλ∗C
dζ (ζ). This implies that λ∗C is increasing in ζ and concludes the

proof.
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F Shift interventions.

F.1 Causal risk under relative interventions.

Here, we characterize the causal risk of any linear predictor under relative or shift interventions.
Similar to the definition of causal risk under hard interventions, to isolate the effects of the choice of
α on the risk, we draw perturbations from the marginal of x. Formally, intervening on x under the
causal model given by Eq. (1) corresponds to the structural equations

z ∼ N (0, Il) , ε ∼ N (0, σ2) , ν ∼ N (0,MMT ) , x = Mz , x′ = x+ν , y = x′Tβ+zTα+ε .

Similar to the proof of Proposition 2.1, the key step here is to characterize the distribution of y under
the shift intervention y|do(x′ := x+ ν) for some ν chosen independently of x.

This lets us compute the risk of a linear predictor β̂ ∈ Rd under a shift intervention as

RC(β̂) = EνExEy0|do(x′=x+ν)

(
xT β̂ − y

)2

= EνEx,z,ε
(

(β̂ − β)T (x+ ν) + αT z + ε
)2

= Eν
(

(β̂ − β)T ν
)2

+ ExEz,ε|x
(

(β̂ − β)Tx+ αT z + ε
)2

=
∥∥∥β̂ − β

∥∥∥
2

Σ
+
∥∥∥β̂ − β̃

∥∥∥
2

Σ
+ σ̃2

To obtain the last equality, refer to the derivation of the statistical and causal risks in Proposition 2.1.
The expected risk under conditioning of X is then given by

EY |X‖β̂ − β‖2Σ + EY |X‖β̂ − β̃‖2Σ . (13)

F.2 Asymptotics and Optimal Ridge Regularization.

The limiting risk of any ridge estimator can then be directly derived from Theorems 3.1 and C.1.
Theorem F.1 (Limiting Causal Risk of the Ridge Estimator Under Shift Interventions). Let
‖β‖2 = r2, ‖Γ‖2 = ω2, 〈Γ, β〉 = η, and fix σ̃2. Then as n, d→∞ such that d/n→ γ ∈ (0,∞), it
holds almost surely in X for every λ > 0 that

RCX(β̂λ)→ RCλ = ω2 + 2r̃2λ2m′(−λ)− 2(ω2 + η)λm(−λ) + 2σ̃2γ(m(−λ)− λm′(−λ)) ,

where m(λ) = ((1 − γ − λ) −
√

(1− γ − λ)2 − 4γλ)/(2γλ) and r̃2 = r2 + ω2 + 2η. The
corresponding limiting quantities for the min-norm interpolator can be obtained by taking the limit
λ→ 0+.
Lemma F.2 (Regimes of the Optimal Causal Regularization Under Shift Interventions). For
any causal model parameterized as in (1), we can distinguish the following regimes of λ∗C(γ):

1. The function λ 7→ RCsoft

λ is increasing (which implies λ∗Csoft
(γ) = 0), if and only if γ 6= 1 and

ζ ≤ −2 SNRS
−1 γmax {1, γ}

(1− γ)2
.

2. For any γ > 0, the function λ 7→ RCsoft

λ is decreasing (which implies λ∗Csoft
(γ) =∞) if and only

if ζ ≥ 2.

3. For any ζ ∈ R, γ ∈ (0,∞) which do not satisfy the conditions 1. or 2., it is λ∗Csoft
(γ) ∈ (0,∞)

and it λ∗Csoft
(γ) satisfies the critical point condition ∂λRCsoft

λ (λ∗Csoft
(γ)) = 0, or equivalently,

0 = λ∗Csoft
(γ)− SNRS

−1 γ − ζ

4γ

(
1 + λ∗Csoft

(γ) + γ −
√
ϕ(λ∗Csoft

(γ))
)
ϕ(λ∗Csoft

(γ)) ,

where ϕ(λ) = (1 + λ+ γ)2 − 4γ.
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Proof. We use the shorthand notation ϕ(λ) = (1 + λ+ γ)2 − 4γ. Recall the confounding strength
ζ = (r2 + η)/r̃2 and the statistical signal-to-noise ratio SNRS = r̃2/σ̃2. The derivative of the
limiting causal risk under shift interventionsRCsoft

λ in λ is given by

∂λRCsoft
λ =

2r̃2

ϕ(λ)3/2

(
λ− SNRS

−1 γ − ζ

4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

)

1. The first condition ∂λRCsoft
λ ≥ 0 for all λ > 0 can be equivalently rearranged for the confounding

strength as

ζ ≤ 4γ
λ− SNRS

−1 γ(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ)

= 2f(λ, γ, SNRS) ,

where f is the function investigated in Lemma E.1. This in turn is equivalent to taking the
infimum over λ, which is given by Lemma E.1 as

ζ ≤ inf
λ>0

2f(λ, γ, SNRS) = −2 SNRS
−1 γmax{1, γ}

(1− γ)2
.

Note that for γ = 1 this infimum is −∞, so the condition cannot be satisfied for any ζ.

2. The proof of the second claim is analogue to the first with the reverse inequality ∂λRCsoft
λ ≤ 0.

Rearranging for ζ and using Lemma E.1 yields the equivalent condition

ζ ≥ sup
λ>0

2f(λ, γ, SNRS) = 2 .

3. For the third claim, assume that the pair of ζ and γ satisfies neither of the conditions from above.
We will use this to show that the derivative at 0 is negative ∂λRCsoft

λ (0) < 0 and the derivative
∂λRCsoft

λ for sufficiently large λ is positive. This together then implies that the minimum λ∗Csoft
(γ)

of the functionRCsoft
λ is indeed attained at a finite value in (0,∞), andRCsoft

λ satisfies the critical
point condition ∂λRCsoft

λ (λ∗Csoft
(γ)) = 0.

For the derivative at 0, assume that the converse is true, that is, ∂λRCsoft
λ (0) ≥ 0. Rearranging this

condition for ζ yields similarly to the first case of this lemma that 2ζ ≤ f(0, γ, SNRS). However
Lemma E.1 states that f is increasing in λ, which means that this condition already implies
ζ ≤ 2f(λ, γ, SNRS) for all λ. This means that the pair ζ, γ would satisfy the condition of the
first case, which contradicts our assumption.

For the behavior of large λ, observe that the sign of the derivative is determined by the sign of the
term λ− SNRS

−1 γ − ζ
4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ). As derived in the proof of Lemma E.1,

we have the asymptotic behavior
(

1 + λ+ γ −
√
ϕ(λ)

)
ϕ(λ) = 2γλ+O(1) ,

which yields

λ− SNRS
−1 γ − ζ

4γ

(
1 + λ+ γ −

√
ϕ(λ)

)
ϕ(λ) = (1− ζ/2)λ+O(1) .

Since the pair ζ, γ does by assumption not satisfy the conditions of the second case, we have
ζ < 1, which means that the above term is eventually positive.

Theorem F.3 (Optimal Causal Regularization Under Shift Interventions). For any causal model
parameterized as in (1),

1. If ζ ≥ 0, then the optimal causal regularization under shift interventions λ∗Csoft
satisfies λ∗S ≤

λ∗Csoft
≤ λ∗C .
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2. If ζ < 0, then λ∗C ≤ λ∗Csoft
≤ λ∗S .

Indeed, the optimal causal regularization under shift interventions satisfies λ∗Csoft
= λ∗S+(λ∗C−λ∗S)/2.

Proof. Lemma E.2 distinguishes between three different regimes of ζ. The first two regimes yield

ζ ≤ −2 SNRS
−1 γmax {1, γ}

(1− γ)2
=⇒ λ∗C = 0 and 2 ≤ ζ =⇒ λ∗C =∞ .

Combined with λ∗S = SNRS
−1 γ ∈ (0,∞), these regimes agree with the claim in the theorem. It

remains to show that the theorem also holds for the last regime −2 SNRS
−1 γmax {1,γ}

(1−γ)2 < ζ < 2. In
this regime according to Lemma E.2, the optimal causal regularization λ∗C satisfies the critical point
condition

0 = λ∗Csoft
− SNRS

−1 γ − ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

)

⇔ λ∗Csoft
− λ∗S =

ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) .

Similarly, we know from the proof of Theorem 5.1 λ∗C satisfies

0 = λ∗C − SNRS
−1 γ − ζ

2γ

(
1 + λ∗C + γ −

√
ϕ(λ∗C)

)
ϕ(λ∗C)

⇔ λ∗C − λ∗Csoft
=

ζ

4γ

(
1 + λ∗Csoft

+ γ −
√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) .

Since the term 1/(2γ)
(

1 + λ∗Csoft
+ γ −

√
ϕ(λ∗Csoft

)
)
ϕ(λ∗Csoft

) is positive, the sign of λ∗Csoft
−λ∗S and

λ∗C − λ∗Csoft
is determined by the sign of ζ as claimed in the theorem.
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Figure 5: Causal risk of the minimum norm l2 interpolator and the (causally)optimally regularized
ridge regressor under a student-t distribution with unbounded 4th moments (3 degrees of freedom,
left), a student-t distribution with bounded 4th moments (10 degrees of freedom, middle), a mixture
of Gaussians (right). We choose the parameters d = 300, l = 350, statistical signal r̃2 = 5, statistical
noise σ̃2 = 1, causal noise σ2 = .5 and confounding strength ζ = 0.5. For Gaussian mixtures,
we consider a (centered and normalized) mixture of k = 5 Gaussians. Each individual mixture
component has mean µi ∼ N (0l,

k2

(k−1)lIl) and identity covariance Covi = Il.

The analysis of this paper can be extended beyond the Gaussian setting by considering random
variables generated by finite mixtures of Gaussians. The analysis can get considerably more technical
and is left as future work, but we include a brief discussion here. Due to the Universality phenomenon
in the high-dimensional limit, we believe that our limiting expressions (and the qualitative messages
derived henceforth) would be rather robust to shifts in the marginal distribution as long as moments
of order (4 + δ) for some δ > 0 are bounded. We conducted experiments to verify this claim and
the corresponding results can be found in Figure 5. These experiments compare our theoretically
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derived asymptotic risks with finite-sample risks of the min-norm interpolator and causally optimally
regularized ridge regressor. Instead of Gaussian confounders z ∼ N (0, Il), we only fix the first two
moments 0 and Il and generate z such that E[z] = 0, Cov[z] = I from heavy-tailed multivariate
t-distribution with different degrees of freedom, and finite mixture of Gaussians. Each plot shows the
causal risk of min-norm interpolator and optimally regularized ridge regressor based on finite samples
along with our theoretical asymptotic predictions. Our experiments show that, for distributions with
finite 4th moments, the finite-sample risks closely match the theoretical results.
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Part III

Discussion



10
Discussion

Many problems in modern machine learning, including fairness
and robustness to domain shifts, interventions, and adversarial
examples, fall under the umbrella of learning under extreme non-
identifiability.1 The central challenge to theoretically justified learn-1 A lot of these problems have indeed

been known to be closely related to
the problem of learning causal relation-
ships [Schölkopf et al., 2021].

ing under extreme non-identifiability lies in finding a set of as-
sumptions that is sufficiently general, practically meaningful, and
amenable to theoretical analysis. This is an extremely challenging
task.

For example, in the theory of clustering under a mixture model,
formulating such a set of assumptions is incredibly hard. While
parametric assumptions such as the Gaussianity of the compo-
nents yield strong theoretical guarantees, the generality and prac-
tical relevance of such assumptions to real-world settings are lim-
ited. On the other hand, while non-parametric assumptions are
sufficiently general, the resulting bounds are weak, thereby lim-
iting the practical relevance of such assumptions. Other assump-
tions in the theory of kernel clustering include assuming a mix-
ture model on the reproducing kernel Hilbert space (RKHS) of
the kernel [Chen and Yang, 2021]. However, it is unclear how
such assumptions translate into assumptions on the class of data
distributions, thereby hindering the practical applicability of such
results. Assumptions such as the stability of the clusters have been
thought to offer certain useful generality. However, the practical
utility of such measures has been shown to be rather limited [Ben-
David et al., 2006]. These examples emphasize the difficulty of
finding a set of meaningful assumptions in clustering. This is the
primary hurdle to developing a taxonomy of clustering methods
long advocated by many experts on clustering [Von Luxburg et al.,
2012]. While understanding the theoretical properties of clustering
methods under these assumptions is essential, there is certainly
room for understanding the performance of these methods under
a general and practically relevant set of assumptions.22 The framework of density-based clus-

tering[Hartigan, 1981, Chaudhuri et al.,
2014] does offer such a meaningful for-
malism. However, the framework suf-
fers from limitations, as we discussed in
Chapter 4. Moreover, there is no single
framework for clustering that can work
for all practical applications, and it is
necessary to study the performance of
clustering methods under more general
formalisms.

Similar challenges are encountered in the theory of causal learn-
ing. On a positive note, the principle of independence of causal
mechanisms offers a powerful bias for learning causal models [Pe-
ters et al., 2017]. For example, in one of our papers [not included in
this thesis], we show that a mathematical instantiation of the ICM
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principle allows for partial identification of the causal parameter
purely from observational data in high dimensions, even in the
presence of latent confounding [Rendsburg et al., 2022]. However,
the space of possible assumptions that enable causal learning from
observational data is still very much open. Under such assump-
tions, it would be very interesting to develop the foundations for
a learning theory of causality (akin to statistical learning theory) that
holds for rather general hypothesis classes.
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