Seminar: Theoretical Advances in Deep Learning Debarghya Ghoshdastidar, Alexandru Crăciun, Maedeh Zarvandi

TU Munich, Department of Informatics Winter Semester 2024

Course information

- Master seminar (IN2107, IN4409)
 - 5 ECTS, 2 SWS

- 32

Course information

- Master seminar (IN2107, IN4409)
 - 5 ECTS, 2 SWS
- Organisers:
 - Alexandru Crăciun a. craciun@tum.de (main coordinator of course)
 - Maedeh Zarvandi maedeh.zarvandi@tum.de
 - Prof. Debarghya Ghoshdastidar ghoshdas@cit.tum.de

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)

э

・ロト ・回ト ・ヨト ・ヨト

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation
- Dedicated theory papers
 - Mathematically explain why DL / ML methods work (rare in DL)

- New algorithms with some experiments showing their properties
 - Provides some understanding (less common in ML than DL)
- Empirical analysis of algorithmic properties
 - Important when algorithms are hard to analyse theoretically
 - Common in deep learning, non-convex optimisation
- Dedicated theory papers

 $\longleftarrow \text{Focus of this seminar}$

(日) (四) (王) (王) (王)

• Mathematically explain why DL / ML methods work (rare in DL)

Why do we need mathematical analysis of DL?

• Deep learning contradicts conventional wisdom

Complex models generalise well

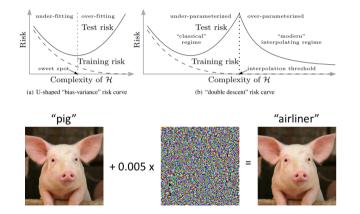
Why do we need mathematical analysis of DL?

• Deep learning contradicts conventional wisdom

Complex models generalise well

• Neural networks not robust

Can be fooled to make error



Why do we need mathematical analysis of DL?

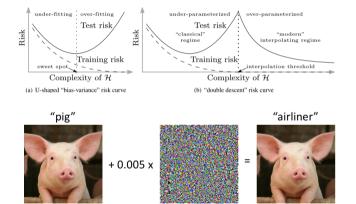
• Deep learning contradicts conventional wisdom

Complex models generalise well

• Neural networks not robust

Can be fooled to make error

• The output of deep networks lack explainability



- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture CIT4230004)

A D A A B A A B A A B

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture CIT4230004)
- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar

- Theory in deep learning emerging
 - What do we know so far?
 - What are the limitations in theory, and gaps with practice?
- Familiarise with statistical foundations of learning (complements lecture CIT4230004)
- Familiarise with mathematical proof techniques
 - Considerable focus on math in this seminar
- Familiarise with publication and review process in ML

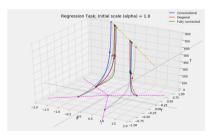
Focus of this seminar Possible Topics

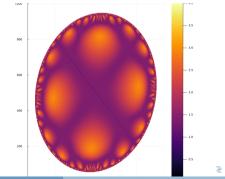
э

イロト イヨト イヨト イヨ

Training Dynamics, Stability and Implicit Bias

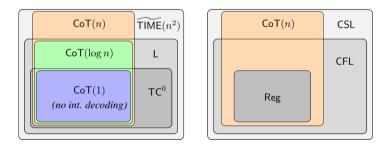
- When is gradient flow a good approximation of gradient descent?
- How much can one change the hyper-parameters and still expect the same results?
- Why does gradient descent find solutions that generalize well?





Theory of LLMs - Expressivity

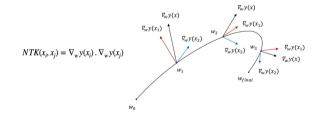
Transformer's reasoning can be improved by allowing them to use a "chain of thought" (i.e. using intermediate tokens before answering). Does such intermediate generation fundamentally extend the computational power of a transformer?



Over-parameterised NN (infinite width)

Analyse Over-parametrised NNs asymptotically as width goes to infinity

- Under small learning rate, (S)GD training \equiv Neural Tangent Kernel (NTK), a dot product kernel in gradient space of the NN parameters.
- Finite width networks can deviate from the kernel regime.



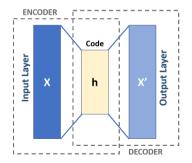
Double-descent in bias-variance curve

- Over-parameterised NNs deviate from bias-variance trade-off NNs may perform best in zero training loss / interpolating regime.
- Currently, this behaviour has been analytically derived in simpler settings.

Kernel Unsupervised/Self-Supervised Learning

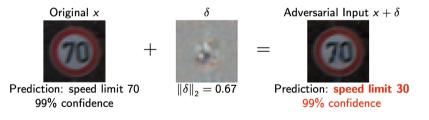
What guarantees can we give in a self-supervised setting?

Kernel methods provide a principled way to perform non-linear learning, relying on solid foundations. We aim to look at neural networks from the theoretical point of view, in order to analyse the equivalent kernel based algorithms in self-supervised approaches.



Adversarial ML / Robustness

- Performance of NNs significantly affected if data is slightly perturbed.
- Why? How can we build robust ML models / guarantee robustness?



For a more in-depth look...

join the recent advances in ML / DL reading group as part of the statistical foundations of deep learning course

on 03.07.2023 (Wednesday) 10:30 - 12:00 (seminar room 03.19.014)

Administration

э.

・ロト ・四ト ・ヨト ・ヨト

Seminar details

- We will use Moodle for coordination
- Desired number of participants = 20
- Pre-requisites: Machine Learning (IN2064), Deep learning (IN2346)
- Must be comfortable with mathematical techniques / proving results
 - Taking Statistical foundations of learning (CIT4230004) would help

Assessment

- Everyone assigned one paper
- Submit a report. Details will be provided in the introduction lecture.
 - summary of paper, explaining main results and their implications
 - review (we will discuss how to write reviews)
 - summary of proofs (main techniques, key lemmas and ideas)
- Present paper and your report
 - Block seminar; everyone needs to attend all talks
- Grading: Report (40%) + Presentation (60%) (both are needed)

Report + Presentation of papers

- Mostly publications from recent ML conferences (ICML, ICLR, Neurips, COLT)
 - Conference papers are short (8 page, no proofs)
- **Report has to follow longer version on arXiv** (link will be provided)
 - Considerable focus on understanding mathematical results

Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation eurips version	Data-dependent Sample Complexity of Deep Neural Networks v Lipschitz Augmentation Colin Wei* and Tengyu Ma [†] May 31, 2019 Abstract Existing Rademacher complexity bounds for neural networks rely only on norm control of the weight matrices and dependence on depth is unaveidable when no additional properties of the training data are considered. We support that this commer disc dependence provides the training data are considered. We support that this commer disc dependence on the fact that these bounds depend on the training data only through the matrix. In stractice. many disc dependence that this commer data defendence that the commercial commercial of the training data only through the matrix. In stractice. many disc defendence the houses and an Balcimourn.		n
(12 pages) Colin Wei Tengyu Ma Computer Science Department Stanford University colinwei@stanford.edu tengyuna@stanford.edu			0

Timeline (tentative)

- August: Provide preference for papers
- Start of lecture period: First meeting (assignments, reports and organisation)
- November 01: Deadline for de-registration
- Mid January : Submit report and first version of slides (both as PDF)
- Mid February: Final presentation (block seminar, date to be finalised)
- Office hours: weekly 2h

Most important thing to do now...

Fill out the form to help us match you in the system https://forms.gle/bb5HyZHSMLotijv88

The form will be uploaded to the web-page