
Propositional Logic

Basics

1



Syntax of propositional logic

Definition
An atomic formula (or atom) has the form Ai where i = 1, 2, 3, . . ..
Formulas are defined inductively:

▶ ⊥ (“False”) and ⊤ (“True”) are formulas

▶ All atomic formulas are formulas

▶ For all formulas F , ¬F is a formula.

▶ For all formulas F und G , (F ◦ G ) is a formula,
where ◦ ∈ {∧,∨,→,↔}

¬ is called negation
∧ is called conjunction
∨ is called disjunction
→ is called implication
↔ is called bi-implication

2



Parentheses

Precedence of logical operators in decreasing order:

¬ ∧ ∨ → ↔

Operators with higher precedence bind more strongly.

Example

Instead of (A → ((B ∧ ¬(C ∨ D)) ∨ E ))
we can write A → B ∧ ¬(C ∨ D) ∨ E .

Outermost parentheses can be dropped.

3



Syntax tree of a formula

Every formula can be represented by a syntax tree.

Example

F = ¬((¬A4 ∨ A1) ∧ A3)

¬

¬

A4

∨ A3

∧

A1

4



Subformulas

The subformulas of a formula are the formulas corresponding to
the subtrees of its syntax tree.

A4

¬

¬

∨ A3

∧

A4

A1
A1

¬

¬

A4

∨ A3

∧

A1
A3

¬

¬

A4

∨

∧

A3

A1

¬A4

¬

∨ A3

∧

A4

¬ A1
(¬A4 ∨ A1)

¬

A3

∧

A4

∨

¬ A1

((¬A4 ∨A1)∧A3)

¬

A4

∨

¬

∧

A3

A1
¬((¬A4 ∨A1)∧A3)

¬

A4

∨

¬

∧

A3

A1

5



Induction on formulas

Proof by induction on the structure of a formula:
In order to prove some property P(F ) for all formulas F
it suffices to prove the following:

▶ Base cases:
prove P(⊥), prove P(⊤), and prove P(Ai ) for all atoms Ai

▶ Induction step for ¬:
prove P(¬F ) under the induction hypothesis P(F )

▶ Induction step for all ◦ ∈ {∧,∨,→,↔}:
prove P(F ◦ G ) under the induction hypotheses P(F ) and P(G )

Operators that are merely abbreviations need not be considered!

6



Semantics of propositional logic (I)

The elements of the set {0, 1} are called truth values.
(You may call 0 “false” and 1 “true”)

An assignment is a function A : Atoms → {0, 1}
where Atoms is the set of all atoms.

We extend A to a function Â : Formulas → {0, 1}

7



Semantics of propositional logic (II)

Â(Ai ) = A(Ai )

Â(¬F ) =

{
1 if Â(F ) = 0
0 otherwise

Â(F ∧ G ) =

{
1 if Â(F ) = 1 and Â(G ) = 1
0 otherwise

Â(F ∨ G ) =

{
1 if Â(F ) = 1 or Â(G ) = 1
0 otherwise

Â(F → G ) =

{
1 if Â(F ) = 0 or Â(G ) = 1
0 otherwise

Instead of Â we simply write A

Using arithmetic: A(F ∧ G ) = min(A(F ),A(G ))
A(F ∨ G ) = max(A(F ),A(G ))

8



Abbreviations

A,B,C ,
P,Q,R, or . . . instead of A1,A2,A3 . . .

F1 ↔ F2 abbreviates (F1 ∧ F2) ∨ (¬F1 ∧ ¬F2)
n∨

i=1

Fi abbreviates (. . . ((F1 ∨ F2) ∨ F3) ∨ . . . ∨ Fn)

n∧
i=1

Fi abbreviates (. . . ((F1 ∧ F2) ∧ F3) ∧ . . . ∧ Fn)

Special cases:

0∨
i=1

Fi =
∨

∅ = ⊥
0∧

i=1

Fi =
∧

∅ = ⊤

9



Truth tables (I)

We can compute Â with the help of truth tables.

¬ A

1 0
0 1

A ∨ B

0 0 0
0 1 1
1 1 0
1 1 1

A ∧ B

0 0 0
0 0 1
1 0 0
1 1 1

A → B

0 1 0
0 1 1
1 0 0
1 1 1

10



Truth tables (II)

A ↔ B

0 1 0
0 0 1
1 0 0
1 1 1

11



Coincidence Lemma

Lemma
Let A1 and A2 be two assignments.
If A1(Ai ) = A2(Ai ) for all atoms Ai in some formula F ,
then A1(F ) = A2(F ).

Proof.
Exercise.

12



Models

If A(F ) = 1 then we write A |=F
and say F is true under A
or A is a model of F

If A(F ) = 0 then we write A ̸|=F
and say F is false under A
or A is not a model of F

13



Validity and satisfiability

Definition (Validity)

A formula F is valid (or a tautology)
if every assignment is a model of F .
We write |= F if F is valid, and ̸|= F otherwise.

Definition (Satisfiability)

A formula F is satisfiable if it has at least one model;
otherwise F is unsatisfiable.
A (finite or infinite!) set of formulas S is satisfiable if there is an
assigment that is a model of every formula in S .

14



Exercise

Valid Satisfiable Unsatisfiable

A

x

A ∨ B

x

A ∨ ¬A

x x

A ∧ ¬A

x

A → ¬A

x

A → (B → A)

x x

A → (A → B)

x

A ↔ ¬A

x

15



Exercise

Which of the following statements are true?

Y C.ex.

If F is valid, then F is satisfiable

Y

If F is satisfiable, then ¬F is satisfiable

⊤

If F is valid, then ¬F is unsatisfiable

Y

If F is unsatisfiable, then ¬F is unsatisfiable

⊥

16



Mirroring principle

all propositional formulas

valid
formulas

G

satisfiable
but not valid
formulas

F ¬F

unsatisfiable
formulas

¬G

17



Consequence

Definition
A formula G is a (semantic) consequence of a set of formulas M
if every model A of all F ∈ M is also a model of G .
Then we write M |= G .

In a nutshell:

“Every model of M is a model of G .”

Example

A ∨ B, A → B, B ∧ R → ¬A, R |= (R ∧ ¬A) ∧ B

18



Consequence

Example

A ∨ B, A → B, B ∧ R → ¬A, R︸ ︷︷ ︸
M

|= (R ∧ ¬A) ∧ B

Proof:
Assume A |= F for all F ∈ M.
We need to prove A |= (R ∧ ¬A) ∧ B.
From A |= A ∨ B and A |= A → B follows A |= B:
Proof by cases:
If A(A) = 0 then A(B) = 1 because A |= A ∨ B
If A(A) = 1 then A(B) = 1 because A |= A → B

From A |= B and A |= R follows A |= ¬A because . . .
From A |= B, A |= R, and A |= ¬A follows A |= (R ∧ ¬A) ∧ B

19



Exercise

M F M |= F ?

A A ∨ B

Y

A A ∧ B

N

A,B A ∨ B

Y

A,B A ∧ B

Y

A ∧ B A

Y

A ∨ B A

N

A,A → B B

Y

20



Consequence

Exercise
The following statements are equivalent:

1. F1, . . . ,Fk |= G

2. |= (
∧k

i=1 Fi ) → G

Proof of “if F1, . . . ,Fk |= G then |= (
∧k

i=1 Fi ) → G︸ ︷︷ ︸
H

”.

Assume F1, . . . ,Fk |= G .
We need to prove |= H, i.e. A(H) = 1 for all A.
We pick an arbitrary A and show A(H) = 1.
Proof by cases.
If A(

∧
Fi ) = 0 then A(H) = 1 because H =

∧
Fi → G

If A(
∧
Fi ) = 1 then A(Fi ) = 1 for all i .

Therefore A is a model of F1, . . . ,Fk .
Therefore A |= G because F1, . . . ,Fk |= G .
Therefore A(H) = 1

21



Validity and satisfiability

Exercise
The following statements are equivalent:

1. F → G is valid.

2. F ∧ ¬G is unsatisfiable.

22



Exercise

Let M be a set of formulas, and let F and G be formulas.
Which of the following statements hold?

Y/N C.ex.

If F satisfiable then M |= F .

¬A |= A

If F valid then M |= F .

Y

If F ∈ M then M |= F .

Y

If F |= G then ¬F |= ¬G .

A |= A ∨ B

23



Notation

Warning: The symbol |= is overloaded:

A |= F

|= F

M |= F

Convenient variations for set of formulas S :

A |= S means that for all F ∈ S , A |= F

|= S means that for all F ∈ S , |= F

M |= S means that for all F ∈ S , M |= F

24



Propositional Logic

Equivalences

25



Equivalence

Definition (Equivalence)

Two formulas F and G are (semantically) equivalent if
A(F ) = A(G ) for every assignment A.

We write F ≡ G to denote that F and G are equivalent.

26



Exercise

Which of the following equivalences hold?

(A ∧ (A ∨ B)) ≡ A

(A ∧ (B ∨ C )) ≡ ((A ∧ B) ∨ C )

(A → (B → C )) ≡ ((A → B) → C )

(A → (B → C )) ≡ ((A ∧ B) → C )

(A → B) ≡ (¬A ∨ B)

(A → B) ≡ (¬A → ¬B)
(A ↔ (B ↔ C )) ≡ ((A ↔ B) ↔ C )

27



Observation

The following connections hold:

|= F → G iff F |= G
|= F ↔ G iff F ≡ G

NB: “iff” means “if and only if”

28



Reductions between problems (I)

▶ Validity to Unsatisfiabilty (and back):

F valid iff ¬F unsatisfiable
F unsatisfiable iff ¬F valid

▶ Validity to Consequence:

F valid iff ⊤ |= F

▶ Consequence to Validity:

F |= G iff F → G valid

29



Reductions between problems (II)

▶ Validity to Equivalence:

F valid iff F ≡ ⊤

▶ Equivalence to Validity:

F ≡ G iff F ↔ G valid

30



Properties of semantic equivalence

▶ Semantic equivalence is an equivalence relation
between formulas.

▶ Semantic equivalence is closed under operators:

If F1 ≡ F2 and G1 ≡ G2

then (F1 ∧ G1) ≡ (F2 ∧ G2),
(F1 ∨ G1) ≡ (F2 ∨ G2) and
¬F1 ≡ ¬F2

Equivalence relation + Closure under Operations
=

Congruence relation

31



Replacement theorem

Theorem
Let F ≡ G. Let H be a formula with an occurrence of F as a
subformula. Let H ′ be the result of replacing an arbitrary
occurrence of F in H by G. Then H ≡ H ′.

Proof by induction on the structure of H.
We consider only the case H = ¬H0.
We analyse where F occurs in H.
If F = H then H ′ = G and thus H = F ≡ G = H ′.
Otherwise F is a subformula of H0.
Let H ′

0 be the result of replacing F by G in H0.
IH: H0 ≡ H ′

0

Thus H = ¬H0 ≡ ¬H ′
0 = H ′

32



Equivalences (I)

Theorem

(F ∧ F ) ≡ F
(F ∨ F ) ≡ F (Idempotence)
(F ∧ G ) ≡ (G ∧ F )
(F ∨ G ) ≡ (G ∨ F ) (Commutativity)

((F ∧ G ) ∧ H) ≡ (F ∧ (G ∧ H))
((F ∨ G ) ∨ H) ≡ (F ∨ (G ∨ H)) (Associativity)
(F ∧ (F ∨ G )) ≡ F
(F ∨ (F ∧ G )) ≡ F (Absorption)

33



Equivalences (II)

(F ∧ (G ∨ H)) ≡ ((F ∧ G ) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H)) (Distributivity)

¬¬F ≡ F (Double negation)
¬(F ∧ G ) ≡ (¬F ∨ ¬G )
¬(F ∨ G ) ≡ (¬F ∧ ¬G ) (deMorgan’s Laws)

¬⊤ ≡ ⊥
¬⊥ ≡ ⊤

(⊤ ∨ G ) ≡ ⊤
(⊤ ∧ G ) ≡ G
(⊥ ∨ G ) ≡ G
(⊥ ∧ G ) ≡ ⊥

34



Warning

The symbols |= and ≡ are not operators
in the language of propositional logic

but part of the meta-language for talking about logic.

Examples:

A |= F and F ≡ G are not propositional formulas.

(A |= F ) ≡ G and (F ≡ G ) ↔ (G ≡ F ) are nonsense.

35



Propositional Logic

Normal Forms

36



Abbreviations

Until further notice:

F1 → F2 abbreviates ¬F1 ∨ F2
F1 ↔ F2 abbreviates (F1 ∧ F2) ∨ (¬F1 ∧ ¬F2)

⊤ abbreviates A1 ∨ ¬A1

⊥ abbreviates A1 ∧ ¬A1

37



Literals

Definition
A literal is an atom or the negation of an atom.
In the former case the literal is positive,
in the latter case it is negative.

38



Negation Normal Form (NNF)

Definition
A formula is in negation formal form (NNF)
if negation (¬) occurs only directly in front of atoms.

Example
In NNF: ¬A ∧ ¬B

Not in NNF: ¬(A ∨ B)

39



Transformation into NNF

Any formula can be transformed into an equivalent formula in NNF
by pushing ¬ inwards. Apply the following equivalences from left
to right as long as possible:

¬¬F ≡ F

¬(F ∧ G ) ≡ (¬F ∨ ¬G )

¬(F ∨ G ) ≡ (¬F ∧ ¬G )

Example

(¬(A ∧ ¬B) ∧ C ) ≡ ((¬A ∨ ¬¬B) ∧ C ) ≡ ((¬A ∨ B) ∧ C )

Warning: “F ≡ G ≡ H” is merely an abbreviation for
“F ≡ G and G ≡ H”

Does this process always terminate? Is the result unique?

40



CNF and DNF

Definition
A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals:

F = (
n∧

i=1
(
mi∨
j=1

Li ,j)),

where Li ,j ∈ {A1,A2, · · · } ∪ {¬A1,¬A2, · · · }

Definition
A formula F is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals:

F = (
n∨

i=1
(
mi∧
j=1

Li ,j)),

where Li ,j ∈ {A1,A2, · · · } ∪ {¬A1,¬A2, · · · }

41



Transformation into CNF and DNF

Any formula can be transformed into an equivalent formula in CNF
or DNF in two steps:

1. Transform the initial formula into its NNF

2. Transform the NNF into CNF or DNF:
▶ Transformation into CNF. Apply the following equivalences

from left to right as long as possible:

(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H))

((F ∧ G ) ∨ H) ≡ ((F ∨ H) ∧ (G ∨ H))

▶ Transformation into DNF. Apply the following equivalences
from left to right as long as possible:

(F ∧ (G ∨ H)) ≡ ((F ∧ G ) ∨ (F ∧ H))

((F ∨ G ) ∧ H) ≡ ((F ∧ H) ∨ (G ∧ H))

42



Termination

Why does the transformation into NNF and CNF terminate?
Challenge Question: Find a weight function w :: formula → N
such that w(l .h.s.) > w(r .h.s.) for the equivalences

¬¬F ≡ F

¬(F ∧ G ) ≡ (¬F ∨ ¬G )

¬(F ∨ G ) ≡ (¬F ∧ ¬G )

(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H))

((F ∧ G ) ∨ H) ≡ ((F ∨ H) ∧ (G ∨ H))

Define w recursively:
w(Ai ) = . . .
w(¬F ) = . . .w(F ) . . .
w(F ∧ G ) = . . .w(F ) . . .w(G ) . . .
w(F ∨ G ) = . . .w(F ) . . .w(G ) . . .

43



Complexity considerations

The CNF and DNF of a formula of size n can have size 2n

Can we do better? Yes, if we do not instist on ≡.

Definition
Two formulas F and G are equisatisfiable if
F is satisfiable iff G is satisfiable.

Theorem
For every formula F of size n
there is an equisatisfiable CNF formula G of size O(n).

44



Propositional Logic

Definitional CNF

45



Definitional CNF

The definitional CNF of a formula is obtained in 2 steps:

1. Repeatedly replace a subformula G of the form ¬A′, A′ ∧ B ′

or A′ ∨ B ′ by a new atom A and conjoin A ↔ G .
This replacement is not applied to the “definitions” A ↔ G
but only to the (remains of the) original formula.

2. Translate all the subformulas A ↔ G into CNF.

Example

¬(A1 ∨ A2) ∧ A3

⇝
¬A4 ∧ A3 ∧ (A4 ↔ (A1 ∨ A2))
⇝
A5 ∧ A3 ∧ (A4 ↔ (A1 ∨ A2)) ∧ (A5 ↔ ¬A4)
⇝
A5 ∧ A3 ∧ CNF (A4 ↔ (A1 ∨ A2)) ∧ CNF (A5 ↔ ¬A4)

46



Definitional CNF: Complexity

Let the initial formula have size n.

1. Each replacement step increases the size of the formula by a
constant.
There are at most as many replacement steps as subformulas,
linearly many.

2. The conversion of each A ↔ G into CNF increases the size by
a constant.
There are only linearly many such subformulas.

Thus the definitional CNF has size O(n).

47



Notation

Definition
The notation F [G/A] denotes the result of replacing all
occurrences of the atom A in F by G .
We pronounce it as “F with G for A”.

Example

(A ∧ B)[(A → B)/B] = (A ∧ (A → B))

Definition
The notation A[v/A] denotes a modified version of A that maps A
to v and behaves like A otherwise:

(A[v/A])(Ai ) =

{
v if Ai = A
A(Ai ) otherwise

48



Substitution Lemma

Lemma
A(F [G/A]) = A′(F ) where A′ = A[A(G )/A]

Example

A((A1 ∧ A2)[G/A2]) = A′(A1 ∧ A2) where A′ = A[A(G )/A2]

Proof by structural induction on F .
Case F is an atom:
If F = A: A(F [G/A]) = A(G ) = A′(F )
If F ̸= A: A(F [G/A]) = A(F ) = A′(F )

Case F = F1 ∧ F2:
A(F [G/A]) =
A(F1[G/A] ∧ F2[G/A]) =

min(A(F1[G/A]),A(F2[G/A]))
IH
=

min(A′(F1),A′(F2)) = A′(F1 ∧ F2) = A′(F )

49



Definitional CNF: Correctness

Each replacement step produces an equisatisfiable formula:

Lemma
Let A be an atom that does not occur in G.
Then F [G/A] is equisatisfiable with F ∧ (A ↔ G ).

Proof If F [G/A] is satisfiable by some assignment A, then by the
Substitution Lemma, A′ = A[A(G )/A] is a model of F . Moreover
A′ |= (A ↔ G ) because A′(A) = A(G ) and A(G ) = A′(G ) by the
Coincidence Lemma (Exercise 1.2).
Thus F ∧ (A ↔ G ) is satsifiable (by A′).
Conversely we actually have F ∧ (A ↔ G ) |= F [G/A].
Suppose A |= F ∧ (A ↔ G ). This implies A(A) = A(G ).
Therefore A[A(G )/A] = A.
Thus A(F [G/A]) = (A[A(G )/A])(F ) = A(F ) = 1 by the
Substitution Lemma.

Does F [G/A] |= F ∧ (A ↔ G ) hold?

50



Summary

Theorem
For every formula F of size n
there is an equisatisfiable CNF formula G of size O(n).

Similarly it can be shown:

Theorem
For every formula F of size n
there is an equivalid DNF formula G of size O(n).

51



Validity of CNF

Validity of formulas in CNF can be checked in linear time.
A formula in CNF is valid iff all its disjunctions are valid.
A disjunction is valid iff it contains both an atomic A and
¬A as literals.

Example
Valid: (A ∨ ¬A ∨ B) ∧ (C ∨ ¬C )

Not valid: (A ∨ ¬A) ∧ (¬A ∨ C )

52



Satisfiability of DNF

Satisfiability of formulas in DNF can be checked in linear time.
A formula in DNF is satisfiable iff at least one of its con-
junctions is satisfiable. A conjunction is satisfiable iff it
does not contain both an atomic A and ¬A as literals.

Example
Satisfiable: (¬B ∧ A ∧ B) ∨ (¬A ∧ C )

Unsatisfiable: (A ∧ ¬A ∧ B) ∨ (C ∧ ¬C )

53



Satisfiability/validity of DNF and CNF

Theorem
Satisfiability of formulas in CNF is NP-complete.

Theorem
Validity of formulas in DNF is co-NP-complete.

The standard decision procedure for vailidity of F :

1. Transform ¬F into an equisat. formula G in def. CNF

2. Apply efficient CNF-based SAT solver to G

54



Propositional Logic

Horn Formulas

55



Efficient satisfiability checks

In the following:

▶ A very efficient satisfiability check for the special class of
Horn formulas.

▶ Efficient satisfiability checks for arbitrary formulas in CNF:
resolution (later).

56



Horn formulas

Definition
A formula F in CNF is a Horn formula if every disjunction in F
contains at most one positive literal.

A disjunction in a Horn formula can equivalently be viewed as an
implication K → B where K is a conjunction of atoms or K = ⊤
and B is an atom or B = ⊥:

(¬A ∨ ¬B ∨ C ) ≡ (A ∧ B → C )
(¬A ∨ ¬B) ≡ (A ∧ B → ⊥)

A ≡ (⊤ → A)

57



Satisfiablity check for Horn formulas

Input: a Horn formula F .

Algorithm building a model (assignment) M:

for all atoms Ai in F do M(Ai ) := 0;

while F has a subformula K → B
such that M(K ) = 1 and M(B) = 0

do
if B = ⊥ then return “unsatisfiable”
else M(B) := 1

return “satisfiable”

Maximal number of iterations of the while loop:
number of implications in F

Each iteration requires at most O(|F |) steps.
Overall complexity: O(|F |2)
[Algorithm can be improved to O(|F |). See Schöning.]

58



Correctness of the model building algorithm

Theorem
The algorithm returns “satisfiable” iff F is satisfiable.

Proof Observe: if the algorithm sets M(B) = 1, then A(B) = 1
for every assignment A such that A(F ) = 1. This is an invariant.

(a) If “unsatisfiable” then unsatisfiable.
We prove unsatisfiability by contradiction.
Assume A(F ) = 1 for some A.
Let (Ai1 ∧ . . . ∧ Aik → ⊥) be the subformula causing “unsatisfiable”.
Since M(Ai1) = · · · = M(Aik ) = 1, A(Ai1) = . . . = A(Aik ) = 1.
Then A(Ai1 ∧ . . . ∧ Aik → ⊥) = 0 and so A(F ) = 0, contradiction.
So F has no satisfying assignments.

59



(b) If “satisfiable” then satisfiable.
After termination with “satisfiable”,
for every subformula K → B of F , M(K ) = 0 or M(B) = 1.
Therefore M(K → B) = 1 and thus M |= F .
In fact, the invariant shows that M is the minimal model of F .

60



Propositional Logic

Compactness

61



Compactness Theorem

Theorem
A set S of formulas is satisfiable
iff every finite subset of S is satisfiable.

Equivalent formulation:
A set S of formulas is unsatisfiable
iff some finite subset of S is unsatisfiable.

62



An application: Graph Coloring

Definition
A 4-coloring of a graph (V ,E ) is a map c : V → {1, 2, 3, 4} such
that (x , y) ∈ E implies c(x) ̸= c(y).

Theorem (4CT)

An finite planar graph has a 4-coloring.

Theorem
A planar graph G = (V ,E ) with countably many vertices
V = {v1, v2, . . .} has a 4-coloring.

Proof G ⇝ set of formulas S s.t. S is sat. iff G is 4-col.
G is planar
⇒ every finite subgraph of G is planar and 4-col. (by 4CT)
⇒ every finite subset of S is sat.
⇒ S is sat. (by Compactness)
⇒ G is 4-col.

63



Proof details

G ⇝ S :

For simplicity:
atoms are of the form Ac

i where c ∈ {1, . . . , 4} and i ∈ N
S := {A1

i ∨ A2
i ∨ A3

i ∨ A4
i | i ∈ N} ∪

{Ac
i → ¬Ad

i | i ∈ N, c , d ∈ {1, . . . , 4}, c ̸= d} ∪
{¬(Ac

i ∧ Ac
j ) | (vi , vj) ∈ E , c ∈ {1, . . . , 4}}

Subgraph corresponding to some T ⊆ S :
VT := {vi | Ac

i occurs in T (for some c)}
ET := {(vi , vj) | ¬(Ac

i ∧ Ac
j ) ∈ T (for some c)}

64



Proof of Compactness

Theorem
A set S of formulas is satisfiable
iff every finite subset of S is satisfiable.

Proof

⇒: If S is satisfiable then every finite subset of S is satisfiable.

Trivial.

⇐ : If every finite subset of S is satisfiable then S is satisfiable.

We prove that S has a model.

65



Proof of Compactness
Terminology: A is a b1, . . . , bn model of T
(where b1, . . . , bn ∈ {0, 1}∗ and T is a set of formulas)
if A(Ai ) = bi (for i = 1, . . . , n) and A |= T .

Define an infinite sequence b1, b2, . . . recursively as follows:

bn+1 = some b ∈ {0, 1} s.t.
all finite T ⊆ S have a b1, . . . , bn, b model.

Claim 1: For all n, all finite T ⊆ S have a b1, . . . , bn model.
Proof by induction on n.

Case n = 0: because all finite T ⊆ S are satisfiable.

Case n + 1: We need to show that a suitable b exists.
Proof by contradiction. Assume there is no suitable b.
Then there is a finite T0 ⊆ S that has no b1, . . . , bn, 0 model (0)
and there is a finite T1 ⊆ S that has no b1, . . . , bn, 1 model (1).
Therefore T0 ∪ T1 has no b1, . . . , bn model A:
A(An+1) = 0 contradicts (0), A(An+1) = 1 contradicts (1).
But by IH: T0 ∪ T1 has a b1, . . . , bn model — Contradiction!

66



Proof of Compactness

Define B(Ai ) = bi for all i .

Claim 2: B |= S
We show B |= F for all F ∈ S .
Let m be the maximal index of all atoms in F .
By Claim 1, {F} has a b1, . . . , bm model A.
Hence B |= F because A and B agree on all atoms in F .

67



Corollary

Corollary

If S |= F then there is a finite subset M ⊆ S such that M |= F .

68



Propositional Logic

DPLL: Davis-Putnam-
Logemann-Loveland

69



Davis–Putnam–Logemann–Loveland

DPLL algorithm:

▶ combines search and deduction to decide satisfiability

▶ underlies most modern SAT solvers

▶ is over 50 years old

DPLL-based SAT solvers ≥ 1990:

▶ clause learning

▶ non-chronological backtracking

▶ branching heuristics

▶ lazy evaluation

70



Performance increase of SAT solvers

71



Clause representation of CNF formulas

CNF: (L1,1 ∨ . . . ∨ L1,n1) ∧ . . . ∧ (Lk,1 ∨ . . . ∨ L1,nk )

Representation as set of sets of literals:

{{L1,1, . . . , L1,n1}︸ ︷︷ ︸
clause

, . . . , {Lk,1, . . . , L1,nk}}

Clause = set of literals (disjunction).

Formula in CNF = set of clauses

Degenerate cases:

The empty clause stands for ⊥.
The empty set of clauses stands for ⊤.

72



The joy of sets

We get “for free”:

▶ Commutativity:
A ∨ B ≡ B ∨ A, both represented by {A,B}

▶ Associativity:
(A ∨ B) ∨ C ≡ A ∨ (B ∨ C ), both represented by {A,B,C}

▶ Idempotence:
(A ∨ A) ≡ A, both represented by {A}
Sets are a convenient representation of conjunctions and
disjunctions that build in associativity, commutativity and
itempotence

CNF-SAT: Input: Set of clauses F
Question: Is F unsatisfiable?

73



DPLL — First step: partial evaluation

Simplest algorithm: Construct the truth table.
Best-case runtime is Θ(m · 2n) for a formula of length m over n
variables.

Improvement: partial evaluation using Boole-Shannon expansion

Lemma (Boole-Shannon Expansion)

Let F [⊥/A] and F [⊤/A] be the result of substituting ⊥ and ⊤ for
A in F , respectively. Then:

F ≡ (A ∧ F [⊤/A]) ∨ (¬A ∧ F [⊥/A]).

Proof By structural induction on F (exercise).

Corollary

F is satisfiable iff F [⊥/A] or F [⊤/A] are unsatisfiable.

74



DPLL — First step: partial evaluation

F [⊥/A] and F [⊤/A] easy to compute in clause normal form:

F [⊤/A] ≡ take F , remove all clauses with A, remove all ¬A.
F [⊥/A] ≡ take F , remove all clauses with ¬A, remove all A.

Partial evaluation algorithm:

Given formula F , total order on the variables ≺:
If {} ∈ F return unsatisfiable.
If F = ∅ return satisfiable.
Otherwise:

Fix the first variable A in F according to ≺.
Recursively check if F [⊥/A] is satisfiable;
if yes, return satisfiable.
Recursively check if F [⊤/A] is satisfiable;
if yes, return satisfiable, otherwise unsatisfiable.

75



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{q,¬r , s}, {¬q,¬r , s}, {r}, {¬s}} {{¬q,¬r , s}, {r}}

{{¬r , s}, {r}, {¬s}} {{¬r , s}, {r}, {¬s}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{s}, {¬s}} {{}, {¬s}}

{{}} {{}}

{{¬r , s}, {r}}

{{s}}

{}

p := ⊤ p := ⊥

q := ⊤
q := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

r := ⊤
r := ⊥

s := ⊤
s := ⊥

q := ⊤

r := ⊤

s := ⊤

76



DPLL: Davis-Putnam-Logemann-Loveland

Instead of fixing an order on variables, choose the next variable
dynamically.

▶ OLR: one-literal rule If {L} ∈ F ({L} is called unit clause),
then every satisfying assignment sets L to true. So it suffices
to check satisfiability of F [⊤/L].

▶ PLR: pure-literal rule
If L appears in F and L does not, then it also suffices to check
satisfiability of F [⊤/L] (Why?).

DPLL algorithm: Partial evaluation that gives priority to a variable
satisfying OLR, then to a variable satisfying PLR, and otherwise
picks the first unpicked variable of ≺.

Applying OLR can generate further unit clauses (unit propagation).
Same for PLR, but DPLL often implemented with only OLR for
efficiency.

77



DPLL: Davis-Putnam-Logemann-Loveland

{{¬p, q,¬r , s}, {¬q,¬r , s}, {r}, {¬p,¬s}, {¬p, r}}

{{¬p, q, s}, {¬q, s}, {¬p,¬s}}

{{¬q, s}}

{}

OLR r := ⊤

PLR p := ⊥

PLR q := ⊥

In this example PLR and OLR allow us to avoid all case splits.

78



Example: 4 queens

Problem: place 4 non-attacking queens on a 4x4 chess board

Variable pij models: there is a queen in square (i , j)

▶ ≥ 1 in each row:
∧4

i=1

∨4
j=1 pij

▶ ≤ 1 in each row:
∧4

i=1

∧4
j ̸=j ′=1 ¬pij ∨ ¬pij ′

▶ ≤ 1 in each column:
∧4

j=1

∧4
i ̸=i ′=1 ¬pij ∨ ¬pi ′j

▶ ≤ 1 on each diagonal:
∧4

i ,j=1

∨
k ¬pi−k,i+k ∨ ¬pi+k,j+k

Total number of clauses: 4 + 24 + 24 + 28 = 80

79



DPLL: 4 queens

Running the DPLL algorithm:

▶ Start with p11 7→ 1
delete {p11, p12, p13, p14}, delete ¬p11: 9 new unit clauses
unit propagation: deletes 65 clauses!

▶ Set p23 7→ 1
4 new unit clauses: {¬p24}, {¬p43}, {¬p32}, {¬p34}
unit propagation of {¬p34}: unsat
fixing only two literals collapsed from 80 clauses to 1
ruled out 214 of 216 possible assignments!

▶ Backtrack: p11 7→ 0, p12 7→ 1
delete {¬p12}: 9 new unit clauses
unit propagation: leaves only 1 clause {p43}!

▶ Answer: p12, p24, p31, p43 7→ 1

80



DPLL: Evaluation
Oriented towards satisfiability:

▶ 2O(n) time for satisfiable formulas, but 2Θ(n) for unsatisfiable
ones.

▶ DPLL computes a satisfying assignment, if there is one.

▶ The satisfying assignment is a certificate of satisfiability.

▶ Satisfiable formulas have short certificates: satisfying
assignment never larger than the formula.

Coming next: resolution, a procedure oriented towards
unsatisfiability.

▶ 2O(n) time for unsatisfiable formulas, but 2Θ(n) for satisfiable
ones.

▶ Resolution computes a certificate of unsatisfiabiity.

▶ However, the certificate is exponentially longer than the
formula in the worst case.

▶ Polynomial certificates for satisfiability implies NP= coNP.
81



Propositional Logic

Resolution

82



Resolution — The idea

Input: Set of clauses F
Question: Is F unsatisfiable?

Algorithm:
Keep on “resolving” two clauses from F and adding the result to F
until the empty clause is found

Correctness:
If the empty clause is found, the initial F is unsatisfiable
Completeness:
If the initial F is unsatisfiable, the empty clause can be found.

Correctness/Completeness of syntactic procedure (resolution)
w.r.t. semantic property (unsatisfiability)

83



Resolvent

Definition
Let L be a literal. Then L is defined as follows:

L =

{
¬Ai if L = Ai

Ai if L = ¬Ai

Definition
Let C1, C2 be clauses and let L be a literal
such that L ∈ C1 and L ∈ C2. Then the clause

(C1 − {L}) ∪ (C2 − {L})

is a resolvent of C1 and C2.
The process of deriving the resolvent is called a resolution step.

84



Graphical representation of resolvent:

C1 C2

R

If C1 = {L} and C2 = {L} then the empty clause is a resolvent of
C1 and C2. The special symbol □ denotes the empty clause.

Recall: □ represents ⊥.

85



Resolution proof

Definition
A resolution proof of a clause C from a set of clauses F
is a sequence of clauses C0, . . . ,Cn such that

▶ Ci ∈ F or Ci is a resolvent of two clauses Ca and Cb, a, b < i ,

▶ Cn = C

Then we can write F ⊢Res C .

Note: F can be finite or infinite

86



Resolution proof as DAG

A resolution proof can be shown as a DAG with the clauses in F as
the leaves and C as the root:

Example

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

□

87



A linear resolution proof

0: {P,Q}
1: {P,¬Q}
2: {¬P,Q}
3: {¬P,¬Q}
4: {P} (0, 1)
5: {Q} (0, 2)
6: {¬P} (3, 5)
7: □ (4, 6)

88



Correctness of resolution

Lemma (Resolution Lemma)

Let R be a resolvent of two clauses C1 and C2. Then C1,C2 |= R.

Proof By definition R = (C1 − {L}) ∪ (C2 − {L}) (for some L).
Let A |= C1 and A |= C2. There are two cases.
If A |= L then A |= C2 − {L} (because A |= C2), thus A |= R.
If A ̸|= L then A |= C1 − {L} (because A |= C1), thus A |= R.

Theorem (Correctness of resolution)

Let F be a set of clauses. If F ⊢Res C then F |= C.

Proof Assume there is a resolution proof C0, . . . ,Cn = C .
By induction on i we show F |= Ci . IH: F |= Cj for all j < i .
If Ci ∈ F then F |= Ci is trivial. If Ci is a resolvent of Ca and Cb,
a, b < i , then F |= Ca and F |= Cb by IH and Ca,Cb |= Ci by the
resolution lemma. Thus F |= Ci .

Corollary

Let F be a set of clauses. If F ⊢Res □ then F is unsatisfiable.
89



Completeness of resolution

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Theorem (Completeness of resolution)

Let F be a set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof If F is infinite, there must be a finite unsatisfiable subset of
F (by the Compactness Theorem); in that case let F be that finite
subset and apply the previous theorem.

Corollary

A set of clauses F is unsatisfiable iff F ⊢Res □.

90



Completeness proof

Lemma (Boole-Shannon Expansion)

Let F [⊥/A] and F [⊤/A] be the result of substituting ⊥ and ⊤ for
A in F , respectively. Then:

F ≡ (A ∧ F [⊤/A]) ∨ (¬A ∧ F [⊥/A]).

Proof By structural induction on F (exercise).

Corollary

F is unsatisfiable iff F [⊥/A] and F [⊤/A] are unsatisfiable.

Idea for completeness proof: If A is an atom of F , then F [⊥/A]
and F [⊤/A] have fewer atoms than F . Use Boole-Shannon to
prove completeness by induction on the number of atoms of F :
Given F unsatisfiable, construct inductively resolution proofs for
F [⊥/A] and F [⊤/A] and “combine” them into a resolution proof
for F .

91



Inductive construction of resolution proofs

F = { {¬q, s} , {¬p, q, s} , {p} , {r ,¬s} , {¬p,¬r ,¬s} }

▶ Compute inductively proofs for F [⊤/s] and F [⊥/s].

F [⊤/s] ≡ { {p} , {r} , {¬p,¬r} }
F [⊥/s] ≡ { {¬q} , {¬p, q} , {p} }

{p} {r}

□

{¬p,¬r}

{¬r}

{p}

{q}

{q,¬p}

□

{¬q}

92



Inductive construction of resolution proofs

▶ Reintroduce s and ¬s.

F = { {¬q, s} , {¬p, q, s} , {p} , {r ,¬s} , {¬p,¬r ,¬s} }

{p}

{q}

{¬p, q}

□

{¬q} {p} {r}

□

{¬p,¬r}

{¬r}

{p}

{q, s}

{¬p, q, s}

{s}

{¬q, s} {p} {r ,¬s}

{¬s}

{¬p,¬r ,¬s}

{¬r ,¬s}

93



Inductive construction of resolution proofs

▶ Combine the graphs for {s} and {¬s}.

{p}

{q, s}

{¬p, q, s}

{s}

{¬q, s} {p} {r ,¬s}

{¬s}

{¬p,¬r ,¬s}

{¬r ,¬s}

{p}

{q, s}

{¬p, q, s}

{s}

{¬q, s} {r ,¬s}

{¬s}

{¬p,¬r ,¬s}

{¬r ,¬s}

□

94



Completeness proof

Theorem
Let F be a finite set of clauses. If F is unsatisfiable then F ⊢Res □.

Proof The proof of F ⊢Res □ is by induction on the number n of
distinct atoms in F .

Basis: If n = 0 then F = {} (but F is unsat.) or F = {□}.
Step:
IH: For every unsat. set of clauses F with n dist. atoms, F ⊢Res □.
Let F contain n + 1 distinct atoms. Pick some atom A in F .

F [⊤/A] ≡ take F , remove all clauses with A, remove all ¬A.
F [⊥/A] ≡ take F , remove all clauses with ¬A, remove all A.

95



Completeness proof

By IH: there are res. proofs C0, . . . ,Cm = □ from F [⊥/A] and
D0, . . . ,Dn = □ from F [⊤/A].
Now transform C0, . . . ,Cm into a proof C ′

0, . . . ,C
′
m from F

by adding A back into the clauses it was removed from. Then

▶ either C ′
m = {A}

▶ or C ′
m = □ (and we are done).

Similarly we transform D0, . . . ,Dn into a proof D ′
0, . . . ,D

′
n from F

(by adding ¬A back in).
Then D ′

n = {¬A} or D ′
n = □ (and we are done).

If C ′
m = {A} and D ′

n = {¬A} then F ⊢Res A and F ⊢Res ¬A
and thus F ⊢Res □.

96



Resolution is only refutation complete

Not everything that is a consequence of a set of clauses
can be derived by resolution.

Exercise
Find F and C such that F |= C but not F ⊢Res C.

How to prove F |= C by resolution?
Prove F ∪ {¬C} ⊢Res □

97



A resolution algorithm
Input: A CNF formula F , i.e. a finite set of clauses

while there are clauses Ca,Cb ∈ F and resolvent R of Ca and Cb

such that R /∈ F
do F := F ∪ {R}

Lemma
The algorithm terminates.

Proof There are only finitely many clauses over a finite set of
atoms.

Theorem
The initial F is unsatisfiable iff □ is in the final F

Proof Finit is unsat. iff Finit ⊢Res □ iff □ ∈ Ffinal
because the algorithm enumerates all R such that Finit ⊢ R.

Corollary

The algorithm is a decision procedure for unsatisfiability of CNF
formulas.

98



Propositional Logic

CDCL: Conflict Driven Clause
Learning

99



CDCL: goal and idea

Goal: Combine DPLL and resolution into an algorithm oriented
towards both satisfiability and unsatisfiability.

Idea: At every unsuccessful leaf of DPLL (called conflict), compute
a conflict clause, and add it to the formula we are deciding about.

Conflict clauses “cache” previous search results, so we “learn from
previous mistakes”.

Conflict clauses also determine backtracking.

We present a particular way of computing a conflict clause using
resolution. There are other ways.

100



DPLL + CDCL algorithm

Input: CNF formula F .

1. Initialise A to the empty assignment

2. While there is unit clause {L} or pure literal L in F |A, update
A 7→ A[L7→1]

3. If F |A contains no clauses, stop and output A.

4. If F |A ∋ □, add new clause C to F by learning procedure.
If C is the empty clause, stop and output unsat.
Otherwise backtrack to highest level where C is unit clause.
Go to Line 2.

5. Apply decision strategy to update A 7→ A[p 7→b].
Go to line 2.

F |A is set of clauses obtained from deleting any clause containing
true literal, and deleting from each remaining clause all false
literals.

101



Terminology

State of algorithm is pair of CNF formula F and assignment A.
Successful state when A |= F . Conflict state when A ̸|= F .

▶ Each assignment pi 7→ bi classifies as
decision assignment or implied assignment.

▶ pi in a decision assignment pi 7→ bi is decision variable.

▶ Denote by pi
C7→ bi an implied assignment arising through unit

propagation on clause C .

▶ Decision level of assignment pi 7→ bi in a given state A is
number of decision assignments in A that precede pi 7→ bi .

(Note: conflict state if F |A ∋ □, successful state if F |A = ∅)

102



Example: start with set of clauses F = {C1, . . . ,C5}, where

C1 ={¬p1,¬p4, p5}
C2 ={¬p1, p6,¬p5}
C3 ={¬p1,¬p6, p7}
C4 ={¬p1,¬p7,¬p5}
C5 ={p1, p4, p6}

Say current assignment is (p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1).
Notice F |A contains unit clause {p5}.
Unit propagation further generates (p5

C17→ 1, p6
C27→ 1, p7

C37→ 1). This
leads to a conflict, with C4 being made false.

103



Conflict analysis

After unit propagation:

▶ If not in conflict nor successful, make decision (line 5)

▶ If in conflict, learned clause is added (line 4)

Learned clause desiderata: If unit propagation from state (F ,A)
leads to conflict, clause C is learned such that:

1. F ≡ F ∪ {C}
2. C is conflict clause: each literal is made false by A
3. C mentions only decision variables in A

104



Clause learning using resolution

Suppose A = (p1 7→ b1, . . . , pk 7→ bk) leads to conflict.
Find associated clauses A1, . . . ,Ak+1 by backward induction:

1. Take any conflict clause under A as Ak+1.

2. If pi 7→ bi is decision assignment or pi not mentioned in Ai+1,
set Ai = Ai+1.

3. If pi
Ci7→ bi is implied assignment and pi mentioned in Ai+1,

define Ai to be resolvent of Ai+1 and Ci with respect to pi .

C := A1, that is, the final clause A1 is the learned clause .

105



Clause learning: example
In conflict of above example, learning generates clauses

A8 := {¬p1,¬p7,¬p5} (clause C4)

A7 := {¬p1,¬p5,¬p6} (resolve A8, C3)

A6 := {¬p1,¬p5} (resolve A7, C2)

A5 := {¬p1,¬p4} (resolve A6, C1)

...

A1 := {¬p1,¬p4}

Learned clause A1 is conflict clause with only decision variables,
including top-level one p4. Intuitively:

▶ A1 records that conflict arose from decision to make p1, p4
true.

▶ Adding A1 makes assignments setting p1, p4 7→ 1 unreachable

▶ DPLL backtracks to highest level where A1 is unit clause
(p1 7→ 1), unit propagation leads to p4 7→ 0.

106



Clause learning

Proposition: The clause learning procedure satisfies the three
desiderata.

Proof sketch: Observation: If pi
Ci7→ bi , then the only literal of Ci

true under A is the literal for pi (that is, Ci contains either pi or
¬pi , and bi is chosen to make the literal true).

1. F ≡ F ∪ {C}
Because C is obtained from clauses of F through resolution steps.

2. C is conflict clause: each literal is made false by A.
We show by induction that Ak+1,Ak , · · ·A1 = C are conflict
clauses.
Ak+1 is conflict clause by definition. If Ai+1 is conflict clause and
Ai = Ai+1, then so is Ai .
If Ai+1 is conflict clause and Ai ̸= Ai+1, then Ai is the result of
resolving Ai+1 and Ci . By the observation, all literals of Ai are
made false by A.

107



3. C mentions only decision variables in A.
Because every other variable, say pi , dissapears after resolving with
Ai+1 w.r.t. pi . Indeed, since A makes Ai+1 false, by the
observation pi has opposite signs in Ai+1 and Ci .

108



Example (without PLR)

{¬p1}{p1, p3, p4}{¬p2,¬p5}{p3,¬p4, p5,¬p6}{p1,¬p2,¬p4, p6}
UP: p1 7→ 0 {p3, p4} {¬p2,¬p5} {p3,¬p4, p5,¬p6} {¬p2,¬p4, p6}
DE: p2 7→ 1 {p3, p4} {¬p5} {p3,¬p4, p5,¬p6} {¬p4, p6}
UP: p5 7→ 0 {p3, p4} {p3,¬p4,¬p6} {¬p4, p6}
DE: p3 7→ 0 {p4} {¬p4,¬p6} {¬p4, p6}
UP: p4 7→ 1 {¬p6} {p6}
UP: p6 7→ 1 { }

A7 := {p3,¬p4, p5,¬p6} (conflict clause)

A6 := {p1,¬p2, p3,¬p4, p5} (resolve A7, {p1,¬p2,¬p4, p6})
A5 := {p1,¬p2, p3, p5} (resolve A6, {p1, p3, p4})
A4 := A5

A3 := {p1,¬p2, p3} (resolve A4, {p1, p3, p4})
A2 := A3

A1 := {¬p2, p3} (resolve A2, {¬p1})

Backtracking to {p1 7→ 0, p2 7→ 1}. Unit propagation: p3 7→ 1.
109


