

Development of LLM-driven GUI Agents — Pre-Meeting

Prof. Dr. Chunyang Chen, Dr. Shencheng Yu, Sidong Feng, Ludwig Felder, Shen Hu

Technical University of Munich

School of Computation, Information and Technology (CIT)

Chair of Software Engineering & Al

11.02.2025

Context

Development of AI agents that autonomously interact with graphical user interfaces

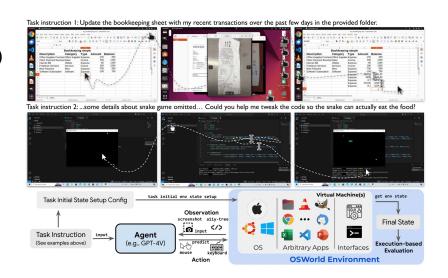
Combination of:

- Large Language Models (LLMs)
- GUI Automation
- (Computer Vision)

Evaluation on standardized benchmarks

Content

- 1. Learn about state-of-the-art LLM-driven GUI agents
- 2. Implement an agent for a selected benchmark
- 3. Evaluate and document the results


Project Focus:

- Implementation: Building agents that can autonomously interact with GUIs
- Benchmark Performance: Meeting specific task criteria
- Evaluation: Comparing against baseline metrics

Example Benchmark: OSWorld

- Real-world GUI tasks across platforms
- 369 standardized tasks (web, desktop, file operations)
- Current SOTA: 38.1% success rate
- Provides reproducible evaluation metrics
- See: https://os-world.github.io

Structure

- Week 1-3: Foundation Phase
 - Introduction to LLM-driven GUI agents
 - Overview of relevant technologies and frameworks
 - Formation of groups (2 people) and selection of benchmark
- Week 4-7: Research & Prototype Phase
 - Working on prototypes
 - Weekly meetings with assigned tutor
 - Midterm presentation (10%) progress check
- Week 8-13: Implementation Phase
 - Complete implementation (50%)
 - Benchmark evaluation and documentation (30%)
 - Final presentation (10%) demonstrating achievements

Expectation

- Working Prototype
 - Demonstrable on real examples
 - Reproducible results
 - Well-structured implementation
- Documentation
 - Clear code structure
 - Key methods explained
 - Setup and usage instructions
- Presentations
 - Midterm: Show clear progress and planning
 - Final: Demonstration of achievements

Additional Information

All implementations should use open-source LLMs

- Computing Resources
 - Three NVIDIA RTX 4090 GPUs available for student use
 - Dedicated for running open-source LLMs
 - Suitable for models like:
 - Llama variants
 - Mistral
 - Deepseek R1

Question & Answer

- Main Tutors
 - Shen Hu, shen.hu@tum.de
 - Ludwig Felder, <u>ludwig.felder@tum.de</u>
- To be preferred in the matching, please fill our application form (deadline 18.02, 23:59): https://forms.gle/iabNFWLeM2ecGYTY6