Compiler Construction

Dr. Michael Petter, Raphaela Palenta **Exercise Sheet 7**

Assignment 7.1 Attribute Grammars

The following LL(1) grammar implements the functionality of a pocket calculator. Every key of the calculator emits a token. The keys 0 to 9 emit the token <u>digit</u> and all other keys directly translate to the tokens $\underline{=}, \underline{+}, \underline{*}, \underline{mw}$ (memory write), and \underline{mr} (memory read).

rule		pro	oduction	attribute system
1	Start	::=	Comp	$v[0] \coloneqq v[1] m[1] \coloneqq 0$
2	Comp	::=	Expr =	$v[0] \coloneqq v[1] m[1] \coloneqq m[0]$
3			Expr <u>=</u> Comp	$v[0] \coloneqq v[3] m[1] \coloneqq m[0] m[3] \coloneqq m[0]$
4			Expr <u>mw</u> Comp	
5	Expr	::=	Term <u>+</u> Expr	
6			Term	
7	Term	::=	Atom <u>*</u> Term	
8			Atom	
9	Atom	::=	digit Number	
10			mr	
11	Number	::=	digit Number	
12			ε	

The result is computed in the v attribute of *Start*. The key \equiv is used to evaluate the expression and clears the input. The value of the internal memory is stored in the attribute m which is initially zero. The key \underline{mv} evaluates the expression and stores its value in the internal memory of the calculator, and clears the input. The key \underline{mr} recalls this value. For each token digit the attribute v contains the digit as the natural number, i.e., $v \in [0, 9]$.

1. What is the result after parsing the following key strokes. For a parse error, write "err".

2. Complete the definitions for the result value v and the content of the memory cell m so that the calculator has the described behavior. You may add other attributes as needed.

3. Which properties does the attributed grammar satisfy?

Assignment 7.2 Strongly Acyclic Attribute Grammars

Consider Attribute Grammar G:

- 1. Draw the local dependency graphs for all production rules $p \in G$.
- 2. Enumerate all inputs and construct the dependency graphs.
- 3. Is G acyclic?