
High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance

Maximilian Kuschewski
maximilian.kuschewski@tum.de
Technische Universität München

Jana Giceva
jana.giceva@tum.de

Technische Universität München

Thomas Neumann
neumann@in.tum.de

Technische Universität München

Viktor Leis
leis@in.tum.de

Technische Universität München

ABSTRACT
This paper aims to bridge the gap between fast in-memory query
engines and slow but robust engines that can utilize external stor-
age. We find that current systems have to choose between fast
in-memory operators and slower out-of-memory operators. We
present a solution that leverages two independent but comple-
mentary techniques: First, we propose adaptive materialization,
which can turn any hash-based in-memory operator into an out-
of-memory operator without reducing in-memory performance.
Second, we introduce self-regulating compression, which optimizes
the throughput of spilling operators based on the current workload
and available hardware. We evaluate these techniques using the
prototype query engine Spilly, which matches the performance of
state-of-the-art in-memory systems, but also efficiently executes
large out-of-memory workloads by spilling to NVMe arrays.
ACM Reference Format:
Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis.
2024. High-Performance Query Processing with NVMe Arrays: Spilling
without Killing Performance . In Proceedings of SIGMOD 2025. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Changing hardware drives system evolution.Database systems
depend on a plethora of abstractions which allow them to evolve
with the ever-changing hardware landscape. Relational algebra and
SQL, for example, have allowed databases to adapt their internals to
new hardware while keeping a mostly consistent interface across
half a century. Some abstractions, however, turned out to be sorely
lacking: Many classical database components, for instance, became
major performance bottlenecks as hardware evolved [20, 41, 75].
This realization sparked a long line of work on efficient in-memory
engines [24–26, 45, 46, 50, 51, 57, 61, 64, 66, 70, 71, 82] that improved
performance by orders of magnitude. Thus, systems research needs
to constantly re-evaluate the validity of assumptions and the use-
fulness of abstractions in the face of new hardware.
The rapid development of NVMe SSDs. Of the many recent
hardware developments, one stands out in particular: In just five
years, NVMe SSD bandwidth has increased twentyfold while stor-
age prices reduced threefold, as Figure 1 shows. An array of PCIe 5.0
NVMe SSDs can now achieve more than 100GB/s read throughput

SIGMOD 2025, July 2025, Berlin, Germany
2024. This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Proceedings
of SIGMOD 2025, https://doi.org/10.1145/nnnnnnn.nnnnnnn.

0

5

10

15

2017 2019 2021 2023

Launch Date
R

e
a
d
 B

a
n
d
w

id
th

 (
G

B
/s

)
0

2

4

6

2017 2019 2021 2023

Launch Date

C
a
p
a
c
ity

 (
G

B
/$

)

Micron 5100 PRO (SATA)

Samsung PM983
(PCIe 3)

Samsung
PM1733
(PCIe 4)

Kioxia CM7-R (PCIe 5)

Micron 5100 PRO
(SATA)

Samsung PM983
(PCIe 3)

Samsung
PM1733
(PCIe 4)

Kioxia CM7-R (PCIe 5)

Figure 1: SSD read bandwidth and cost evolution [12–15].

while costing a fraction of the equivalent DRAM capacity. We need
to evaluate whether our systems and their abstractions are capable
of exploiting this disruptive development.
How fast SSDs impact state-of-the-art systems. The emergence
of high-throughput NVMe SSDs affects current engines in twoways:
First, pure in-memory engines become less economically viable as
they rely exclusively on expensive DRAM and are not equipped to
read from or spill to much cheaper SSDs. Second, systems capable
for out-of-memory processing can use, but not fully utilize, modern
NVMe SSDs because they were designed with hard disks in mind.
This leaves users with a trade-off: Use a fast in-memory system that
fails when data grows too large; or use a robust out-of-memory-
capable system that is significantly slower. It also begs the question:
Why are there two categories of systems at all?
In-memory vs. out-of-memory systems: The missing link.
When executing a query, systems face a trade-off: They need to
decide whether to apply fast-in memory operators or use robust
out-of-memory-capable operators that are slower – based on unreli-
able cardinality estimates [52], and for each operator in each query.
For instance, in-memory systems can use a fast in-memory hash
join where out-of-memory-capable systems need to use a slower
grace or hybrid hash join to allow spilling. This paper proposes
eliminating this trade-off by introducing a common abstraction that
transparently handles materialization, larger-than-memory inter-
mediary results, and spilling – while also staying fast in-memory.
Umami: Unifying in-memory materialization and spilling.
WeproposeUmami (UnifiedMaterializationManagement Interface),
which allows unifying in-memory operators with spilling opera-
tors, obviating the need for physical operator choice. Umami also
enables hardware-aware spilling to make systems more resilient to
hardware evolution. Umami leverages two independent but comple-
mentary parts that constitute this paper’s first two contributions:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD 2025, July 2025, Berlin, Germany Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis

(1) Umami uses adaptive materialization, which allows hash-
based in-memory operators to start partitioning and spilling
dynamically at runtime (Section 4.2).

(2) Umami applies self-regulating compression, which op-
timizes the throughput of spilling operators based on the
available CPU and I/O bandwidth (Section 4.4).

As a third contribution, we design operators based on Umami:
(3) We propose unified operators that are as fast as pure in-

memory operators but can switch to efficient out-of-memory
processing using modern NVMe SSDs (Sections 4.5 and 4.6).

Evaluating Umami on NVMe arrays. We validate this approach
using a prototype query engine based on Umami that is capable of
executing TPC-H. This engine, called Spilly, serves as a platform for
designing and evaluating Umami-based aggregation and join oper-
ators. Spilly achieves in-memory performance comparable to the
state-of-the-art in-memory engines Hyper [45] and DuckDB [69],
but can also execute large out-of-memory workloads. To our knowl-
edge, Spilly is the only query engine that can effectively utilize mul-
tiple modern PCIe 5.0 NVMe SSDs. As demonstrated in Section 6,
Spilly can execute TPC-H scale factor 10,000 (10 TB of data) on a
system with only 384GB main memory while maintaining 86% of
in-memory tuple throughput and spilling 5.5 TB of data.

2 RELATEDWORK
Scanning from SSD. Scanning data stored on SSDs efficiently is an
important prerequisite for SSD-based query processing. A recent
paper [78] equips the scan and index lookup operators of the DBMS
Umbra [60] with asynchronous I/O and reports large performance
improvements over the synchronous implementation. Other recent
work [62, 63] re-evaluates in-memory caching in the presence of
fast NVMe storage and develops new caching policies that are better
suited for high-throughput storage and heterogeneous hardware.
Spilling to SSD. In contrast to scanning, there is limited research
that addresses efficient spilling to SSDs. Recent work [44] provides
an in-depth analysis of the hybrid hash join (HHJ) operator, includ-
ing experiments that spill to SSD. The study focuses on algorithmic
considerations, thus centering on single-threaded experiments that
process gigabytes of data with tens of megabytes per second on
small servers. However, modern NVMe arrays can read and write
with tens of gigabytes per second, approaching even the processing
speed of in-memory systems. In this work, we propose techniques
that allow such state-of-the-art engines to exploit high-throughput
NVMe arrays without sacrificing their in-memory performance.
External aggregation in DuckDB. Recent work by Kuiper et
al. [48] also recognizes the need for operators that gracefully switch
from in-memory to out-of-memory processing. The paper focuses
on memory management and argues for a unified buffer manager,
which manages both table pages and temporary data. Experiments,
executed on hardware comparable to a modern laptop, show the ag-
gregation operator scaling robustly beyond main memory. Umami,
in contrast, focuses less on memory management, and more on effi-
cient spilling to multiple high-throughput SSDs, and can be applied
to any hash-based operator. Section 4.6 details further differences
between Spilly’s and DuckDB’s aggregation operator.
Older work on SSD-based OLAP.While recent work on OLAP us-
ing NVMe SSDs is scarce, SSDs garnered some attention when they

became widely available. Most of this work focused on the transi-
tion from disks to SSDs. At that time, SSDs were much more expen-
sive [29], so prior work usually argued for a multi-layer hierarchy
where SSDs act as a cache for disks [21, 30, 31, 35, 37, 38, 47, 72, 76].
SSD-based OLTP. OLTP on SSDs has received more attention than
OLAP, as evidenced by systems such as RocksDB [4], ScyllaDB [9],
MosaicDB [43], and LeanStore [53]. Recent work [40] on LeanStore
demonstrates how a transactional system can fully exploit an array
of PCIe 4.0 SSDs, using a setup that is similar to ours.
Hardware cost. Our measurement server (c.f., Section 6.1) uses an
array of eight 3.84 TB PCIe 5.0 SSDs. This setup strikes a balance
between capacity and bandwidth, and is not much more expensive
than older SSD generations, as the following table comparing 30 TB
storage options shows (January 2024 prices [6, 13–15]):

Configuration Price Capacity Read Write
$ TB /$ GB/s /$ GB/s /$

16×1.9 TB PCIe 5 SSD 6,832 30.7 4.5 176 .03 110 .008
8×3.8 TB PCIe 5 SSD 5,376 30.7 5.7 88 .02 52 .010
4×7.7 TB PCIe 5 SSD 4,620 30.7 6.6 44 .01 26 .006
8×3.8 TB PCIe 4 SSD 5,032 30.7 6.1 52 .01 28 .006
8×3.8 TB PCIe 3 SSD 3,592 30.7 8.6 24 .01 16 .004

Our setup (highlighted) is 6% more expensive than an equivalent
setup using previous-generation PCIe 4.0 SSDs, and only 50% more
expensive than a setup using PCIe 3.0 SSDs from 2019, while still
providing 30× more storage capacity per dollar than DRAM. In
terms of read and write bandwidth, both absolute and per dollar,
PCIe 5.0 SSDs are strictly better than all older generations.
Spilling vs. distributed processing. The increase in NVMe band-
width parallels the development of network bandwidth in the cloud:
Newer AWS EC2 instances achieve up to 200Gbit/s =∧ 25GB/s net-
work throughput [3]. Recent work strives to utilize these fast net-
works, e.g., for efficient scans from blob storage [33] or by spilling
and caching data on remote memory [56, 80]. Since distributed pro-
cessing closely resembles spilling – exchanging partitions parallels
spilling to other nodes – we believe that the techniques proposed
in this paper could be adapted to distributed query processing.

3 BACKGROUND: SPILLING ALGORITHMS
In-memory operators. Before reviewing out-of-memory query
processing algorithms, let us first discuss state-of-the-art in-memory
query processing algorithms using the join operator as an example.
In memory, one can build a large hash table for the left join side
(build side) and probe it with each tuple from the right side (probe
side). In-memory systems can pipeline this probing across multiple
joins and thereby avoid materializing all tuples between joins.
Running in-memory algorithms on flash storage. Given the
high throughput of modern NVMe SSDs, one might consider simply
using this well-known and efficient in-memory algorithm on SSDs.
However, SSDs are page-based devices, where reading and writing
happens at page (often 4 kB) granularity [40]. Algorithms based
on point accesses, such as the hash join, thus result in read and
write amplification, i.e., page size

tuple size . We can see the impact of this
by building a hash table on SSD, and comparing the performance
with a page-based algorithm such as partitioning. Assuming 839M
128 Byte tuples (=∧ 100GB) and 50GB/s I/O throughput, we get:

High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance SIGMOD 2025, July 2025, Berlin, Germany

Writes Total I/O Tuples per s Time
Hash table on SSD 839M 3,200GB 6.5M 128 s
Partition to SSD 26M 100GB 419.4M 2 s

As this calculation illustrates, write amplification (here: 4 kB
128 B = 64×)

makes random access-based algorithms impractical on SSDs. We
thus need algorithms specialized for out-of-memory processing.
Disk-optimized algorithms on flash storage. The two classes
of algorithms used for out-of-memory processing are hash par-
titioning and sorting, and some even suggest always relying on
sorting [32]. Sorting is generally more useful in a disk-based setting
because it facilitates a sequential I/O pattern that suits the hardware,
for example by producing large runs of values to amortize disk seek
time. In contrast, SSDs are inherently parallel devices, and achieving
high throughput necessitates exploiting this parallelism [65].
Hash partitioning is a natural fit for SSDs. Besides sorting, one
can also use hash partitioning for out-of-memory query processing.
Hash partitioning-based algorithms are a better fit for the parallel
nature of SSDs because they produce multiple independent parti-
tions that can be split into fixed-size pages. Assuming 𝑇 threads
and 𝑃 partitions, a hash partitioning operator produces 𝑇 × 𝑃 tuple
streams. It can materialize each stream onto pages that are spilled to
SSD whenever they fill up. Therefore, considering our join example,
the grace hash join is a good fit for NVMe SSDs.
Asynchronous I/O and hash partitioning. Effectively exploiting
the parallelism inherent to NVMe SSDs requires using asynchro-
nous I/O interfaces [40, 78]. Our engine Spilly uses io_uring [17]
for this. Asynchronous I/O also integrates well with algorithms
based on hash partitioning. Once a page belonging to a partition is
full, it can be written asynchronously while the operator continues
with a freshly allocated (or written-out) page. Since hash partition-
ing fits SSDs well, this work focuses on hash-based operators.

4 THE UMAMI INTERFACE
Motivation: The dichotomy of real-world workloads. Only
5% of analytical queries in Snowflake’s 2018 workload trace spill
data, but those 5% contribute 45% of the overall CPU time and 29%
of the total execution time [77]. It follows that enhancing the per-
formance of these few spilling queries can greatly improve overall
execution time. But, as is the nature of exponential distributions,
the same workload trace shows that 97% of queries scan less than
5GB. Consequently, improving spilling queriesmust not slow down
this overwhelming majority of small in-memory queries.
Outline. In the following, we argue that current systems cannot
effectively tackle this challenge (Section 4.1) and then describe a
solution using the Umami interface. Umami leverages two indepen-
dently applicable but complementary techniques called adaptive
materialization and self-regulating compression, which we explain
in Sections 4.2 and 4.4. We subsequently use Umami to build unified
join and aggregation operators (Sections 4.5 and 4.6) that stay fast
in memory but are able to switch to out-of-memory processing if
necessary. As we will demonstrate in Section 6, these operators
allow the query engine Spilly to execute a 10 TB TPC-H workload
on a single node with little performance loss while spilling. Finally,
Section 4.7 discusses the generality and limits of Umami.

Hybrid 3 × Hybrid

No partitioningNo partitioning

PartitionPartition

1.2 ×

TPC-H scale factor 10 TPC-H scale factor 100

0.0 B 0.4 B 0.8 B 1.2 B 0 B 1 B 2 B 3 B

Tuples per Second

5.1× 2.9 ×

Figure 2: TPC-H performance with partitioning, hybrid, and
non-partitioning operators. Data is scanned from memory.

4.1 Why the State of the Art is Not Enough
The dilemma of operator choice. State-of-the-art systems, be-
fore actually executing any query, use a query optimizer to pick
physical operator implementations for each logical operator. Using
an internal cost model and – often unreliable [52] – cardinality
estimates, the optimizer is now faced with a choice: (1) Pick in-
memory-optimized operator implementations (e.g., simple hash
join, non-partitioning aggregation) that fail once memory runs
out and restart the query with a different operator or plan; or (2),
pick out-of-memory-capable operator implementations (e.g., grace
join, hybrid hash join, partitioning aggregation) that are, at least in
principle, able to spill data. If the partitioning- and sorting-based
operator variants were as fast as their non-partitioning cousins,
there would be no trade-off. Alas, they are not as fast.
Always partitioning is undesirable.We validate this assumption
by implementing a partitioning aggregation and a grace join, as
well as a non-partitioning aggregation and a simple hash join in the
query engine Spilly (without sort-based algorithms, see Section 3).
Figure 2 shows the throughput (scanned tuples divided by execution
time) of TPC-H on scale factors 10 and 100, using the test system
we describe in Section 6. The partitioning join and aggregation
implementations exhibit 5× worse performance compared to the
non-partitioning variants. This confirms the observation made by
previous work [23, 24], which shows that, even using all modern
partitioning optimizations [67, 74], simple hash joins are almost
always the fastest choice. Being 5× slower in the majority of small
queries, just in case one needs to spill, is unacceptable.
The hybrid hash join: A solution? There is another approach to
joins, whose name suggests that it combines the benefits of both
worlds: The hybrid hash join (HHJ). The HHJ was conceived in 1984
to reduce the I/O requirements of the grace join [28]. Like the grace
join, the HHJ always partitions the build side of the join. Unlike
the grace join, it may keep some partitions in memory to build
in-memory hash tables over them [59]. On the probe side, the HHJ
hashes each tuple and checks whether the partition it belongs to
was spilled. If a tuple’s partition was spilled, the tuple is also spilled;
otherwise, it used to probe the in-memory hash table. In a third
phase, the HHJ performs a grace join on the subset of partitions
that were spilled. If no partitions were spilled, the third phase is
omitted, and the HHJ probe phase behaves like a simple hash join.
Hybrid hash join performance. To check whether the HHJ per-
forms as well as the simple hash join in-memory, we implement it
in Spilly with all classic [28, 59] and recently proposed [44] opti-
mizations (spill as few partitions as possible, choose spill partitions
dynamically, bitmap-based probe-side check of spilled partitions),
and repeat the previous experiment. As Figure 2 shows, the simple

SIGMOD 2025, July 2025, Berlin, Germany Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis

hash join is significantly faster than the HHJ. Neither join variant
spills any data in these experiments, so the probe side of both joins
is algorithmically equivalent. But the HHJ still has to partition the
build side, meaning more allocations, more cache misses, more TLB
pressure, and more instructions.
What the hybrid hash join lacks. Fundamentally, the HHJ only
provides a partial solution: It reduces I/O compared to a grace join
while spilling, which is what it was originally designed for [28].
However, it does not provide in-memory execution times on par
with a simple hash join. As with the grace join, being multiple times
slower in the majority of small queries is an unacceptable trade-off.
The fundamental problem: Ahead-of-time operator choice.
As we have demonstrated, state-of-the-art systems have to choose
between being fast in-memory and allowing out-of-memory query
processing. Our system evaluation (Section 6) shows that current
in-memory systems choose to fail, while out-of-memory-capable
systems choose to be slower. The fundamental issue is that – in
general, absent special cases such as an aggregation on a single, low-
cardinality column – systems cannot know beforehand whether an
operator has to spill. If they could predict this perfectly, they could
choose the correct physical operators perfectly ahead-of-time. Alas,
they cannot. With Umami, we instead render physical operator
choice unnecessary.

4.2 Adaptive Materialization
The starting point. The previous section established three things:
(1) in-memory operators suffer from partitioning, but (2) out-of-
memory-capable operators require partitioning, and (3) state-of-the-
art systems have to decide up-front which operator implementation
to use. One approach to keeping small queries fast is to restart a
query with partitioning operators once an operator runs out of
memory. But this is very expensive by definition: Once an operator
has materialized enough data to run out of memory, it has done a
lot of work that needs to be discarded. Umami avoids restarting a
query and re-partitioning all data using adaptive materialization.
The three pillars of adaptive materialization. As the name
suggests, adaptive materialization allows operators to switch their
materialization strategy during query execution. In particular, opera-
tors can enable and disable partitioning and spilling at runtime. An
operator can start without partitioning, but then enable partition-
ing at a later point, e.g., when memory runs low. It can then decide
to materialize tuples to external storage (spill) instead of allocating
new memory. All of this is dynamic, so there is no need for cardinal-
ity estimates and ahead-of-time decisions. Furthermore, previously
computed results are not discarded, and compiling engines do not
have to recompile code. Adaptive materialization is generic and
works for all hash-based operators. This generality rests on three
properties that all hash-based materializing operators exhibit:

(1) Commonality. All materializing (= potentially spilling) op-
erators work in two phases: Materialize (P1) and build (P2).

(2) Transparency. Partitioning and spilling can be efficiently
injected into phase P1 at runtime, transparent to the operator.

(3) Independence. Phase P2 can always apply an algorithm
that is unaware of partitions, even if phase P1 partitioned.

To understand why and when Umami’s adaptive materialization
works, we explain these properties in the following.

Listing 1: Injecting partitioning logic into operators. Changes
required for Umami are highlighted.

// Umami's operator-independent materialization //

u64 shift = 64
void storeTuple(void* tuple, u64 size , u64 hash)

Page& page = this->output [hash >> shift]
if (page.isFull(size)) { b.getEmptyPage(page) }
memcpy((page.cursor += size), tuple, size)

// query-specific operator code (generated) //
UmamiBuffer& b = operatorStorage.threadLocal()
for (auto* tuple : input) // phase (1): materialize

// ... <- operator-specific generated code
b.storeTuple(tuple, tuple.size() , hashKey(tuple))

operatorStorage.finalize() // phase (2): build
for (auto& page : operatorStorage.tuplePages) // ...

Commonality. Let us begin by examining the common high-level
structure of in-memory operator algorithms implemented by state-
of-the-art systems [23, 51]: Initially, operators materialize all input
tuples into thread-local memory regions, optionally filtering or
pre-aggregating them. Due to the unpredictability of the input
size, these memory regions are organized as pages and allocated
as needed. Consequently, after materializing all data, the operator
holds a list of pages storing tuples. In a subsequent phase, operators
construct a data structure over these tuples: A hash map with
duplicates for joins, a regular hash map for aggregations, a segment
tree for window functions [54], etc. Therefore, every materializing
operator can be thought of as operating in two distinct phases: A
materialization phase and a data structure build phase.
Transparency. The materialization phase exhibits a small yet piv-
otal detail that enables the injection of partitioning and spilling
logic at runtime: As tuples are materialized into dynamically allo-
cated memory, operators cannot presuppose any specific memory
location for the tuples, i.e., tuple locations are transparent to the
operator. For instance, if the (𝑛)th tuple fills up a page, then the
(𝑛 + 1)th tuple will be placed not adjacent to it, but on an entirely
different page. Listing 1 illustrates this: Umami’s materialization
logic (storeTuple) checks whether a page has space, allocates a
new page if necessary, and finally copies the tuple to the page.
Injecting partitioning logic at runtime. Since tuple locations
are transparent to the operator anyway, the materialization logic
can also place the tuple in a different location based on the tuple
hash, i.e., it can apply hash partitioning. During materialization,
the operator need not know whether hash partitioning is applied,
as long as it adheres to the transparency property. Thereby, hash
partitioning is abstracted from the operator. Based on this, adaptive
materialization in Umami can enable and disable partitioning at
runtime, without separate branches for each case: By keeping page
pointers in a contiguous memory region (“page array”), Umami
can choose whether to partition and how many partitions to use
by adjusting a shift value that is applied to the hash and used
to access the page array, which it allocates on demand. Listing 1
illustrates this: If the shift value is 64, the hash shifts to zero, and
there is no partitioning. If the shift is less than 64, the hash shifts
to a larger index in the page array, resulting in 264−shift partitions.

High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance SIGMOD 2025, July 2025, Berlin, Germany

Listing 2: Spilling as allocation (top), Umami buffer (below).

void SpillBuffer::getEmptyPage(Page& page)
auto diskLoc = io.queueForAsyncWrite(page.data)
spilledPageLocations[page.part].push_back(diskLoc)
if (pool.empty()) { io.pollDoneWrites(&pool) }
page.data = pagePool.popPage() // get clean page
page.cursor = page.data // reset page write cursor

struct UmamiBuffer { // ← per thread and operator
Page* output // ←, ↓ fast page access interface
void storeTuple(void* tuple, u64 size, u64 hash)
virtual void getEmptyPage(Page& p, u64 part)

}; // ↑ slower polymorphism only during allocation
struct PartitionBuffer : UmamiBuffer {...} // ← ext-
struct SpillBuffer : UmamiBuffer {...} // ← ensible

Independence. After materializing all data in phase P1, an opera-
tor using Umami’s adaptive materialization interface finds itself in
one of two states: It either (1) did not partition anything and holds
only pages with unpartitioned data or (2) holds a mixture of pages,
some with partitioned data and others with unpartitioned data. At
first glance, one would assume that an operator in state (2) has to re-
partition the unpartitioned data before continuing. If, however, all
data still resides in memory, the operator can employ the same algo-
rithm as it would in state (1) and avoid re-partitioning. For instance,
a join can – rather than partially re-partitioning and executing a
grace join – simply allocate one large hash table and execute a
simple hash join over the mixed partitioned and unpartitioned data.
Deciding whether to partition. At runtime, Umami needs to de-
cide whether to start partitioning. This decision can rely on metrics
such as the available memory, the unique value count of seen tuples,
or the percentage of data yet to be materialized. Umami co-locates
this decision-making logic with page allocation, i.e., getEmptyPage
in Listing 1. This amortizes the runtime cost of the adaptivity logic
over the number of tuples in each page. To decide on partitioning,
Umami’s implementation in our engine Spilly uses a heuristic based
on the allocated memory size, which we explain in Section 5.3.
Deciding whether to spill. Deciding on whether to partition dur-
ing page allocation has an additional benefit: Allocation is also the
perfect place to decide on whether to start spilling. When allocating
pages (getEmptyPage), threads check whether the memory budget
is exhausted, and, if so, they spill the full page to SSD instead of
allocating a new page. Because writes are asynchronous, the spilled
page cannot be reused until the write finishes. Instead, Umami has
to either allocate a new page or check for finished writes of previ-
ously spilled pages. As Listing 2 (top) illustrates, Umami handles
both cases efficiently using a thread-local pool of pages which oper-
ators can draw from. This bounds memory usage and ensures that
I/O occurs in the background while query processing can continue.

4.3 Umami Generalizes the Hybrid Hash Join
Umami’s interface design. Umami’s adaptive materialization
causes little overhead at runtime (c.f., Section 6) while also be-
ing flexible enough to allow for different allocation, partitioning,
and spilling strategies. Umami achieves this by keeping the inter-
face that is invoked for each tuple during query execution fast

and carefully placing extension points on code paths that are not
performance-critical. The fast interface is a data structure with
efficient random access for switching between pages. In C++, this
is simply the output array in Listings 1 and 2 (bottom). On non-
critical code paths, such as allocation, Umami stays flexible using
runtime polymorphism, e.g., getEmptyPage in Listings 1 and 2. This
means that Umami’s adaptive materialization interface is extensible
by simply adding new classes that implement the same interface.
From hybrid hash join to generalized hybrid spilling. The
adaptive materialization interface can generalize the hybrid hash
join (HHJ) spilling approach to other operators. The core idea of
the modern hybrid hash join is to lazily pick a subset of partitions
to spill based on heuristics (e.g., choose the largest partition) so that
more partitions remain entirely in memory. The join’s probe side
then queries which partitions were spilled using a bitmask [44, 59].
Umami can easily mimic this by adding a new UmamiBuffer vari-
ant (c.f., Listing 2, bottom). This variant picks partitions to spill in
getEmptyPage using the HHJ heuristics and exposes a bitmask af-
ter materialization, which works for any operator that uses Umami.
Spilling occurs at page granularity, which suits page-based de-
vices like NVMe SSDs [40]. Spilly’s operators (Sections 4.5 and 4.6)
automatically benefit from Umami’s generalized hybrid spilling
approach. Section 5.3 discusses further implementation details.
Tuple-based heuristics. Fine-grained, per-tuple decisions about
what to keep in memory and what to spill can further reduce I/O.
Histojoin and NOCAP [16, 81], for instance, use correlation data to
keep those build-side tuples with the most probe-side matches in
memory. This can be done independently of Umami, e.g., by check-
ing a hash set for each key before materialization, which can impact
in-memory performance but reduce I/O in skewed workloads.

4.4 Self-Regulating Compression
Compression in Umami. The previous sections describe Umami’s
adaptive materialization interface, which enables dynamic parti-
tioning and spilling at runtime. This improves upon previous ap-
proaches by enabling fast in-memory operators to spill to SSD if
necessary. But state-of-the-art systems also have to handle evolving
and varying hardware that challenges old assumptions, e.g., that
I/O is slow and CPU is never the bottleneck. For example, servers
may have anywhere from one to sixteen NVMe SSDs, producing an
order of magnitude throughput discrepancy. We propose a solution
to this challenge, which we name self-regulating compression.
Fast I/O reduces the benefits of compression. Compression
has classically been used to reduce the size of data on disk, or to
increase the effective I/O throughput. Reducing on-disk data size
matters little to us because spilled data is ephemeral. Increasing the
effective I/O throughput is an interesting prospect, but has to be
considered carefully: With high-throughput SSDs, I/O is not always
the bottleneck, and the CPU cost of compression may even deteri-
orate performance. The effectiveness of compression for spilling
thus depends on the storage throughput available to the engine.
A common cost metric for CPU and I/O. The effectiveness of
compression also varies from operator to operator: If an operator
is I/O-bound, using the spare CPU time for compression benefits
performance; if it is compute-bound, however, compression just
adds to the CPU cost and deteriorates performance. In other words,

SIGMOD 2025, July 2025, Berlin, Germany Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis

LZ4

Snappy

ZSTD

BZ2
(≈3.29/307)

better
LZ4

Snappy

ZSTD

Compression Decompression

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
0

2

4

6

0

2

4

6

8

10

12

14

Compression Ratio

C
yc

le
s
 p

e
r

B
y
te

BZ2
(≈3.29/79)

better

Figure 3: Compression ratio vs. (de)compression cost on
spilled TPC-H tuple data using Snappy, BZ2, and multiple
settings for LZ4 and ZSTD.

compression allows I/O-bound queries to trade spare CPU time
for I/O time. But are queries ever I/O-bound when using modern
SSDs? To answer this question, we introduce a common metric that
measures the cost of computations, compression, and I/O: Cycles
per Byte. Determining this metric for queries, compression, and I/O
will allow us to build a cost model for trading CPU and I/O time
using compression. First, we measure the CPU cycles per scanned
byte in our query engine Spilly across all TPC-H queries. We find
that cycles spent per byte vary by up to 20× between queries:

TPC-H SF 100 Q1 Q13 Q16 Q17 Q19 max:min
cycles/byte 3.3 60.3 37.2 3.0 4.3 20.2×

The cost of I/O. One can compare the CPU cost of queries with
the cost of I/O by calculating how many cycles it takes to spill
one byte. On our test system (c.f., Section 6.1), the cost for writing
one byte equals 96 cores·3.5GHz

8 SSDs·6GB/s = 7.38 cycles. When adding the
cost of reading back the spilled data, the combined I/O cost per
byte is 11.1 cycles. This cost is within range of the TPC-H query
costs we determined, meaning some queries will be I/O- and others
compute-bound even when spilling.
Evaluating compression effectiveness in TPC-H. We have de-
termined that compressing spilled data can sometimes be useful
in principle, but it is not yet clear whether compression is cheap
enough in practice. In addition to CPU and I/O cost, we thus mea-
sure the cost of the general-purpose compression schemes LZ4,
Snappy, ZSTD and BZ2 using their open-source libraries. Each
scheme is applied to the spilled pages produced by Umami across
all 22 TPC-H queries. Figure 3 shows the measured average com-
pression ratio, as well as compression cost (left) and decompression
cost (right) as cycles per byte. Because we test multiple compression
settings offered by LZ4 and ZSTD, these schemes are represented
by multiple points in the figure. We find that (1) the compression cost
of all schemes, except BZ2, is similar to CPU and I/O costs, making
these schemes affordable, (2) the compression ratio is significant,
even on synthetic TPC-H data, and (3) the compression cost/ratio
trade-off curve is smooth with few outliers, which suits optimiza-
tion algorithms. Based on these insights, we design a compression
algorithm that regulates itself at runtime to increase performance.
Matching CPU and I/O bandwidth. A self-regulating compres-
sion algorithm has two primary tasks: First, detect when it makes

co
mp

re
ss

()

f 6
e 5
d 4

a 2
b 9
c 8 lz4

zstd
min fill

tuple page

tu
pl
e
in
pu
t
st
re
am

staging
area

NVMe array

onPageFull()

io_uring

Γ
spilling
operator

b1

I/O page
pool

b1
b2

b3
b4

async
I/O

onRequestDone()

scheme
choice

A

B

DC

Figure 4: Compression and I/O in a spilling operator.

sense to compress. Second, decide on the compression scheme and
settings, which determine the trade-off between compression cost
and compression factor, as Figure 3 shows. One can solve both
tasks at once by modeling a bandwidth equilibrium that needs to be
reached. A regulating algorithm continuously measures operator,
compression and I/O bandwidth; if the combined CPU bandwidth
(operator plus compression) and I/O bandwidth are not equal, the
algorithm changes the compression setting until the effective (com-
pressed) I/O bandwidth matches the CPU bandwidth.
Tracking bandwidths. Adjusting compression based on I/O and
CPU bandwidths requires lightweight tracking mechanisms for I/O
and CPU throughput. However, we found tracking the inverse, cost
(cycles per byte), to be more natural than tracking bandwidth (bytes
per cycle): Tracking CPU cost is as trivial as timing how long it
takes to process each page (A in Figure 4). Tracking I/O cost is more
difficult because multiple I/O requests happen asynchronously and
in parallel on each thread. One can do this efficiently by encoding
the I/O request start time in each io_uring user data field [17] and
calculating the average cycles per byte using the measured latency
and number of simultaneous I/O requests (B in Figure 4).
Self-regulating compression algorithm. Let us nowwalk through
the self-regulating compression algorithm, outlined in Listing 3 (C).
Given an initial scheme choice, i.e., ’Uncompressed’ or ’LZ4 with
parameter 16’, the algorithm compresses incoming pages and mea-
sures the compression ratio and CPU cycles. After a run of 𝑁 pages
(default: 𝑁 = 2 · iodepth), the algorithm compares the average CPU
(operator plus compression) cost of that run with the average I/O
cost (cycles per compressed byte). If I/O cost outweighed CPU cost,
compression is increased, otherwise reduced. The algorithm then
continues with the new compression setting for the next 𝑁 pages.
A unified scale. Increasing and decreasing compression may in-
volve switching to a different scheme based on the experimentally
determined trade-off curve shown in Figure 3. This experiment
rules out Snappy (outside pareto-frontier), BZ2 (too expensive), and
the settings of ZSTD for which LZ4 is strictly better. The remaining
LZ4 and ZSTD settings are mapped to a unified scale (c.f. Listing 3,
top), allowing for simple and efficient scheme switching.
Discussion: Why general-purpose schemes? Like most query
engines, Spilly uses a columnar storage format for table data (see
Section 5.2) and a row-wise format for materialized tuple data. The
reason is that operators can consume row-wise tuples directly, e.g.,
by linking to them from a hash table [51], and access them with bet-
ter locality. Since using Umami should not deteriorate in-memory

High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance SIGMOD 2025, July 2025, Berlin, Germany

Listing 3: Self-regulating compression and its integration.

enum Scheme : u8 { Uncompressed=0, LZ4=1, ZSTD=2 };
union Scale { u16 optVariable; // <- optimize
/*output ->*/ struct { u8 param; Scheme scheme; }};

class SelfRegulatingCompression: // per thread
u64 pageTimer; Scale curScheme; CompressionRun run
ExpAvg pipelineAvg, latencyAvg; // track costs
void onPageFull (u64 size) A // pipeline cost
pipelineAvg.add((now() - pageTimer) / size)
pageTimer = now() // reset for next page

void onRequestDone (u64 uringReqId) B // IO cost
latencyAvg.add(now() - decodeTime(uringReqId))

size_t compress (Page& in, Page& out) C
u64 start = now() // track compression cost
size_t comprSize = curScheme.compress(in, out)
run.track(in.size, comprSize, now() - start)
if (++run.count == iodepth) { selectNextScheme() }
return comprSize

void selectNextScheme() // adaptive scheme selection
f32 ioCost = latencyAvg / iodepth / run.comprRatio
f32 cpuCost = run.comprCost + pipelineAvg
int diff = ioCost - cpuCost // cpu time left?
curScheme.optVariable += clampMinMax(diff)
startNewRun() // test next run with new scheme

performance, it is important to allow operators to keep using their
own optimized row-wise tuple storage format when materializing
data. This necessitates using general-purpose compression schemes
instead of columnar compression schemes. Another advantage
of using general-purpose schemes is that Umami stays generic
and operator-independent. Since Umami uses standard, general-
purpose compression libraries, it will also benefit from hardware
accelerations targeting those compression libraries [10, 11]. Still,
testing layout-aware row-wise compression schemes [79] and other
page layouts such as PAX [19] could improve compression ratio
and performance, and is an interesting avenue for future work.
Reacting to outside influences. The self-regulating compression
algorithm measures and adapts to all parameters – compression
cost, operator CPU time, I/O latency – at runtime. Its only pre-
determined parameter is the compression scheme scale, i.e., Un-
compressed > LZ4 > ZSTD. The resulting flexibility enables it to
automatically react to outside influences as well. For example, when
running Umami on a rented cloud VM, SSD performance may be
influenced by “noisy neighbors”, i.e., SSD usage from other VMs
running on the same physical machine. Since the I/O latency is
measured at runtime, self-regulating compression should be able
to automatically optimize the compression in this scenario as well.

4.5 Unified Hash Join
Applying Umami. Let us now discuss how Umami can convert
a state-of-the-art in-memory join operator to a spilling join that
effectively utilizes NVMe arrays. We call it unified hash join because
it subsumes all hash-based join variants we know, and because it
unifies in-memory and out-of-memory processing. Spilly uses it to
implement inner, semi, anti, and outer equi-joins.

Baseline: The simple in-memory hash join. Our starting point
is an in-memory hash join implemented by state-of-the-art sys-
tems [23, 24, 51]. It uses morsel-driven parallelism to concurrently
materialize tuples into thread-local buffers (phase P1), and later
builds a multi map implemented by a chaining hash table (phase
P2). Since the bucket count in a chaining hash table is proportional
to the unique value count (not the absolute count), the hash join
uses another optimization: It builds a HyperLogLog sketch [34] dur-
ing materialization to estimate the unique value count, producing
better hash table sizes for joins with duplicates on the build side.
Phase 1: Materialization. Using the Umami interface, it is simple
to enable out-of-memory processing during the join materialization
phase. For each input tuple, the join “calls” storeTuple (c.f, List-
ing 1), which is inlined into the generated code. The HyperLogLog
sketch already computes a hash, which is passed to storeTuple
and thus reused for dynamic partitioning. The page allocation logic
dynamically switches to spilling and partitioning, unbeknownst
to the operator. To summarize, applying Umami changes almost
nothing in the operator code during the materialization phase.
Phase 2: Building and probing a hash table. At the start of the
second phase, Umami might have (A) materialized without parti-
tioning, (B) partitioned the data or (C) partitioned and spilled. In
cases (A) and (B), the join operator can continue with a simple hash
join: It builds a single large hash table over the materialized data,
automatically benefitting from improved locality if the data is par-
tially partitioned as in case (B) (see Section 5.3). If data was spilled
(case C), the operator executes its second phase like a hybrid hash
join, with hybrid spilling implemented by the Umami framework.
The join probe side then uses Umami to partially partition tuples
like a hybrid hash join, automatically spilling pages if necessary.
Overview: UnifiedHash Join vs. hybrid hash join. Let us briefly
review how the hash, grace, hybrid, and unified join variants differ
in terms of partitioning and materialization logic. The hash join
(HJ) only materializes the build side and streams the probe side; it
partitions nothing. The grace join (GJ) materializes and partitions
both sides and executes a hash join for each pair of partitions.
The hybrid hash join (HHJ) always partitions the build side, and
partitions only probe-side tuples whose partitions were spilled on
the build side. The unified join (UHJ) adaptively partitions and spills
the build side using Umami and executes the probe side like a HHJ.

4.6 Unified Hash Aggregation
Designing a unified aggregation operator.We now discuss an
aggregation operator capable of high-performance out-of-memory
query processing on NVMe arrays. As with the join, it is crucial
that the in-memory variant of the operator be fast as well.
Adapting the aggregation to output cardinalities. Following
the reasoning from Section 4.1, an in-memory aggregation operator
should be hash-based and not use partitioning for small inputs. But
unlike the join operator, the aggregation operator can benefit from
using different in-memory aggregation algorithms based on the
unique value count (cardinality): (1) for small cardinalities, threads
should locally preaggregate data to avoid contention and keep data
in the CPU caches; (2) for medium cardinalities, local preaggrega-
tion is less effective – larger thread-local tables or a single global
hash table are preferable; (3) for large cardinalities, partitioning
improves cache locality; (4) for larger-than-memory cardinalities,

SIGMOD 2025, July 2025, Berlin, Germany Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis

partitioning is necessary; preaggregation can be useful for reducing
data size before writing to SSD. These trade-offs have been studied
previously for in-memory processing [27, 51]. Taking them into
account, we build a robust in-memory aggregation operator that
scales seamlessly to out-of-memory query processing using Umami.
Small cardinalities: Local preaggregation. To efficiently ag-
gregate inputs with few unique values (e.g., TPC-H Q1), small,
thread-local hash tables sized to fit into the L1-cache preaggregate
data. Like the join, the aggregation operator uses per-thread Hy-
perLogLog sketches to estimate the cardinality. After consuming
the input, it combines the sketches to determine the size of a global
synchronized hash table into which threads merge preaggregated
tuples. This merging phase uses the morsel-driven scheduler, which
allows work-stealing to accommodate any potential data skew.
Large cardinalities: Partitioning. For larger cardinalities, the
cache-resident thread-local hash tables will eventually fill up. Once
this happens, the preaggregated tuples have to be evicted either
onto partition pages or into a larger hash table. Estimating the
correct hash table size from an in-progress HyperLogLog sketch
without having seen all tuples is error-prone and difficult, and re-
hashing due to wrong estimates can be expensive. The aggregation
operator thus evicts the preaggregated tuples onto partition pages
instead. To avoid copying tuples on eviction, thread-local hash ta-
bles write tuples into these pages directly and only store an offset
into each page. “Eviction” of tuples is done by simply invalidating
the respective thread-local hash bucket range once a page is full.
Applying Umami. At this point, the straightforward strategy of
storing the partially preaggregated tuples on pages using adaptive
materialization proves effective: After consuming the input, the
operator reads tuples from Umami-managed pages and aggregates
them to a global synchronized hash table as before. With this, the
aggregation operator is capable of NVMe-optimized out-of-memory
query processing. Umami transparently switches to partitioning
and spilling if necessary, re-partitions if necessary, and reads pages
from NVMe array if necessary. Based on HyperLogLog sketch car-
dinality estimates, the aggregation operator can either aggregate
tuples to a single large hash table or aggregate partitions indepen-
dently. Building the hash table also automatically benefits from the
locality and contention optimizations described in Section 5.3.
Comparison with DuckDB. Interestingly, Spilly’s aggregation
operator closely resembles DuckDB’s recently published external
aggregation operator [48]. Both accelerate small-cardinality queries
using thread-local hash tables with linear probing whose hash
buckets point to pre-aggregated tuples stored on pages for spilling.
DuckDB’s operator differs mainly in that (1) thanks to Umami,
Spilly can start partitioning lazily only if necessary, (2) DuckDB
uses the buffer manager for intermediary results, whereas Umami’s
buffers are managed independently and per-operator, and (3) due
to that, Umami can evict pages and evice thread-local hash table
bucket ranges to partitions at will, whereas DuckDB unpins pages
referenced by the hash table in the buffer manager. Earlier work [42]
has proposed more sophisticated group eviction mechanisms.

4.7 How General is Umami?
Non-hashing Operators. Section 4.2 introduces adaptive material-
ization, a technique which only requires a hash key to dynamically
and transparently enable partitioning and spilling at runtime. Hash

joins, hash aggregations, hash-based window functions [54], and
any other hash-based operators can all take advantage of adaptive
materialization. Applying adaptive materialization to other oper-
ators, such as sorting, is an interesting direction for future work,
especially considering the similarities between sorting and hash-
ing [32, 58]. Umami’s self-regulating compression (Section 4.4) and
efficient spilling are not hash-specific and work with any operator.
Transactional workloads. HTAP systems need to balance trans-
action latency with analytical throughput. This extends to out-of-
memory query processing, since the write-ahead log, page eviction,
and spilling of intermediary results all compete for the available
SSD bandwidth. Besides changing the number of threads designated
to OLAP vs. OLTP, one can conceive of several other ways to allot
SSD bandwidth. For example, one could designate some SSDs for
transactional processing, and the rest for spilling. It is also possible
to cap Umami’s I/O throughput by limiting the maximum allowed
I/O parallelism. Lastly, one could configure self-regulating compres-
sion to compress more aggressively to reduce I/O. Evaluating these
techniques is an interesting avenue for future work.

5 IMPLEMENTATION
Implementation matters. Using the Umami interface allows our
query engine Spilly to seamlessly spill data to modern NVMe SSDs
without significantly complicating operator implementations. How-
ever, achieving high performance also requires careful engineering.
In the following, we discuss some important implementation details
that enable high-performance query processing in Spilly.

5.1 Utilizing NVMe Arrays
What a modern I/O stack should provide. Spilly features an
NVMe-optimized, asynchronous I/O implementation that effec-
tively utilizes themodern I/O interfaces of theOS, effectively utilizes
multiple NVMe SSDs, integrates with self-regulating compression
(c.f., Section 4.4). We describe its design in the following.
Utilizing io_uring. An I/O stack that provides the interface as-
sumed in Listing 2 can be implemented as a thin wrapper around
io_uring. Each thread manages its own ring to avoid contention.
Since individual writes are not latency-critical, threads collect write
requests in their local submission queue and flush them to the OS
as a batch. Threads track the number of outstanding requests to en-
sure correctness and bound memory usage. Once an asynchronous
I/O request is done, the associated page is returned to the operator.
Supporting multiple SSDs. To spread reads and writes across
multiple SSDs, each thread tracks which SSD it wrote to last and as-
signs the next write in a round-robin fashion. Thus, write spreading
is fully decentralized and the only coordination point is a single per-
SSD atomic counter which tracks the end of the written-to section
in the designated on-disk spilling area. This counter is necessary
to make sure writes from different threads do not overlap.

5.2 NVMe-Optimized Scan Operator
Scan features. The asynchronous I/O stack described in Section 5.1
can fully and efficiently utilizemultiple PCIe 5.0 NVMe SSDs. Spilly’s
scan implementation is based on the same I/O stack, is compatible
with the row-group data layout prevalent in modern OLAP systems,
and integrates well with morsel-driven parallelism.

High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance SIGMOD 2025, July 2025, Berlin, Germany

In-memory vs. external scans. Parallel scans in in-memory en-
gines are trivial: Worker threads fetch [index, length] pairs which
they use to access the in-memory arrays containing the columns.
After consuming a chunk of tuples (“morsel”), a thread can immedi-
ately fetch the next morsel and start processing by dereferencing a
pointer. External scans from an NVMe array, on the other hand, are
more complex: Before processing a single tuple, each thread has to
asynchronously read column chunks from multiple different SSDs
to achieve maximum throughput. It then has to reconstruct rows
across chunk boundaries, while simultaneously starting requests
for the chunks containing the tuples it needs to process next.
Data layout optimized for NVMe arrays. Maximizing scan
throughput even for a single column requires distributing columns
across SSDs and storing them in multi-kilobyte chunks. This ap-
proach results in on-disk chunks that contain differing numbers of
values, depending on the size of the values. But for processing, each
thread has to efficiently reconstruct complete tuples from these
column chunks while reading. This is usually done by dividing the
data into row groups, which we size at 32k tuples by defaultRow
groups simultaneously serve as the unit of parallelism (morsel [51]):
Each thread fetches a morsel consisting of one or more row groups,
schedules read requests for the pages within the row groups, aiming
to maintain a full I/O queue, and processes fully read row groups.
Weakening morsel boundaries to improve I/O throughput.
While this row groups-as-morsels approach simplifies storage and
reconstruction of tuples, it has a major downside: Before fetching
the next morsel, a thread must wait for all I/O requests to finish and
finish processing the last row group in the current morsel. Conse-
quently, the asynchronous I/O queue is completely drained at each
morsel boundary, reducing I/O parallelism and, therefore, through-
put. To improve upon this, threads should start I/O requests for the
next morsel(s) while still processing the current morsel. However,
this is not possible in the classical morsel-driven paradigm (e.g.,
abstractions like parallel_for). For this reason, we implement
an enhanced morsel-based scheduler that weakens morsel bound-
aries, allowing threads to optionally “prefetch” morsels and start
I/O requests for them while still processing previous morsels.
Table compression. Table compression can speed up scan-bound
queries by a large factor, i.e., the compression ratio. We apply the
recently proposed columnar compression algorithm BtrBlocks [49]
as an off-the-shelf solution. The resulting compression ratio is
similar to that of other state-of-the-art systems:

Col. Store S DuckDB Spilly with BtrBlocks
SF 10k Size (TB) 3.36 2.65 3.39
Compression (×) 2.97 3.77 2.95

5.3 Adaptive Materialization Implementation
Exploiting locality without partitioning. Partitioning has the
often-cited benefit of improving locality [22, 67, 73]. For exam-
ple, building a small hash table over a subset of the data results
in more cache-friendly memory accesses compared to building a
large hash table over the entire data. This raises the question of
whether avoiding re-partitioning, as described in Section 4.2, could
sometimes be worse than the alternative. It turns out that one can

get the best of both worlds: We allow operators to provide locality
hints to the scheduler, meaning each thread prefers processing a
particular range of pages. The scheduler only obeys these hints
opportunistically to avoid impairing morsel-driven parallelism [51]
and work stealing. Using locality hints, operators can ensure that
each thread mainly processes pages from one partition at a time.
This is particularly useful during hash table construction, for exam-
ple: Using a hash based on powers of two, such that the partition
bits 𝐵𝑃 are a prefix of the hash value bits 𝐵𝐻 , tuples from each
partition are confined to a small (2 |𝐵𝐻 |− |𝐵𝑃 |) range of hash buckets.
Thus, when a thread reads a partition page to insert its tuples into
the hash table, it will experience better cache locality. Moreover,
since different threads generally process different partitions, this
method also reduces concurrency-induced hash bucket contention.
Partition sizes. In order to decide on whether to start partitioning,
Spilly uses a heuristic based on our performance analysis of small
queries, which indicates that most of the initial overhead of parti-
tioning stems frommemory allocation: Given an initial page size 𝑆0,
set to increase exponentially with each allocation, i.e., 𝑆1 = 𝛼 · 𝑆0,
and a partition count setting 𝑃 : If 𝛼 · 𝑆𝑁 ≥ 𝑃 · 𝑆0, Spilly switches
to partitioning, allocating 𝑃 pages of size 𝑆0 instead of one page
with size 𝑆𝑁+1 = 𝛼 · 𝑆𝑁 . With this heuristic, most small queries
will not partition at all in Spilly. Thus, the partition count 𝑃 can be
set to a large number that would usually deteriorate small query
performance, but improves locality and memory usage for larger
spilling queries. Spilly uses 256 partitions by default, which we
have experimentally determined to offer a good trade-off.
Hybrid spilling implementation details. In the following we
describe some important details of hybrid spilling approach em-
ployed by Spilly, which is based on the dynamic HHJ [44, 59].
Firstly, favoring some partitions for spilling over others requires
cross-thread synchronization. We do this using a bitmask protected
by an optimistic lock [55], which tracks spilled and in-memory
partitions. Each thread chooses an in-memory partition to spill
when it reaches a configurable memory budget. Threads prefer
spilling partitions that other threads have also already chosen for
spilling, otherwise they choose the largest partition as suggested
by previous work [36, 44]. If a thread chooses a new partition to
spill, it updates the synchronized bitmask, scrapping its partition
choice if the bitmask has been updated by another thread in the
meantime (optimistic concurrency). The join probe side first builds
a single hash table over in-memory pages across partitions in a first
phase and then joins spilled pages partition-wise in a second phase.
Data format. Spilly stores fixed size tuples on pages consecutively
like an array, and variable-size tuples using a slotted page layout. As
a research prototype, Spilly does not support objects larger than the
internal page size (64 KiB). When spilling, some additional metadata
is required: First, the on-disk location of each page is stored as a
[deviceId, offset, size] tuple in a single 64 bit integer. Page offset and
size can be encoded compactly because they must be multiples of
the device block size (512 bit) if the SSD is attached directly. Second,
multiple pages may be compressed into a single staging area (c.f.,
Figure 4) that is written out when it contains 64 KiB of data or more.
Staging areas also use a slotted page layout, where each slot stores
the page offset, size, and the self-regulating compression scheme
type with which the page was compressed (c.f., Section 4.4).

SIGMOD 2025, July 2025, Berlin, Germany Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis

Spilly

Hyper

Col. Store S

DuckDB

Hyper

Spilly

Col. Store S

DuckDB

TPC-H scale factor 10 TPC-H scale factor 100

0.0 B 0.4 B 0.8 B 1.2 B 0.0 B 0.5 B 1.0 B 1.5 B 2.0 B 2.5 B

Tuples per Second

Figure 5: TPC-H SF 10–100 in-memory hot run performance.

6 EVALUATION
Outline. After explaining the experimental setup, we evaluate the
end-to-end system performance on TPC-H. We then evaluate the
performance of single operators and components in detail.
Spilly and state-of-the-art systems. The query engine Spilly
compiles queries to C++, implements the unified operators using
Umami, and is capable of running all 22 TPC-H queries. We pick
multiple state-of-the-art systems to compare against to cover a wide
range of the current query processing technology landscape. First,
an industry-leading proprietary column store (referred to as Col-
umn Store S). Second, the columnar analytics database DuckDB [69],
which recently introduced partial out-of-memory support [18, 48].
Third, the high-performance in-memory database Hyper, using its
publicly available binary [5]. All three comparison systems can scan
data from disk but also implement an in-memory buffer cache. Only
Column Store S and DuckDB support spilling intermediary results
to disk. For our purposes, Hyper has the same features as Umbra
(very fast in memory, no spilling to disk), but Hyper is publicly
available and therefore preferable for comparisons.

6.1 Experimental Setup
Hardware.We perform all experiments on an AMD EPYC 9645P
machine with 96 cores (192 hardware threads) running Linux 6.5.0-
14. It has 384GB of DRAM capacity and 128 PCIe 5.0 lanes, which
drive 8 × Kioxia CM7-R SSDs, each with 3.84 TB storage capacity.
In microbenchmarks, each SSD achieves 11GB/s read and 6.2GB/s
write throughput using 64 KiB pages.
System and measurement setup. As per their benchmarking
guidelines [2], we use the latest available Hyper (0.0.18441) and
DuckDB (v0.9.3-dev2533) builds. This DuckDB version already uses
its recently published external aggregation operator [48]. Since we
measure execution times without compilation times, Hyper is set
to always compile code at the highest optimization level. Cold runs
are executed by restarting the engine and clearing the OS page
cache before each query, as suggested by recent work [68]. Hot runs
execute the same query immediately after a cold run.
Performance metrics. To visualize and relate performance across
a large range of data sizes, we report most performance numbers as
“tuples per second”. This number is computed per query by dividing
the number of scanned tuples by the execution time.
Storage configuration. All systems store and spill data on a RAID-
0 array with the XFS file system, which Haas et al. [39] found to
be fastest. Unlike Hyper and DuckDB, Column Store S can manage
multiple storage devices, but a RAID-0 array was faster on our
setup. Spilly can attach block devices directly or use a filesystem,
but the performance difference is small.

0 B

1 B

2 B

3 B

5000 10000200 500 1000 2000

TPC-H Scale Factor (log)

T
u
p
le

s
p
e
r

S
e
c
o
n
d

Spilly Hyper DuckDB Col. Store S

0 GB

spilled
4.3 TB

spilled89% of in-memory performance

Figure 6: TPC-H SF 200 – 10,000 cold run performance.

Impact of query plans. To separate the performance impact of
the logical operator ordering and the physical operators themselves,
Spilly uses the operator ordering of Column Store S. Spilly’s physical
operators use Umami, so they can adapt during query execution.

6.2 TPC-H Performance
In-memory performance.We first verify that Spilly’s in-memory
performance is comparable to that of state-of-the-art in-memory
systems. Since other systems keep all data in memory if possible,
we also extend Spilly’s scan operator with a simple buffer cache
using a random eviction policy. We then execute “hot runs” for each
TPC-H query as described in Section 6.1. Because hot runs execute
a query twice, taking only the second measurement, each tested
system can cache most table data in memory in this experiment. As
Figure 5 shows, Spilly achieves similar in-memory tuple throughput
as Hyper. We thus achieved our goal of having excellent in-memory
performance while making the engine out-of-memory-capable.
Out-of-memory performance. For analytics on uncached or large
data, all data must be loaded from the NVMe array. We evaluate
the performance of this scenario by executing “cold runs” for each
TPC-H query as described in Section 6.1. Cold runs prevent systems
from caching data in memory, isolating query engine performance
from buffer cache performance. All systems store data using the
XFS filesystem on a RAID-0 array. Figure 6 shows the cold run
performance for TPC-H scale factor (SF) 200 to 10,000. Spilly begins
to spill data on SF 500, starting with 48GB (=∧ 6.5% of scanned data)
and increasing to 4.3 TB on SF 10,000 (=∧ 29% of scanned data):

SF 200 500 1,000 2,000 5,000 10,000
Spilling queries 0 1.0 1 2 5 10
Spilled GB 0 48 240 538 1,820 4,283
Scanned GB 274 732 1,467 2,942 7,424 14,994
Spilled fraction 0% 6.5% 16% 18% 25% 29%

Surprisingly, the overall performance drop over this wide range of
data and spill sizes is only 11% in Spilly.
Performance of other systems. Hyper processes more than 1
billion tuples per second in memory, but drops to the performance
of DuckDB and Column Store S when scanning from SSD. Neither
DuckDB nor Hyper scale to SF 10,000. Only Column Store S is able
to scale to TPC-H SF 10,000 , but is comparatively slow even when it
does not spill. This is in part because it cannot consistently achieve
the I/O throughput of a single PCIe 4.0 SSD, even when reading

High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance SIGMOD 2025, July 2025, Berlin, Germany

0 GB

= 0 %

0 GB

= 0 %
 870 GB

= 72 %

86 GB

= 28 %

0 GB

= 0 %

0 GB

= 0 %
 870 GB

= 72 %
2.3 TB

= 75 %

340 GB

= 55 %

5.3 TB

= 87 %

0.1 TB 0.2 TB 0.5 TB 1 TB 2 TB 5 TB

0 M

50 M

100 M

150 M

200 M

250 M

100 200 500 1000 2000 5000 10000

Scanned Data (log)

TPC-H Scale Factor (log)

T
u
p
le

s
 p

e
r

S
e
c
o
n
d Spilly Hyper DuckDB Col. Store S

percent of scan size

spilled data

Figure 7: Aggregationmicrobenchmark tuple throughput and
Spilly spill size. Data is scanned from SSD.

96 cores

m
a
te

ri
a

liz
e

a
g

g
re

g
a
te

0%

20%

40%

60%

80%

100%

0 1 2 3

Time (sec)

C
P

U
 U

ti
l.
 (

%
) max write bandwidth

0

10

20

30

40

50

0 1 2 3

Time (sec)

S
S

D
 (

G
B

/s
)

0

100

200

300

400 max mem bandwidth

0 1 2 3

Time (sec)

D
R

A
M

 (
G

B
/s

)

96 cores

0%

20%

40%

60%

80%

100%

0 10 20 30

Time (sec)

C
P

U
 U

til
.

(%
) max write bandwidth

write

read

0

10

20

30

40

50

0 10 20 30

Time (sec)

S
S

D
 (

G
B

/s
) max mem bandwidth

0

100

200

300

400

0 10 20 30

Time (sec)

D
R

A
M

 (
G

B
/s

)

m
a
te

ri
a

liz
e

a
n

d
 s

p
ill

re
a

d
 a

n
d

a
g

g
re

g
a
te

read

TPC-H scale factor 100

TPC-H scale factor 1000

Figure 8: Aggregation microbenchmark execution trace on
TPC-H SF 100 (top) and SF 1000 (bottom). Data resides on SSD.

from eight PCIe 5.0 SSDs. Interestingly, Column Store S achieves
a higher average throughput on higher scale factors because the
scan performance improves: The average SSD read bandwidth is
1.1GB/s on SF 100, but 5.1GB/s on SF 10,000. The average write
I/O throughput was even lower (1.1GB/s on SF 10,000), and we
observed sort-based operators in Column Store S query plans for
large scale factors, indicating an HDD-optimized approach.
Absolute times. Figure 6 visualizes system scalability across scale
factors, but does not provide individual query times. The following
table shows Spilly cold run times for SF 100, 1000, and 10,000:

Response Time (s) Response Time (s)
Query SF 100 SF 1k SF 10k Query SF 100 SF 1k SF 10k

1 0.306 2.03 19.6 12 0.298 1.88 20.7
2 0.208 0.584 3.19 13 0.660 4.84 59.0
3 0.540 2.96 46.7 14 0.211 1.05 9.69
4 0.270 1.67 16.4 15 0.239 0.966 9.50
5 0.465 3.22 40.0 16 0.354 1.40 44.4
6 0.143 0.621 5.45 17 0.287 1.76 26.5
7 0.334 2.37 26.8 18 0.658 4.75 55.2
8 0.421 2.68 35.9 19 0.299 1.92 18.3
9 0.907 8.15 97.1 20 0.290 1.34 11.7

10 0.456 2.67 19.5 21 1.591 26.4 237.
11 0.173 0.550 6.78 22 0.195 0.890 6.92

6.3 Spilling Aggregation
A large cardinality microbenchmark. Spilly’s TPC-H bench-
mark results are surprising because it stays comparatively fast when
scaling beyond main memory capacity and even when spilling ter-
abytes of data. We thus stress-test Spilly in the following experi-
ment by executing a strongly out-of-memory microbenchmark that
aggregates lineitem on 99% unique values using 88 Byte tuples:

select l_orderkey, l_partkey,
min(l_shipinstruct), min(l_comment)

from lineitem
group by l_orderkey, l_partkey

Results. Figure 7 shows the tuple throughput on TPC-H SF 100 to
10,000. Spilly’s throughput only decreases by a factor of 1.19× from
SF 100 to 10,000, where it spills 5.3 TB of data. This is not because

Spilly’s baseline performance is bad; on the contrary, Spilly is faster
than the other systems in both cases. We further investigate the
missing performance cliff in the following.

6.4 Where is the Performance Cliff?
Tracing the aggregation microbenchmark. Given the small
performance drop in Figures 6 and 7, one may suspect that Spilly’s
performance is limited by a different factor. We investigate this by
tracing CPU utilization, memory bandwidth utilization, and I/O
usage during the aggregation microbenchmark. Figure 8 shows
these traces for SF 100 (top) and SF 1000 (bottom).
Performance analysis: In-Memory. On scale factor 100, the
aggregation does not spill. While pre-aggregating and materializing
data, it is CPU-bound, even while scanning from SSD (Figure 8 top
left). After materialization, while building a shared hash table and
aggregating into it, the query is memory bound (Figure 8 top right).
Performance analysis: Out-of-Memory. On scale factor 1000,
the aggregation query starts spilling after a brief in-memory phase.
While spilling, it writes with near-maximum I/O bandwidth, and
almost fully utilizes the available memory bandwidth (Figure 8
bottom center and bottom right). Hybrid spilling gradually spills
more partitions, resulting in a ramp-up phase where the full write
throughput cannot be achieved. When reading back the spilled
data, Spilly almost fully utilizes the available CPUs and memory
bandwidth, meaning it is not I/O-bound while reading either.
Takeaway. To summarize, Spilly is only I/O bound in the write
phase, and even there CPU and memory bandwidth utilization
are near their maximum. Both the in-memory and out-of-memory
queries are mostly limited by CPU and memory bandwidth, not I/O.
This explains the missing performance cliff, and, more importantly,
shows that large NVMe arrays are fast enough to be used for high-
performance query processing without losing much performance.
Section 6.8 shows how compression can help in scenarios where
Spilly is more I/O-bound, e.g., when using fewer SSDs for spilling.

6.5 Hybrid Spilling
Impact of hybrid spilling on spilled data size. Section 4.3 de-
scribes how Umami generalizes the spilling approach applied by the
hybrid hash join and makes it applicable to other operators. We call
this generalized approach “hybrid spilling”. To better understand

SIGMOD 2025, July 2025, Berlin, Germany Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis

Adaptive

Partitioning

No partitioning

Adaptive

Partitioning

No partitioning

Adaptive

Partitioning

No partitioning

TPC-H SF 10 TPC-H SF 50 TPC-H SF 100

0.0 B 0.5 B 1.0 B 0 B 1 B 2 B 0 B 1 B 2 B 3 B

Tuples per Second

Figure 9: TPC-H performance with partitioning, non-
partitioning, and adaptive operators. Data resides inmemory.

how much hybrid spilling impacts performance, we compare it to a
naiver approach that spills all materialized data if the engine runs
out of memory, i.e., the approach of a spilling, non-hybrid grace
join. The following table compares the spilled data size (left) and
execution times (right) of both approaches on TPC-H (cold runs):

Scale Spilled (GB) Response Time (s)
Factor Spill All Hybrid × Spill All Hybrid ×

100 0 0 - 2.4 2.3 1.01
200 144 4 36.64 12.4 5.1 2.42
500 354 129 2.74 25.0 17.1 1.46

1,000 704 409 1.72 47.4 34.5 1.37
2,000 1,403 1,007 1.39 86.8 65.3 1.33
5,000 3,501 3,116 1.12 197.0 184.0 1.07
10,000 6,998 6,614 1.06 390.0 388.0 1.01

Results. As Section 6.5 shows, the benefit of Umami’s hybrid
spilling approach is largest when the materialized data slightly
exceeds main memory capacity (384GB): On SF 200, this approach
spills 36× less data than the naive approach, though this advantage
diminishes at larger scale factors. Since spilling in Spilly is fast, a
36× reduction in spilled data does not improve speed proportionally,
particularly for large data sizes. Consequently, like the HHJ, hybrid
spilling can smooth the performance cliff, but it does not improve
the performance of extreme out-of-memory workloads.

6.6 Adaptive Materialization
Adaptivematerialization inmemory. The previous experiments
show that Spilly is competitive with state-of-the-art in-memory
engines and capable of out-of-memory query processing. However,
we have not yet evaluated whether Umami’s adaptive materializa-
tion degrades the in-memory performance of the simple hash join
and non-partitioning aggregation. We thus repeat the motivational
experiment shown in Figure 2 to see whether Umami improves
the state of the art. Spilly either (1) always partitions, (2) never
partitions, or (3) adaptively partitions (the default) and executes
non-spilling TPC-H scale factors. The database is preloaded into
memory, thereby minimizing factors such as scan performance.
Results. As Figure 9 shows, adaptive materialization drastically
improves in-memory performance over partitioning variants while
also staying out-of-memory-capable. We find that adaptive mate-
rialization causes less time to be spent in the kernel, e.g., for allo-
cations. On the other hand, it also does not diminish performance
compared to a simple hash join on average. Adaptive materializa-
tion sometimes even improves performance, which may be caused
by improved locality through partitioning (c.f., Section 5.3), but the
runtime adaptivity makes this difficult to determine.

0 GB

= 0 %

150 GB

= 38 %

450 GB

= 57 %

1 TB

= 66 %
3 TB

= 75 %

2.6 GB

= 1.6 %

= 79 %

0.5 TB 2 TB 5 TB0.1 TB 0.2 TB 1 TB

0 M

100 M

200 M

300 M

500 100002000 5000100 200 1000

Scanned Data (log)

TPC-H Scale Factor (log)

T
u
p
le

s
p
e
r

S
e
c
o
n
d Spilly Hyper DuckDB Col. Store S

6.2 TB

Figure 10: Join microbenchmark tuple throughput and Spilly
spill size. Data is scanned from SSD (XFS + RAID-0).

Cost of hashing. During materialization, operators need to pass a
hash to the Umami interface. Operators that employ pre-aggregation
or HyperLogLog sketches compute this hash anyway, so applying
Umami does not introduce overhead. Operators that do not already
compute a hash, like a non-partitioning hash join not using Hy-
perLogLog sketches, may experience overhead when introducing
Umami. We measure this overhead by running the join microbench-
mark (c.f. Section 6.7) in a modified version of Spilly that does
not employ HyperLogLog sketches and passes a fake hash of 0 to
Umami. The following table shows the instructions and cycles per
tuple during the materialization phase of the join on TPC-H SF 100:

Payload Bytes Cycles/Tuple Instr./Tuple Time
No Hashing 199 1815.6 58.7 208.1ms
Hashing 199 1827.1 82.2 209.1ms
No Hashing 0 120.3 17.2 17.7ms
Hashing 0 121.2 42.0 17.3ms

Hashing introduces more instructions per tuple, but these are over-
shadowed by the loads and stores required during materialization
and barely impact the cycles and time spent. Even for small tuples
without a payload, where hashing more than doubles the instruc-
tions per tuple, the effect on the materialization time is small.

6.7 Spilling Join
A large join microbenchmark. After executing a spilling aggre-
gation microbenchmark in Section 6.3, let us now also evaluate
Spilly’s join operator. To produce a large out-of-memory workload,
this microbenchmark joins the lineitem and partsupp tables. It
forces Spilly to spill and output 284 byte tuples by selecting large
char and varchar columns:

select l_orderkey, l_shipinstruct,
l_comment, ps_comment

from lineitem, partsupp
where ps_suppkey=l_suppkey and ps_partkey=l_partkey

Results. Figure 10 shows the resulting tuple throughput as the
data size increases. Spilly’s throughput decreases by a factor of
1.63× from scale factor (SF) 100 to 10,000, where it spills 6.5 TB of

High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance SIGMOD 2025, July 2025, Berlin, Germany

0 M

50 M

100 M

150 M

200 M

1 2 3 4 5 6 7 8

Spill Devices

T
u
p
le

s
 p

e
r

S
e
c
o
n
d

11 GB/s read
bandwidth

88 GB/s read
bandwidth

No Compression

Adaptive Compression

2×

1.77×
1.45×

1.26× 1.13×

Z
S

T
D L
Z

4

L
Z

4

L
Z

4
N

o
n
e

0%

25%

50%

75%

100%

2 4 6 8

Spill Devices

S
c
h
e
m

e
 U

sa
g
e

Figure 11: Performance (left) and compression scheme choice
(right) with different NVMe array sizes. Data resides on SSD.

data. Performance decreases most between SF 100 and 500, which
is where Spilly starts spilling data. At larger scale factors, per-tuple
performance remains nearly constant, independent of the amount
of spilled data.
Performance of other systems. Figure 10 also shows DuckDB,
Hyper, and Column Store S performance for reference. DuckDB
and Hyper perform significantly better than Column Store S in this
experiment, but fail to execute the query for scale factors larger than
500. Although DuckDB recently added support for spilling joins [1],
we could not get it to scale further on our test machine. Column
Store S did not utilize the full CPU capacity, memory bandwidth,
or I/O bandwidth during the experiment on any scale factor. This
explains the low but consistent performance of Column Store S and
supports our theory that current out-of-memory-capable systems
implement spilling techniques from the HDD era.

6.8 Self-Regulating Compression
Experimental design.While we demonstrated that Spilly can effi-
ciently utilize an array of 8 PCIe 5.0 NVMe SSDs, few systems have
access to such a large I/O bandwidth. The goal of self-regulating
compression is to maximize the performance of spilling queries
even for systems with fewer SSDs. To assess its effectiveness, we
measure the performance of Spilly while changing the number of
NVMe SSDs available for spilling. We compare this to a build of
Spilly with self-regulating compression disabled via a compile-time
flag, to also determine any runtime overhead introduced by the
throughput tracking mechanisms (cf., Section 5.1). We execute the
aggregation microbenchmark query from Section 6.3 on TPC-H
SF 1000 data. Without compression, this query spills 457GB.
Performance results. Figure 11 (left) shows the measured tuple
throughput while varying the number of SSDs. Self-regulating com-
pression consistently improves throughput, yielding a 2× speedup
when only using one PCIe 5.0 SSD. As expected, this speedup de-
creases when using more SSDs to spill: With more than 6 PCIe 5.0
SSDs (=∧ 39GB/s write bandwidth), compression does not improve
query performance further. Perhaps more importantly, it does not
decrease performance in any scenario, showing that (1) it correctly
disables compression when appropriate and (2) its throughput track-
ing mechanism has no significant runtime overhead.
Behavior of the optimization algorithm. As Figure 11 (right)
shows, the optimization algorithm chooses ZSTD when little I/O
bandwidth is available, and phases it out in favor of LZ4 and no
compression as the number of SSDs increases. Thus, queries that

2.30×

1.08× 1.16×

2.29×

2.92×

1.61×

i3.16xlarge i4i.32xlarge r6id.32xlarge

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4
0M

25M

50M

75M

0M

25M

50M

75M

100M

0M

10M

20M

30M

40M

Spill Devices

T
u
p
le

s
/
S

e
c
o
n
d

Figure 12: TPC-H Performance of Spilly on AWS EC2 in-
stances; varying SSD counts, with and without compression.

have leftover CPU time can effectively utilize self-regulation com-
pression to improve query latency. Furthermore, we would like to
point out that self-regulating compression may also be useful for
distributed query processing, where the available CPU and network
I/O bandwidth can differ significantly depending on the setup.

6.9 Spilling in the Cloud
NVMe in the cloud. Cloud providers offer rentable virtual cloud
instances with NVMe SSDs: AWS, for example, offers the i3.16xlarge
and the i4i.32xlarge instances, each providing 8 NVMe SSDs [7, 8].
Each SSD offers roughly 2GB/s read and 1GB/s write bandwidth,
allowing for up to 16GB/s (8GB/s) read (write) throughput on the
entire NVMe array. For comparison, our experimental setup has 6×
as much I/O bandwidth, but only 1.5× as many CPU cores as the
newer (i4i, r6id) instance types. To test Spilly in such a different
environment, we execute the spill-heavy aggregation microbench-
mark on the aforementioned cloud instances while also varying
the amount of SSDs available for spilling as in Section 6.8.
Results. As Figure 12 shows, self-regulating compression is always
useful, and even more effective than on our on-premise setup on all
cloud instances due to the higher CPU-to-I/O ratio. Interestingly,
the best-performing instance (i4i.32xlarge) is only 1.5× slower than
our server on this benchmark despite having 6× less I/O bandwidth.
The r6id instance has as many CPU cores as i4i but fewer SSDs,
limiting its performance on this large spilling query. The i3 instance,
which is cheapest in terms of SSD-bandwidth per dollar, does not
benefit as much from self-regulating compression because it has
fewer and older CPU cores.

7 CONCLUSION
This paper introduces Umami, an interface that provides adap-
tive materialization and self-regulating compression to enable ef-
ficient out-of-memory processing without sacrificing in-memory
performance. We show that a query engine based on Umami can
compete with state-of-the-art in-memory engines such as Hyper
and DuckDB while also achieving the scalability and robustness of
classical out-of-memory-capable systems. Additionally, we demon-
strate that modern NVMe SSDs are capable of supporting high-
performance query processing with near-in-memory performance
when used correctly. Using Umami, we execute TPC-H on 10 TB
of data on a server with only 384GB main memory while keeping
89% of in-memory tuple throughput. This invalidates the common
assumption that only in-memory query processing can be fast.

SIGMOD 2025, July 2025, Berlin, Germany Maximilian Kuschewski, Jana Giceva, Thomas Neumann, and Viktor Leis

ACKNOWLEDGMENTS
Funded/Co-funded by the European Union (ERC, CODAC,

101041375). Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European
Union nor the granting authority can be held responsible for them.

REFERENCES
[1] August 24, 2022. DuckDB Out-of-Memory Hash Join. https://github.com/duckdb/

duckdb/pull/4189.
[2] January 16, 2023. DuckDB Benchmarking Guidelines. https://duckdb.org/faq#i-

benchmarked-duckdb-and-its-slower-than-some-other-system.
[3] January 19, 2023. AWS c7g instance family. https://aws.amazon.com/de/ec2/

instance-types/c7g/.
[4] January 19, 2024. https://rocksdb.org/.
[5] January 26, 2023. Tableau Hyper API. https://tableau.github.io/hyper-db/docs/.
[6] June 11, 2024. https://geizhals.de/micron-rdimm-32gb-mtc20f2085s1rc48ba1-

a3017802.html.
[7] June 17, 2024. AWS i3 instance family. https://aws.amazon.com/ec2/instance-

types/i3/.
[8] June 17, 2024. AWS i4i instance family. https://aws.amazon.com/ec2/instance-

types/i4i/.
[9] March 26, 2024. https://www.scylladb.com/.
[10] November 1, 2023. Elevate Performance with 5th Gen Intel Xeon Processors

Featuring Intel Accelerator Engines. https://www.intel.com/content/dam/
www/central-libraries/us/en/documents/2023-11/5thgen-accelerator-engines-
eguide.pdf.

[11] November 1, 2023. Intel 5th Generation Xeon Benchmarks. https:
//edc.intel.com/content/www/us/en/products/performance/benchmarks/5th-
generation-intel-xeon-scalable-processors/.

[12] November 16, 2023. https://geizhals.de/micron-5100-pro-960gb-mtfddak960tcb-
1ar16abyy-a1562532.html.

[13] November 16, 2023. Kioxia CM-7 Price History. https://www.idealo.de/
preisvergleich/OffersOfProduct/203225197_-cm7-r-3-84tb-kioxia.html.

[14] November 16, 2023. Samsung PM1733 Price History. https://geizhals.de/samsung-
ssd-pm1733-3-84tb-mzwlj3t8hbls-00007-a2202065.html.

[15] November 16, 2023. Samsung PM983 Price History. https://geizhals.de/samsung-
ssd-pm983-3-84tb-mzqlb3t8hals-00007-a1870387.html.

[16] October 26, 2023. Skew-Aware Join in Postgres. https://github.com/postgres/
postgres/blob/611806cd/src/include/executor/hashjoin.h#L95.

[17] September 13, 2023. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf.
[18] September 26, 2023. DuckDB 0.9 Release Announcement. https://duckdb.org/

2023/09/26/announcing-duckdb-090.html.
[19] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. 2001.

Weaving Relations for Cache Performance. In VLDB. Morgan Kaufmann, 169–180.
[20] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. 1999.

DBMSs on a Modern Processor: Where Does Time Go?. In VLDB. Morgan Kauf-
mann, 266–277.

[21] Manos Athanassoulis, Shimin Chen, Anastasia Ailamaki, Phillip B. Gibbons, and
Radu Stoica. 2011. MaSM: efficient online updates in data warehouses. In SIGMOD.
ACM, 865–876.

[22] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
ICDE. 362–373.

[23] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or
Not to Partition, That is the Join Question in a Real System. In SIGMOD. 168–180.

[24] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In SIGMOD Conference.
ACM, 37–48.

[25] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the
memory wall in MonetDB. Commun. ACM 51, 12 (2008), 77–85.

[26] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Archi-
tecture Optimized for the New Bottleneck: Memory Access. In VLDB. 54–65.

[27] John Cieslewicz and Kenneth A. Ross. 2007. Adaptive Aggregation on Chip
Multiprocessors. In VLDB. 339–350.

[28] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael
Stonebraker, and David A. Wood. 1984. Implementation Techniques for Main
Memory Database Systems. In SIGMOD. 1–8.

[29] Jaeyoung Do and Jignesh M. Patel. 2009. Join processing for flash SSDs: remem-
bering past lessons. In DaMoN. 1–8.

[30] Jaeyoung Do, Donghui Zhang, Jignesh M. Patel, and David J. DeWitt. 2013. Fast
peak-to-peak behavior with SSD buffer pool. In ICDE. IEEE Computer Society,
1129–1140.

[31] Jaeyoung Do, Donghui Zhang, Jignesh M. Patel, David J. DeWitt, Jeffrey F.
Naughton, and Alan Halverson. 2011. Turbocharging DBMS buffer pool us-
ing SSDs. In SIGMOD Conference. ACM, 1113–1124.

[32] Thanh Do, Goetz Graefe, and Jeffrey F. Naughton. 2022. Efficient Sorting, Du-
plicate Removal, Grouping, and Aggregation. ACM Trans. Database Syst. 47, 4
(2022), 16:1–16:35.

[33] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud
Object Storage for High-Performance Analytics. PVLDB 16, 11 (2023), 2769–2782.

[34] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perLogLog: the analysis of a near-optimal cardinality estimation algorithm. In
AofA: Analysis of Algorithms.

[35] Goetz Graefe. 2007. The five-minute rule twenty years later, and how flash
memory changes the rules. In DaMoN. 6.

[36] Goetz Graefe, Ross Bunker, and Shaun Cooper. 1998. Hash Joins and Hash Teams
in Microsoft SQL Server. In VLDB. 86–97.

[37] Goetz Graefe, Stavros Harizopoulos, Harumi A. Kuno, Mehul A. Shah, Dimitris
Tsirogiannis, and Janet L. Wiener. 2010. Designing Database Operators for
Flash-enabled Memory Hierarchies. IEEE Data Eng. Bull. 33, 4 (2010), 21–27.

[38] Jim Gray and Bob Fitzgerald. 2008. Flash Disk Opportunity for Server Applica-
tions. ACM Queue 6, 4 (2008), 18–23.

[39] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In CIDR.

[40] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, And
How To Exploit It: High-Performance I/O for High-Performance Storage Engines.
PVLDB 16, 9 (2023), 2090–2102.

[41] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP through the looking glass, and what we found there. In SIGMOD
Conference. ACM, 981–992.

[42] Sven Helmer, Thomas Neumann, and Guido Moerkotte. 2002. Early grouping
gets the skew. Technical reports 2 (2002).

[43] Kaisong Huang, Tianzheng Wang, Qingqing Zhou, and Qingzhong Meng. 2023.
The Art of Latency Hiding in Modern Database Engines. PVLDB 17, 3, 577–590.

[44] Shiva Jahangiri, Michael J. Carey, and Johann-Christoph Freytag. 2022. Design
Trade-offs for a Robust Dynamic Hybrid Hash Join. PVLDB 15, 10 (2022), 2257–
2269.

[45] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In ICDE.
195–206.

[46] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter A. Boncz. 2018. Everything You Always Wanted to Know About Compiled
and Vectorized Queries But Were Afraid to Ask. PVLDB 11, 13 (2018), 2209–2222.

[47] Ioannis Koltsidas and Stratis Viglas. 2011. Data management over flash memory.
In SIGMOD. 1209–1212.

[48] Laurens Kuiper, Peter Boncz, and Hannes Mühleisen. 2024. Robust External Hash
Aggregation in the Solid State Age. In ICDE. IEEE.

[49] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2 (2023), 118:1–118:26.

[50] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (2011), 298–309.

[51] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD. 743–754.

[52] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB
9, 3 (2015), 204–215.

[53] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. 185–
196.

[54] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas Neumann. 2015.
Efficient Processing of Window Functions in Analytical SQL Queries. Proc. VLDB
Endow. 8, 10 (2015), 1058–1069.

[55] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of practical synchronization. In DaMoN. 3:1–3:8.

[56] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. 2016. Accelerating
Relational Databases by Leveraging Remote Memory and RDMA. In SIGMOD.
ACM, 355–370.

[57] Aurosish Mishra, Shasank Chavan, Allison Holloway, Tirthankar Lahiri,
Zhen Hua Liu, Sunil Chakkappen, Dennis Lui, Vinita Subramanian, Ramesh
Kumar, Maria Colgan, Jesse Kamp, Niloy Mukherjee, and Vineet Marwah. 2016.
Accelerating Analytics with Dynamic In-Memory Expressions. PVLDB 9, 13
(2016), 1437–1448.

[58] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Färber.
2015. Cache-Efficient Aggregation: Hashing Is Sorting. In SIGMOD Conference.
1123–1136.

https://github.com/duckdb/duckdb/pull/4189
https://github.com/duckdb/duckdb/pull/4189
https://duckdb.org/faq#i-benchmarked-duckdb-and-its-slower-than-some-other-system
https://duckdb.org/faq#i-benchmarked-duckdb-and-its-slower-than-some-other-system
https://aws.amazon.com/de/ec2/instance-types/c7g/
https://aws.amazon.com/de/ec2/instance-types/c7g/
https://rocksdb.org/
https://tableau.github.io/hyper-db/docs/
https://geizhals.de/micron-rdimm-32gb-mtc20f2085s1rc48ba1-a3017802.html
https://geizhals.de/micron-rdimm-32gb-mtc20f2085s1rc48ba1-a3017802.html
https://aws.amazon.com/ec2/instance-types/i3/
https://aws.amazon.com/ec2/instance-types/i3/
https://aws.amazon.com/ec2/instance-types/i4i/
https://aws.amazon.com/ec2/instance-types/i4i/
https://www.scylladb.com/
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-11/5thgen-accelerator-engines-eguide.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-11/5thgen-accelerator-engines-eguide.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2023-11/5thgen-accelerator-engines-eguide.pdf
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/5th-generation-intel-xeon-scalable-processors/
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/5th-generation-intel-xeon-scalable-processors/
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/5th-generation-intel-xeon-scalable-processors/
https://geizhals.de/micron-5100-pro-960gb-mtfddak960tcb-1ar16abyy-a1562532.html
https://geizhals.de/micron-5100-pro-960gb-mtfddak960tcb-1ar16abyy-a1562532.html
https://www.idealo.de/preisvergleich/OffersOfProduct/203225197_-cm7-r-3-84tb-kioxia.html
https://www.idealo.de/preisvergleich/OffersOfProduct/203225197_-cm7-r-3-84tb-kioxia.html
https://geizhals.de/samsung-ssd-pm1733-3-84tb-mzwlj3t8hbls-00007-a2202065.html
https://geizhals.de/samsung-ssd-pm1733-3-84tb-mzwlj3t8hbls-00007-a2202065.html
https://geizhals.de/samsung-ssd-pm983-3-84tb-mzqlb3t8hals-00007-a1870387.html
https://geizhals.de/samsung-ssd-pm983-3-84tb-mzqlb3t8hals-00007-a1870387.html
https://github.com/postgres/postgres/blob/611806cd/src/include/executor/hashjoin.h#L95
https://github.com/postgres/postgres/blob/611806cd/src/include/executor/hashjoin.h#L95
https://kernel.dk/io_uring.pdf
https://duckdb.org/2023/09/26/announcing-duckdb-090.html
https://duckdb.org/2023/09/26/announcing-duckdb-090.html

High-PerformanceQuery Processing with NVMe Arrays:
Spilling without Killing Performance SIGMOD 2025, July 2025, Berlin, Germany

[59] Masaya Nakayama, Masaru Kitsuregawa, and Mikio Takagi. 1988. Hash-
Partitioned Join Method Using Dynamic Destaging Strategy. In VLDB. 468–478.

[60] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR.

[61] Thomas Neumann and Viktor Leis. 2014. Compiling Database Queries into
Machine Code. IEEE Data Eng. Bull. 37, 1 (2014), 3–11.

[62] Hamish Nicholson, Periklis Chrysogelos, and Anastasia Ailamaki. 2022. HPCache:
Memory-Efficient OLAP Through Proportional Caching. In DaMoN. 7:1–7:9.

[63] Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anastasia Ailamaki.
2023. HetCache: Synergising NVMe Storage and GPU acceleration for Memory-
Efficient Analytics. In CIDR.

[64] Stefan Noll, Jens Teubner, Norman May, and Alexander Böhm. 2018. Accelerating
Concurrent Workloads with CPU Cache Partitioning. In ICDE. IEEE Computer
Society, 437–448.

[65] Tarikul Islam Papon and Manos Athanassoulis. 2021. The Need for a New I/O
Model. In CIDR. www.cidrdb.org.

[66] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A
Data Platform Based on the Scaling-Up Approach. Proc. VLDB Endow. 11, 6 (2018),
663–676.

[67] Orestis Polychroniou and Kenneth A. Ross. 2014. A comprehensive study of
main-memory partitioning and its application to large-scale comparison- and
radix-sort. In SIGMOD. 755–766.

[68] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen. 2018. Fair
Benchmarking Considered Difficult: Common Pitfalls In Database Performance
Testing. In DBTest. 2:1–2:6.

[69] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In SIGMOD. ACM, 1981–1984.

[70] Bogdan Raducanu, Peter A. Boncz, and Marcin Zukowski. 2013. Micro adaptivity
in Vectorwise. In SIGMOD. 1231–1242.

[71] Vijayshankar Raman, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M. Lohman, Tim Malkemus, René Müller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam J. Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More than Just a Column Store. PVLDB 6, 11 (2013),
1080–1091.

[72] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan Bhat-
tacharjee. 2013. Making Updates Disk-I/O Friendly Using SSDs. Proc. VLDB
Endow. 6, 11 (2013), 997–1008.

[73] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD Conference. ACM,
1961–1976.

[74] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich. 2015. On the
Surprising Difficulty of Simple Things: the Case of Radix Partitioning. PVLDB 8,
9 (2015), 934–937.

[75] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The End of an Architectural Era (It’s Time
for a Complete Rewrite). In VLDB. ACM, 1150–1160.

[76] Dimitris Tsirogiannis, Stavros Harizopoulos, Mehul A. Shah, Janet L. Wiener,
and Goetz Graefe. 2009. Query processing techniques for solid state drives. In
SIGMOD. 59–72.

[77] Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark. PVLDB
16, 6 (2023), 1413–1425.

[78] Leonard von Merzljak, Philipp Fent, Thomas Neumann, and Jana Giceva. 2022.
What Are You Waiting For? Use Coroutines for Asynchronous I/O to Hide I/O
Latencies and Maximize the Read Bandwidth!. In ADMS.

[79] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. 2000.
The Implementation and Performance of Compressed Databases. SIGMOD 29, 3
(2000), 55–67.

[80] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, and Badrish Chandramouli.
2021. Redy: Remote Dynamic Memory Cache. PVLDB 15, 4 (2021), 766–779.

[81] Zichen Zhu, Xiao Hu, and Manos Athanassoulis. 2023. NOCAP: Near-Optimal
Correlation-Aware Partitioning Joins. Proc. ACM Manag. Data 1, 4 (2023), 252:1–
252:27.

[82] Marcin Zukowski, Mark van de Wiel, and Peter A. Boncz. 2012. Vectorwise: A
Vectorized Analytical DBMS. In ICDE. 1349–1350.

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Spilling Algorithms
	4 The Umami Interface
	4.1 Why the State of the Art is Not Enough
	4.2 Adaptive Materialization
	4.3 Umami Generalizes the Hybrid Hash Join
	4.4 Self-Regulating Compression
	4.5 Unified Hash Join
	4.6 Unified Hash Aggregation
	4.7 How General is Umami?

	5 Implementation
	5.1 Utilizing NVMe Arrays
	5.2 NVMe-Optimized Scan Operator
	5.3 Adaptive Materialization Implementation

	6 Evaluation
	6.1 Experimental Setup
	6.2 TPC-H Performance
	6.3 Spilling Aggregation
	6.4 Where is the Performance Cliff?
	6.5 Hybrid Spilling
	6.6 Adaptive Materialization
	6.7 Spilling Join
	6.8 Self-Regulating Compression
	6.9 Spilling in the Cloud

	7 Conclusion
	Acknowledgments
	References

