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Abstract
Achieving both high throughput and low commit latency has long
been a difficult challenge for DatabaseManagement Systems (DBMSs).
As we show in this paper, existing commit processing protocols
fail to fully leverage modern NVMe SSDs to deliver both high
throughput and low-latency durable commits. We therefore pro-
pose autonomous commit, the first commit protocol that fully utilizes
modern NVMe SSDs to achieve both objectives. Our approach ex-
ploits the high parallelism and low write latency of SSDs, enabling
workers to explicitly write logs in smaller batches, thereby mini-
mizing the impact of logging I/O on commit latency. Additionally,
by parallelizing the acknowledgment procedure, where the DBMS
iterates through a set of transactions to inspect their commit state,
we mitigate excessive delays resulting from single-threaded commit
operations in high-throughput workloads. Our experimental results
show that autonomous commit achieves exceptional scalability and
low-latency durable commits across a wide range of workloads.
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Figure 1: No existing DBMS or commit protocol can achieve
both low-latency commits and high throughput. Our pro-
posed solution, autonomous commit, accomplishes both.

1 Introduction
Logging on disk. Online Transaction Processing systems seek
to optimize two critical but often conflicting goals: low latency
and high throughput [14, 15, 36, 63]. Achieving both is challenging
because of the durability requirements for write-ahead logging.
Historically, logging operations were slow because magnetic disks
could only provide millisecond-scale write latencies. To improve
throughput on these slow devices, DBMSs implement group commit,
which batches multiple transactions to amortize log writing costs [2,
3, 17, 21, 22, 30, 34], but this leads to higher commit latency [30, 55].
Logging on persistent memory. Persistent memory emerged
as a promising solution, with prior research showing that achiev-
ing both objectives is possible with this new class of storage de-
vices [28, 31, 54]. Unfortunately, Intel’s Optane product has been
discontinued [16, 26] and NVDIMMs are not widely available [32],
which leaves the challenge unresolved.
SSDs to the rescue?The emergence ofmodernNVMe SSDs presents
another opportunity to achieve both low latency and high through-
put. Unlike magnetic disks, NVMe SSDs offer write latencies in
the tens of microseconds and support high levels of parallelism.
Moreover, they are cheap and widely available. This raises the ques-
tion of whether existing commit protocols can effectively leverage
low-latency NVMe SSDs to achieve both high throughput and low-
latency durable commits?
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Existing solutions. Figure 1 shows that existing DBMSs – specif-
ically their commit processing protocols – fail to simultaneously
achieve low-latency commits and high throughput with modern
NVMe SSDs. The figure shows the results of a YCSB benchmark (de-
tails in Section 6.1) contrasting the two main approaches: (1) Group
commit with centralized logging [46] (i.e., a shared log buffer be-
tween all threads) as used by WiredTiger, SQLite, and RocksDB,
and (2) Group commit with decentralized logging (i.e., each thread
has a designated log buffer) [28, 54, 57] as used by LeanStore [28].
As the figure shows, the centralized approach can achieve low 90th-
percentile latency but offers limited throughput due to contention
on the shared log buffer. Conversely, the decentralized design pro-
vides good scalability at the cost of high commit latency, with 90p
latency exceeding four seconds.
Bottleneck. Our analysis (cf., Section 2.3) of LeanStore’s decen-
tralized group commit mechanism revealed that actual transaction
execution accounts for only 0.001% of the total commit latency, with
most of the latency stemming from the commit processing subsys-
tem. Log flushing contributes just 8% of the total latency, while
commit acknowledgment, particularly dependency checking, is a
more significant bottleneck. The root cause of these inefficiencies
is in the unithreaded design of group commit.
Autonomous commit. This work addresses these bottlenecks
by designing a commit processing algorithm, autonomous commit,
from the ground up, leveraging modern NVMe SSD characteristics.
Modern SSDs support small, random, parallel, and durable writes
with double-digit microsecond latency, enabling a fully concurrent
and parallel commit processing protocol. Instead of batching large
writes as in traditional group commit, autonomous commit par-
allelizes small log flushes across workers. We then decouple and
parallelize the dependency checking from the flushing phase. We
further introduce a series of optimizations to minimize latency and
ensure robustness in realistic workloads.
Discussion. Our design incorporates a series of complementary
techniques that, while simple, are remarkably effective, reducing la-
tency by up to four orders of magnitude without sacrificing through-
put. We attribute this surprisingly notable improvement to two fac-
tors. First, much of the recent research on transaction processing
has focused primarily on throughput, often overlooking the critical
role of latency. Second, modern SSDs offer extremely low-latency,

durable writes, a capability that has received limited attention in
the research literature. By carefully optimizing for commodity data
center hardware, autonomous commit achieves sub-millisecond
commit latency, even for high-throughput workloads.

2 Commit Processing and Its Bottlenecks
In this section, we provide an overview of commit processing, fol-
lowed by an exploration of the characteristics of modern SSDs. We
then analyze why state-of-the-art commit processing techniques
lead to high commit latencies on SSDs.

2.1 Commit Processing
Commit processing is fundamental to ensuring transaction dura-
bility. In this section, we provide the necessary background to
understand the stages of commit processing and its challenges.
Centralized logging: ARIES. ARIES has long been the standard
logging and recovery mechanism for disk-based DBMSs. ARIES
relies on centralized logging, meaning all transactions share a single
log buffer where write-ahead log (WAL) entries are stored until
they are flushed to storage.
ARIES transaction lifecycle. As illustrated in Figure 2(a), the life
cycle of a transaction in a DBMS using ARIES-style logging follows
several stages [46]. The transaction begins with a BEGIN command,
followed by the execution of user queries and corresponding DBMS
tasks, such as isolation validation. After execution, the transaction
transitions to the READY state1, indicating that it can be committed.
At this point, its metadata is placed in a centralized buffer called the
pre-committed queue. Transactions that have dependencies must
be committed in a specific order to ensure consistency. Dependen-
cies occur when one transaction reads or writes data that another
transaction has accessed. For instance, in Figure 2(a), consider trans-
action TX1, which inserts a new tuple into page Pa but has not yet
been completed. If transaction TX2 subsequently updates another
tuple in page Pa, a dependency is created between TX2 and TX1.
How ARIES manages dependencies. To manage such depen-
dencies, ARIES ensures that transactions are placed in the pre-
committed queue in their execution order. This guarantees that
dependencies are resolved correctly and that transactions can be
1READY is ready to commit, which is conceptually equivalent to TRX_QUE_COMMITTING
in MySQL/InnoDB [2].
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correctly recovered after a failure. A transaction is marked as
COMMITTED and can only be acknowledged to the user once its
log records have been durably written to storage.
Group commit with ARIES: Scalability challenges. In ARIES,
the log buffer is flushed to storage with every transaction commit,
resulting in a large number of I/O operations. To reduce this I/O
overhead, DBMSs commonly use group commit, which defers I/O
writes to enhance transaction throughput. Group commit works
by delaying the writes of multiple READY transactions for a short
period, then writing all of their logs to storage in a single I/O opera-
tion and acknowledging these transactions as COMMITTED together.
This method reduces I/O costs by amortizing them across several
transactions. However, with modern multi-core CPUs, the central-
ized log buffer of ARIES becomes a scalability bottleneck, ultimately
limiting throughput [27, 34, 54, 57].
Decentralized logging: Scalability with a trade-off. To address
the scalability issues of centralized logging, many works propose
decentralized logging, where each worker is assigned its own log
buffer [27, 28, 37, 54, 57]. This approach improves scalability by
eliminating contention on a shared log buffer. At the same time,
ensuring durability and consistency across all workers becomes
more complex, making commit processing more difficult [28, 54].
Decentralized logging: Complex commit processing. In decen-
tralized logging, commit processing becomes more complex due to
transaction dependencies. Log records from dependent transactions
may end up in separate buffers, as illustrated in Figure 2(b). Con-
sider the same example as before: transaction TX1, which inserts
a new tuple to page Pa but has not yet completed its execution.
After that, transaction TX2 updates another tuple in page Pa, which
creates a dependency edge from TX2 to TX1. Now, if the DBMS
flushes the log buffer containing TX2 before TX1 is committed, TX2
will be marked as HARDENED (i.e., its log records are durable). How-
ever, because TX2 might have accessed data modified by TX1, it
cannot be fully committed until TX1 is committed. This complicates
commit processing in decentralized logging, as it requires ensuring
the durability of log entries and checking that all dependencies are
resolved before allowing transactions to commit.
Decentralized logging: Commit conditions. Figure 2 shows the
transaction lifecycle in a decentralized logging-based DBMS. The
commit processing subsystem must ensure that all dependencies
are resolved when it transitions transactions through the stages
from READY, to HARDENED (by writing the logs to storage) and fi-
nally to COMMITTED. We can formalize the commit conditions for a
transaction in decentralized logging as follows:

1 Log durability (READY ⇒ HARDENED): Ensure all its modifi-
cations, i.e., log entries, are durable in the storage.

2 Dependency checking (HARDENED⇒ COMMITTED): All de-
pendencies must also be committed [17, 28, 54, 57].

Group commit with decentralized logging. Similar to central-
ized logging, group commit is used in decentralized logging to
amortize I/O costs. However, unlike in centralized logging, where
the group committer only has to flush the log buffer, the group
committer in decentralized logging must ensure that the two com-
mit conditions are satisfied. Group commit in decentralized logging
operates as a sequence of commit rounds, each consisting of two
stages: log flush and commit acknowledgment. At the start of every
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Figure 3: Average random-write latency of an enterprise
NVMe SSD, measured using microbenchmarks.

commit round, the DBMS iterates through all buffers to collect their
READY transactions and associated logs. Then, it triggers log flush:
writing all those log entries to the storage – usually with asynchro-
nous I/O [9, 25, 33] – then moving the state of those transactions
to HARDENED. Finally, the system calls commit acknowledgment to
determine the new set of safe transactions, i.e., satisfying the above
commit conditions, and acknowledges them as COMMITTED.

This two-stage process allows decentralized logging systems to
overcome the scalability bottleneck of centralized logging, ensur-
ing that transactions are durably and correctly committed. As a
result, many modern DBMSs have adopted this model for commit
processing. Unfortunately, while this approach delivers high per-
formance, as shown in Figure 1, it suffers from high commit latency
on modern SSDs. To understand the reasons behind this, we next
explore the characteristics of modern NVMe SSDs and analyze the
underlying bottlenecks.

2.2 Characteristics of NVMe SSDs
So far, we have focused on commit processing as it is tradition-
ally implemented in disk-based systems. This section explores the
key differences between conventional magnetic disks and modern
NVMe SSDs. Understanding these differences will help explain why,
despite the microsecond-level write capabilities of SSDs, commit
latencies remain high in systems that use them.
Smallerwrites (4-16KB). Enterprise NVMe SSDs offer low-latency
writes [24, 25, 29, 36]. For example, as Figure 3(a) shows, our Kioxia
SSD achieves random write latencies as low as 11𝜇𝑠 for a 4KB write
unit. Latency stays below 11𝜇𝑠 for write units up to 64KB, but can
reach up to 87ms for a 512MB write. Therefore, smaller writes (e.g.,
4KB or 16KB) should be used to design a commit processing system
capable of microsecond-level commit latencies.
Parallel writes.While smaller write sizes help minimize latency,
high throughput can be maintained by leveraging the parallelism
of NVMe SSDs. Unlike magnetic disks, which are limited by a
single seek arm, SSDs can handle multiple writes concurrently.
Furthermore, these writes do not need to be sequential; they can
be random. As shown in Figure 3(b), NVMe SSDs maintain low-
latency durable writes even with concurrent random writes. For
example, write latency barely increases with a 4 KB write unit and
16 concurrent threads. Thus, we can balance high throughput and
low latency by utilizing parallel small random writes.
Fsync for free. Up to this point, we have focused on write latencies.
But historically, the most significant source of latency was making
writes durable using fsync() [24]. This is because the physical flash
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write latency is several milliseconds. Consumer SSDs mitigate this
by buffering writes in internal DRAM and finally writes to the non-
volatile NAND flash chips when fsync() is triggered. Enterprise-
grade NVMe SSDs, in contrast, eliminate this latency by ensuring
that the DRAM buffer is durable, thanks to the built-in capacitors
that supply backup power during system failures [7, 12, 23, 36]. As a
result, fsync() is free with enterprise SSDs. Note that this assumes
a setup bypassing the file system by using block devices, which
improves performance significantly as proven in many existing
works [24, 25, 40, 47, 48, 50, 58]. If a file system or the OS page
cache is involved, fsync() is still required.

2.3 Bottleneck Analysis
As just discussed, commit processing on modern SSDs is most
efficient when it performs small, parallel writes to fully utilize their
capabilities. However, the fundamental principle of group commit
– batching as many transactions as possible in a single thread to
amortize I/O costs — directly conflicts with this approach.
Latency breakdown setup. To better understand the sources of
latency, we measured the four key stages a transaction must pass
through to be committed: (1) transaction processing, (2) queuing
in the pre-committed queue, (3) log flushing, and (4) dependency
checking for commit acknowledgment. For the measurements, we
used the open-source storage engine LeanStore, which is optimized
for high throughput on NVMe SSDs and implements a highly opti-
mized version of decentralized logging with group commit [9, 28].
In terms of throughput, this implementation is capable of executing
millions of transactions per second.
Breakdown results. Figure 5 shows the breakdown for the YCSB
benchmark with an average transaction latency of 1.8s. Surprisingly,
the primary bottleneck is not log flushing to SSD but rather queuing,
where transactions wait to be committed. Log flushing is only the
third largest contributor to latency, while commit acknowledgment
(i.e., dependency checking) is the second major factor. Although
log flushing accounts for only about 8% of the total latency, it still
occurs on a millisecond scale. To achieve commit latencies in the
microsecond range, all such bottlenecks must be addressed. The
root cause of these issues is the unithreaded nature of group commit,
causing three problems.
Problem 1: Flushing delays due to I/O spikes. In group commit,
log flushing is handled by a single thread, which leads to large
batches of logs being written at once, causing I/O spikes that hurt
commit latency. This issue is particularly pronounced in highly
parallel, high-throughput workloads, where workers fill their log
buffers quickly. The single thread must iterate over tens or even
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Commit ack: 665ms

Execution: 12μs

Log flush: 142ms

Queuing: 1019ms

Figure 5: Latency breakdown of the group commit with de-
centralized logging in a multi-threaded YCSB benchmark.

hundreds of log buffers (workers), accumulating a large volume of
logs in every commit round. In our experiments, the system com-
pletes 24 commit rounds over ten seconds, each causing an I/O spike
of approximately 300MB in log writes. As Figure 3 shows, writ-
ing 300MB to SSD takes 45ms in a microbenchmark, significantly
increasing the latency for all transactions in that round.
Problem2: Single-threaded commit acknowledgment. In group
commit, a single thread is responsible for iterating through all pre-
committed transactions (of all workers) to verify the commit state of
their dependencies, and then announces the new set of COMMITTED
transactions. This worsens latency in decentralized logging systems
with high throughput. This is evident in the latency breakdown in
Figure 5 where commit acknowledgment accounts for 36% of the
latency for the experiment presented in the introduction.
Problem 3: Queuing. In decentralized logging, the queuing over-
head – the waiting time between transaction completion and being
committed – spans at least one group commit round. This prob-
lem arises from the fact that group commit uses a coupling design:
every commit round must trigger both log flushing and commit
acknowledgment. We demonstrate this issue in Figure 4 with two
transactions, TX5 and TX8, where TX8 depends on TX5. If the current
round contains TX8 while TX5 has not yet completed, the DBMS
still can not commit TX8 until TX5 is hardened. Consequently, the
queuing time of TX8 is at least one group commit round for TX5.

This explains why the queuing overhead is roughly the total time
for both log flush and commit acknowledgment, as shown in Figure 5.
In practice, dependency graphs are often more complex, leading to
queuing overhead spanning multiple commit rounds instead of just
one in the example.

3 Autonomous Commit
To address the inefficiencies outlined in the previous section, we
introduce autonomous commit, a novel commit processing protocol
consisting of two techniques: autonomous log flush and autonomous
commit acknowledgment. In Section 3.1, we discuss autonomous log
flush, which leverages the low-latency parallel writes of modern
NVMe SSDs to resolve the I/O spikes. We describe the second tech-
nique, autonomous commit acknowledgment, in Section 3.2, and how
this technique parallelizes the expensive commit acknowledgment
to alleviate its impact on latency. In Section 3.3, we describe how
the design of autonomous commit reduces queuing delays. Lastly,
in Section 3.4 and Section 3.5, we discuss techniques to optimize
further and improve the robustness of autonomous commit.
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3.1 Autonomous Log Flush
All workers should flush logs. As discussed in Section 2.3, group
commit suffers from flushing delays caused by large log batches.
During each group commit round, a significant log volume is writ-
ten to storage all at once, adding hundreds of milliseconds to
the commit latency. Instead, we propose that workers should au-
tonomously flush their log buffers to the storage, hence the name
autonomous log flush, to exploit the parallel low-latency writes of
SSDs. Thereby, we can avoid the latency of large SSD writes.
How much should workers write? The next question is how
frequently we write logs to storage. Most high-performance DBMSs
bypass the OS page cache by using O_DIRECT [10, 25, 28, 44, 49, 56],
which requires all writes to align with the storage block size (typi-
cally 4KB). Consequently, individual flushes for small transactions
(i.e., tens or hundreds of bytes) would cause considerable write
amplification and reduce system throughput significantly.
Proposal: Workers harden small batches. Instead, we propose
buffering log entries in each worker’s local log buffer until reach-
ing a configurable threshold, termed the log flush unit. When a
COMMIT log entry is generated, the worker evaluates if the size of
the unflushed log entries meets this threshold. If so, the worker
triggers log flush for its log buffer and then announces the hard-
ened transaction set to other workers, preparing for the commit
acknowledgment stage.

Figure 6 contrasts group commit (upper) with autonomous com-
mit (lower). In both approaches, workers begin with their own
buffers containing uncommitted transactions. In Stage 1, group
commit relies on a single thread to collect and flush all uncommit-
ted entries to the SSD. In contrast, in autonomous commit, each
worker handles its own log flushing independently. For instance,
the log record of TX10 is larger than TX9 and TX12 combined and
reaches the log flush threshold on its own. The log flush thresh-
old should align with the storage block size and remain relatively
small (i.e., < 64KB) to ensure low-latency, durable writes in multi-
threaded environments, as discussed in Section 2.2.

3.2 Autonomous Commit Acknowledgment
Autonomous log flush parallelizes log flushing and limits the log
write size, exploiting modern SSDs’ characteristics. This signifi-
cantly reduces the latency of the log flushing stage, bringing it
down from multiple milliseconds to tens of microseconds (cf. Fig-
ure 3). However, as Figure 5 illustrates, commit acknowledgment is

a much bigger contributor to overall latency. We next describe how
to parallelize commit acknowledgment.
Autonomous acknowledgment. In existing commit protocols,
only one thread is responsible for running the commit acknowledg-
ment process at any given time. Given that a decentralized logging
system can complete millions of transactions per second, this single-
threaded approach becomes a bottleneck. We propose to not only
flush logs but also acknowledge transactions autonomously, i.e.,
every worker only triggers the commit acknowledgment on its own
pre-committed transaction queue. The right part of Figure 6 (Stage
2) illustrates this approach and contrasts it with group commit.
Synchronization. Every acknowledgment round requires synchro-
nizing the committed state of all workers. As the following figure
illustrates, these states indicate up to which point all prior transac-
tions local to each worker have been committed [28, 54, 57]:

TX5

TX7

W0

W1

TX10TX

TX

Committed txn

To-be-committed txn

TX12

TX9

TX3

local committed statedependency

The committed state of worker W0 is TX10, meaning that all trans-
actions prior to TX10 belonging to W0, i.e., TX3 and TX5, are also
committed. Assume that in W1, TX9 has just been hardened (its asso-
ciated logs are flushed to the storage), and it depends on TX10. To
determine that the dependencies of TX9 are all committed, W1 must
retrieve the committed state of all other workers. In this example,
after knowing that TX10 belongs to W0 and W0 has committed all
transactions until TX10, W1 knows that TX9’s dependencies are all
committed, hence acknowledges TX9.
Optimization: Acknowledgment in small groups. On large
servers, the state synchronization may involve gathering the com-
mitted state of hundreds of workers, each protected by a separate
latch. Assuming that there are 100 workers and worker W wants to
acknowledge its pre-committed queue of only one transaction. In
this case, worker W has to acquire 100 latches to verify the depen-
dencies of a single transaction, which is unnecessarily excessive.
Multiple pre-committed queues should be processed per acknowl-
edgment round to amortize this synchronization overhead.

One way to do that is to divide the workers into acknowledgment
groups of configurable size, where any worker can acknowledge
transactions of all workers belonging to the same group. Doing
so allows a worker to trigger autonomous acknowledgment on all
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the workers of the same group. This parallelizes the expensive
acknowledgment while reducing state synchronization frequency.

3.3 Mitigating Queuing Overhead
In decentralized logging, a transaction may be durable but remains
uncommitted if its dependencies have not yet been hardened. Group
commit couples log flushing and commit acknowledgment, which
can lead to queuing delays as dependencies wait to be committed
throughout multiple rounds of both steps. This delay occurs be-
cause the single group committer must iterate through all worker
log buffers, hardening them and checking dependencies. If a de-
pendency is not yet fulfilled, the committer moves on to the next
worker, leaving the transaction to wait until the next round. This
explains why dependency-related queuing is the biggest overhead
of group commit, as shown in Figure 5.
Decoupling I/O from acknowledgment. By splitting the commit
operations into two parts – autonomous log flush and autonomous
acknowledgment – and executing them independently, we eliminate
log flushing delays from the queuing overhead. That is, workers can
perform autonomous commit acknowledgment to verify the commit
state of their remote dependencies (i.e., dependencies located in
other workers) without needing an additional log flush or waiting
for a group committer to perform the check on their behalf. In
the example presented in Figure 4, the log flush for TX5 can be
interleaved with the commit round containing TX8. As a result, the
queuing time of TX8 no longer includes any delay from log flushing.
Tackling queuing: Frequent acknowledgment. Transactions
with remote dependencies require workers to trigger commit ac-
knowledgment frequently such that theworker owning those depen-
dencies will perform log flush to harden them. However, performing
commit acknowledgment too often (e.g., after every transaction
completes) can waste CPU cycles. As the number of workers in-
creases, the synchronization cost of retrieving the committed states
rises, commit acknowledgment becomes more expensive and hence
should be triggered less frequently. Whenever a worker completes
a transaction, it triggers acknowledgment probabilistically based
on the worker count, as the following code shows:
if (rand(log2(# workers)) == 0) CommitAcknowledge();

3.4 Optimization: Log Stealing
Autonomous log flush mitigates I/O spikes and reduces the write
latency. However, transactions still face delays while waiting for
logs to accumulate to the flush threshold, especially for small log
records. For instance, with a 16 KB flush threshold and an average
log size of 160 B, each flush hardens about 100 transactions. If a
transaction takes 6𝜇𝑠 to execute, the average delay before being
hardened is 300𝜇𝑠 , which is excessive. Lowering the flush threshold
(e.g., to 4 KB) reduces latency by hardening fewer transactions per
flush but does not fully resolve the issue. Forcing flushes earlier can
reduce delays but leads to I/O amplification if the batches are not
full, consuming SSD IOPS needed for other tasks like checkpointing
and buffer management.
Solution: Log stealing. Instead, we introduce log stealing as a
solution to mitigate excessive delays caused by workers accumulat-
ing log entries. We trigger stealing operations only at the end of a

transaction’s execution. Upon the end of a transaction’s execution,
the worker loops through all target workers and executes the log
stealing operation as depicted in the following figure:

Log Y Log XZ

Clean log

Dirty log

Clone logs

Log X Y Z

Initial

Notify Log Y Log XZ Y Z

CAS() on clean cursor2

Log Y ZSteal

1

dirty
cursor

atomic
clean
cursor

Target Worker

The figure illustrates the three main steps involved in the log steal-
ing operation (from top to bottom), where the current worker (right)
attempts to steal log entries from the target worker (left). Initially,
the current worker only contains the log X, and it is trying to
steal Y and Z entries from the target worker. First, 1 the worker
calls memcpy() to clone the target’s dirty logs Y and Z, i.e., from
atomic clean cursor to dirty cursor, into its log buffer. Because the
dirty cursor is coupled within the committed state of the targeted
worker, which is already protected by a latch (cf., Section 3.2),
it does not need to be atomic. Next, 2 , the worker performs a
compare_and_swap() (CAS() in the figure) which serves two pur-
poses (1) it ensures that no other worker has stolen the same logs
otherwise the CAS() would fail and (2) if it succeeds it notifies to
other workers that it has just stolen those logs. Finally, the worker
submits an I/O write request to persist the log buffer and notifies
everyone that the log flush, which contains logs of transactions
across several workers, is completed.
Who to steal logs? Unrestricted log stealing incurs inter-die com-
munication, which is expensive on modern CPUs2. To mitigate
this, we pin the workers to specific CPU cores and restrict them to
only steal within their topology group. For example, an AMD EPYC
processor with multiple CCDs, each has eight CPU cores sharing
the same L3 cache. In this setup, we can use a group size of eight
threads. Consequently, a worker only steals from others through
the shared L3 cache, reducing expensive memory access.
Synchronization of concurrent stealing operations. Log steal-
ing significantly reduces the queueing time. However, it may suffer
from a flush race condition, i.e., multiple workers steal from the
same worker and complete their log flush in a different order than
the stealing sequence. One solution is to employ a parking lot-like
technique [13, 43], as is illustrated in the following figure:

W1 TX 5TX 2 TX 8

(a) Worker stealing TX 2
and TX 3 completes first

Three other workers steal logs from W1 with the following order:
[TX 2, TX 3] - [TX 5, TX 7] - [TX 8, TX 9]

TX 2 ......

Notify all TXNs of W1
until TX 3 are hardened

(b) One of the other two completes first,
e.g. one who steals TX 5 and TX 7

Combine the notification task of TX 7 with
that of TX 3. The worker stealing TX 3 will
notify log durability for all TXNs until TX 7

TX 3 TX 7 TX 9

TX 3 TX 5TX 2 TX 3 TX 7 ......

2Modern server CPUs usually comprise multiple dies [1, 5], in which inter-die com-
munications are slower than intra-die communications.
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There are two possible scenarios: either the first worker (e.g., steal-
ing TX2 and TX3), completes its log flush first, or any of the other
two completes first. In the first scenario, that worker notifies that
all transactions until TX3 of worker one are durable. For the second
scenario, the notification task for the stolen transactions is merged
with the preceding transactions. As in the example, the worker who
completes TX7 will merge the notification task for TX7 with that
for TX3 and then not notify anything. After that, the worker who
steals TX3 will now notify TX7, which inherently includes three
older transactions. This approach ensures the correct transactional
durability despite potential out-of-order log flushes.

3.5 Managing Latency Under Low Load
Problem. Combining all techniques described so far achieves low-
latency commits in a steady state where transactions contiguously
execute one after another. This differs from realistic workloads with
frequent idle periods between transactions, e.g., where users pause
to think before making new requests [8, 18, 51]. This inactivity
presents a challenge for autonomous commit, as workers produce
minimal or no logs during these times and thus cannot reach the
flush threshold quickly. In these situations, transactions may remain
volatile for an extended period because the log buffers take longer to
fill up, delaying log flush operations and leading to higher commit
latency.
Force commit.One solution is to force commit (i.e., trigger both au-
tonomous log flush and autonomous acknowledgment) if the worker
remains idle for a reasonable duration. That is, every worker pre-
dicts the next idle time; if there is enough free time, it will flush
its log buffer and subsequently invoke commit acknowledgment. A
simple strategy to predict the next idle time is to average a few last
idle periods. Under specific conditions, e.g., when the average idle
time exceeds the write I/O latency, the worker will write its dirty
log buffer to the storage and call commit acknowledgment.
When to force commit? If we naively trigger force commit if
𝑛𝑒𝑥𝑡_𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒 ≤ 𝑓 𝑜𝑟𝑐𝑒_𝑐𝑜𝑚𝑚𝑖𝑡_𝑡𝑖𝑚𝑒 (the average time taken for
force commit), the worker may not trigger force commit at all. For
instance, assuming that the average force commit time is 50𝑢𝑠 and
there is a sequence of idle time: [5𝜇𝑠, 10𝜇𝑠, 16𝜇𝑠, 12𝜇𝑠]. Based on
this sequence, one may predict that the 𝑛𝑒𝑥𝑡_𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒 ≤ 20𝜇𝑠 ,
which is smaller than the average force commit time. Therefore,
the naive comparison approach may fail to trigger force commits,
resulting in high commit latency. Instead, we use a probabilistic
method for the trigger condition:
// Max idle time should be small, e.g., 50 microseconds

if (avg_idle_time ≥ rand(max_idle_time)) ForceCommit();

4 Lock-Free Transaction Queue
Up to this point, we have introduced the core concepts of au-
tonomous commit. This protocol efficiently parallelizes log flushing
and dependency checking by aggressively stealing and acknowledg-
ing transactions from other workers. While this approach enables
low-latency durable commits, it heavily relies on a highly concur-
rent data structure to effectively share transaction objects3 across

3Transaction objects, or their in-memory representations, store metadata about trans-
actions, including start and commit timestamps, isolation levels, transaction states,

1 struct Queue:

2 atomic<int> head // Read objects from buffer[head]

3 atomic<int> tail // Push new objects to buffer[tail]

4 u8 *buffer = malloc(CAPACITY)

5 void Queue::Enqueue(Transaction &txn):

6 // 1 Evaluate object size after being serialized

7 int size = txn.SerializedSize()

8 // 2 Wait until having enough space for new obj

9 int r_head = head.load()

10 int w_tail = tail.load()

11 while(ContiguousFreeBytes(r_head, w_tail) < size)

12 r_head = head.load()

13 // 3 Serialize the txn and enforce the write order

14 new (&buffer[w_tail]) SerializedTxn(txn)

15 tail.store(w_tail + size)

16 void Queue::BatchDequeue(u64 no_txns, lambda &commit_ack):

17 int ptr = head.load()

18 // 4 Commit the pre-committed queue

19 for (int tx_i : Range(0, no_txns))

20 SerializedTxn txn = &buffer_[ptr]

21 if (!commit_ack(txn)) { break }

22 ptr += txn->Size()

23 head.store(ptr)

Listing 1: Lock-free queue of serialized transactions.

multiple threads. Notably, other commit processing protocols, such
as group commit, also require an efficient data structure to man-
age transaction objects across threads. To address this need, in
this section, we present an optimized lock-free transaction queue
that is a crucial building block for autonomous commit and also
complements all other commit processing protocols.
Problems of latch-protected transaction queue. Previous ap-
proaches usually employ a data structure (e.g., transaction pool [2]
or queue [9]) protected by a latch to manage transaction objects. In
this approach, the workers must acquire a latch before allocating
a new transaction object. However, another worker may be con-
suming transactions from the same queue, e.g., iterating through
the queue to verify the transaction commit state, which also re-
quires acquiring the same latch. This leads to potential contention
as workers periodically halt progress, lowering the throughput and
increasing latency significantly.
Problems of private transaction queue. Huang et al. [33] pro-
pose to deallocate transaction objects lazily by the workers. There-
fore, the transaction set can be thread-local, eliminating the latch
protecting the transaction set. However, this approach does not
allow sharing transaction queues between threads, which are impor-
tant in several scenarios, e.g., for asynchronous BLOB logging [48]
or autonomous commit acknowledgment as described in Section 3.2.
Lock-free queue. We advocate for the use of a single-producer,
single-consumer lock-free queue. This is because every worker
maintains its transaction queue (i.e., single producer), and during
every commit round, only one thread processes a queue (i.e., single

and more. These objects serve as references to the corresponding transactions during
DBMS operations and are typically processed in a first-in-first-out (FIFO) order.
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Figure 7: Dependency tracking with GSNs.

consumer). We recommend the circular queue because it is simpler
and more efficient than an unbounded queue. Additionally, because
autonomous commit releases transactions aggressively, the number
of queued transactions per worker is bounded.
Serialized transaction. With millions of transactions per second,
transaction deallocation introduces significant overhead, worsening
both throughput and commit latency. To address this, we serialize
every transaction object into a variable-sized byte array. Conse-
quently, multiple transaction objects can be placed contiguously
within a large memory buffer, making deallocation very efficient:
Large buffers can be releasedwith madvise(MADV_DONTNEED), while
smaller ones are kept allocated for reuse.
Implementation. Listing 1 shows our queue implementation. For
simplicity, we do not include the code for the queue operations.
First, 1 we ensure that all serialized objects are aligned to the
CPU cache line to prevent false sharing. Next, 2 the system waits
until there is enough space to serialize a new object into the queue.
After that, 3 we serialize the object to the queue buffer and notify
other threads about the new enqueued transaction. This makes
retrieving the pre-committed queues trivial by simply load() the
number of queued items (omitted from Listing 1). With the num-
ber of queued transactions, 4 the system can iterate through the
completed transaction set efficiently to verify their commit state.
This batching dequeue mechanism also reduces cache coherence
traffic [59], thus improving performance.

5 Robust Dependency Tracking for Stragglers
So far, we have glossed over how dependency tracking works, i.e.,
how we determine that one transaction depends on another.In
practice, this plays a crucial role to system performance: Different
tracking mechanisms (1) require varying amounts of information
to be tracked [54, 57] and (2) dictate how workers assess the com-
mit state of remote dependencies. These differences significantly
influence the efficiency of the commit processing subsystem.

In this section, we will begin by reviewing existing dependency
tracking strategies. We will explain why Global Sequence Num-
bers [54] stands out as the most practical design among all de-
centralized logging variants, followed by a discussion about the
trade-offs for its advantages: the straggler problem. We will then
introduce an incremental optimization that, as demonstrated in
our experiments (cf., Section 6.2), effectively mitigates the straggler
problem and thus enhances commit latency in workloads where
stragglers may occur.

..
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     STRAGGLER: min GSN = 20
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TX 30 cannot commit

idle

     SOLUTION: Push a
barrier txn to the stragglers

to advance min GSN 

B52      EFFECT:
min GSN = 52

W0

W1

W2

1 2

3

Figure 8: Straggler problem in GSN-based approaches.

5.1 Existing Approaches
Precise causality-tracking is memory-intensive. Existing tech-
niques for tracking dependencies fall into two main categories:
precise causality-tracking (PCT) and total ordering. There are two
variants under the first category: DistDGCC [60] and Taurus [57].
DistDGCC [60] includes the whole dependency graph in log records,
incurring considerable runtime and storage overheads. Taurus [57]
achieves the same effect by using Log Sequence Number vectors (LVs)
to represent dependencies. However, with Taurus, every transac-
tion and log entry stores an LV sized by the number of workers.
Assume 100 workers and LVs are represented using 8-byte integers;
every transaction and log would need at least 800 B of metadata,
far exceeding the typical transaction and log record size.
Advantages of total ordering.Wang et al. proposed using Global
Sequence Numbers (GSNs), based on Lamport clocks, in decentral-
ized logging to achieve a global total order of transactions [54].
In this approach, a GSN is assigned to each transaction and page,
establishing a partial order of transactions based on the sequence
of page accesses, ultimately providing a total order for log entries
associated with any page or transaction.

As Figure 7 (left) illustrates, with GSNs, a transaction synchro-
nizes its local GSN to𝑚𝑎𝑥 (𝑙𝑜𝑐𝑎𝑙𝐺𝑆𝑁, 𝑝𝑎𝑔𝑒𝐺𝑆𝑁 ) whenever it ac-
cesses a page (for both reads and writes). When a new log record is
generated, the transaction advances both its local GSN and the GSN
of the page associated with that log record. This technique was
further refined with Remote Flush Avoidance (RFA) [9, 28], which
determines whether a transaction only accesses pages modified by
transactions previously executed on the same worker; if so, the
transaction can commit as soon as its logs are hardened, as Figure 7
(right) depicts.

This approach has many advantages over the PCT – reduced
memory footprint, minimal log metadata, and lower complexity –
making GSNs compelling for dependency tracking in decentralized
logging systems, as summarized in the table below:

overheads1 robustness2 impl.
DistDGCC [60] high reliable hard
Taurus [57] high reliable hard
GSN/RFA [28, 54] low unstable easy
GSN/RFA+Barrier (Our) low reliable easy
1 Storage and/or memory 2 In realistic scenarios

Weak commit condition in total ordering. Total ordering comes
with a trade-off for its efficiency: it does not explicitly track trans-
action dependencies. In other words, it is impossible for the DBMS
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Figure 9: Close-looping benchmarks: Stressing both throughput and latency.

to precisely determine whether any particular transaction’s depen-
dencies are committed. Instead, a weaker commit condition is used:
a transaction can commit if its GSN is less than or equal to the
smallest durable GSN across workers [54].

Why is this commit condition weaker than that of PCT? We
demonstrate this with an example in Figure 8, which involves three
transactions: TX50, TX20, and TX30, all of which have been hardened,
and TX50 depends on TX30. All three transactions can be committed
if we use any of the PCT approaches. That is, TX20 and TX30 have
no dependency and can commit. For TX50, its only dependency is
TX30 which has already been committed, so the system can commit
TX50 as well. However, under the weaker commit condition of total
ordering, both TX50 and TX30 cannot be committed because their
GSNs are higher than the minimum durable GSN, which is 20 (from
TX20). We call this the straggler problem.

5.2 Barrier transaction
Advancing minimum GSN. The straggler problem arises because
slow or idle workers do not advance their GSNs during inactivity,
as no transactions are being processed. To resolve this issue, we
introduce barrier transactions. A barrier transaction is a lightweight
transaction generated by a worker – typically when it wants to trig-
ger a force commit (cf., Section 3.5). This transaction does not modify
any data or generate log entries. Its sole purpose is to advance the
worker’s GSN, thereby increasing the global minimum GSN and
allowing other transactions to be committed. An advantage of bar-
rier transactions is that they integrate seamlessly with the existing
commit logic, making the implementation straightforward.
Working example. Figure 8 provides a working example for bar-
rier transaction. 1 Because the last transaction in worker 1 is TX20,
thus other workers are trapped at minGSN=20. As a result, these
workers can not commit TX30 and TX50 even if those transactions
satisfy all commit conditions. Assuming that the current global
GSN is 52, 2 we can push a barrier transaction with GSN=52 to
worker one, B52, and then trigger the commit operation on it. By
doing so, 3 the minimum GSN becomes 52, so the system can then
commit TX30 and TX50 with a minimal waiting time.

By strategically using barrier transactions, the system prevents
idle workers from hindering overall progress, ensuring that trans-
actions across all workers can be committed promptly.

6 Evaluation
Experimental setup.We integrate our proposal, denoted as Our,
and all existing commit processing protocols into LeanStore, an
open-source storage engine that integrates decentralized logging [6].
We use a combination of total ordering mechanism [33, 54] and
Remote Flush Avoidance [9, 28] to manage transactions’ ordering
information. The size of the buffer pool is 32 GB.
Hardware & OS. All experiments were run on a single-socket
machine with an AMD EPYC 9654P Processor with 96 cores / 192
hardware threads and 384 GB memory. The storage device used
in the experiments is an enterprise-grade KIOXIA CM7-R 3.8TB
NVMe PCIe5 SSD. We use Ubuntu with Linux kernel version 6.8.
Variants. We use two autonomous commit variants for evaluation:

• Our4KB: Every worker flushes its log buffer whenever the
size of dirty log entries (i.e., log flush unit) is at least 4 KB.

• Our16KB: Similar to Our4KB, but the log flush unit is 16 KB.
This variant offers both high throughput and low latency.

We use a stealing group size of eight, which follows the CPU topol-
ogy as explained in Section 3.4. The acknowledgment group size is
two (Section 6.6 will explain the reasoning). The queue size of all
variants is 10 MB per worker.
Competitors.We compare our design with group commit, denoted
as Trad. Another competitor is flush pipelining [9, 34], which runs
group commit in a background thread, denoted as Flush. We imple-
ment all strategies in the same test system to isolate the conceptual
differences from incidental differences. We also combine these two
protocols with the queue design in Section 4, denoted as TradQueue
for group commit and FlushQueue for flush pipelining. As we will
show later, transactions in these competitors are queued for an
extensive period, necessitating a larger queue size compared to our
design. Hence, we use a queue size of 100 MB per worker.
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Figure 10: Open-looping benchmarks. The open-looping scheduler significantly undermines the background commit thread of
flush pipelining, leading to its poor commit latency.

6.1 Stress Benchmark
In this benchmark, we use YCSB, TATP, and TPC-C workloads to
evaluate all commit processing protocols. We run all experiments
with 96 threads. For YCSB, we use 50% update ratio and 100 million
tuples. The number of warehouses in the TPC-Cworkload is 96. And
for TATP, the number of subscribers is 1 million. The experimental
results are shown in Figure 9.
YCSB: Competitor latency. As Figure 9(a) (top left) illustrates, all
competitors experience high commit latency. In this highly concur-
rent environment, most transactions take more than 1s to commit in
our competitors. This is primarily because of the expensive commit
acknowledgment and queuing overheads, as explained in Section 2.3.
Moreover, because a single thread can not commit fast enough to
keep up with the workers, the number of uncommitted dependen-
cies is very high, exacerbating the queuing overheads.
YCSB: Latency of autonomous commit. Our4KB provides the
lowest latency with its 90p is only 175𝜇𝑠 , 12431× lower than that
of FlushQueue, which provides the best 90p latency amongst all
competitors. However, since autonomous commit fully saturates
the I/O capacity of modern SSDs, the SSD occasionally struggles
to serve write operations swiftly. This leads to rare delays in log
flushing, causing high tail latencies for autonomous commit.
YCSB: Why competitors provide poor throughput? The main
reason is that the log buffers are frequently full because the group
commit processes them not fast enough. As a result, when a worker
wants to append a new log record, it usually has to wait for the
group commit to finish the log flush, negatively affecting system
throughput. If we increase the size of the log buffers, the competi-
tors’ throughput improves at the trade-off of higher latency.
YCSB: Why our design provides higher throughput? On the
other hand, autonomous commit writes logs frequently upon meet-
ing the threshold. As a result, there are no blocking periods in the
hot path. Therefore, as shown in Figure 9, the two autonomous
commit variants have higher throughput than the two competi-
tors. Specifically, the variant that provides the lowest throughput,
Our4KB, outperforms the best competitor, TradQueue, by 26.1%.
TATP summary. As shown in Figure 9(c), all autonomous commit
variants show superior commit latency to group commit and flush
pipelining, similar to previous benchmarks. TATP and YCSB share

similar throughput and latency patterns because the transactions in
these two workloads are very lightweight, pressuring the commit
processing subsystem considerably.
TPC-C latency: Autonomous commit vs. competitors. From Fig-
ure 9(b), autonomous commit is also better than all competitors.
Specifically,Our4KB andOur16KB provide 283× and 265× lower 90p
latency, respectively, compared to the best competitor, FlushQueue.
The differences between autonomous commit and the competi-
tors are less pronounced than in the previous benchmarks because
the queuing and commit acknowledgment overheads are less severe
in TPC-C compared to YCSB. TPC-C transactions are more complex
and produce larger log records, leading to lower throughput.
TPC-C throughput. Only Our16KB variant provides comparable
throughput to the group commit techniques. In contrast, Our4KB in-
vokes log flush and commit acknowledgment much more frequently
than other variants, thus generating fewer transactions and is not
able to amortize the overhead. We argue that the latency improve-
ments outweigh minor reductions in throughput.

6.2 Open-Loop Benchmark
To better simulate real-world scenarios with frequent user think
times, we integrate the open-system model [8, 18, 20, 25, 28, 45,
51, 64] with this benchmark. We use both YCSB and TPC-C work-
loads in this benchmark, with similar configurations as in previous
experiments. The results are shown in Figure 10.
Autonomous commit.Autonomous commit,Our4KB andOur16KB,
always has the lowest commit latency in both YCSB and TPC-C,
with its 99p latency usually less than 100𝜇𝑠 for YCSB and 1ms for
TPC-C. This shows that barrier transactions effectively resolve the
stragger problem of GSN-based decentralized logging. Specifically,
when the throughput is small, workers in autonomous commit will
likely trigger force commit several times during system idle. With
barrier transactions, all workers know that everyone has flushed
all dirty logs and can acknowledge transactions in time. Without
barrier transactions, autonomous commit will have high commit
latency for low-throughput scenarios, even though still lower than
that of the two competitors (not shown in the figure). This explains
the conceptual issue of GSN-based decentralized logging and the
important role of barrier transactions in this problem.
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Figure 11: Impact of different optimizations on throughput and latency.

Competitors vs. autonomous commit. In contrast, TradQueue
and FlushQueue do not implement barrier transaction and force
commit, explaining why they suffer from the straggler problem of
GSN-based logging in open-loop experiments. These two competi-
tors only achieve their best commit latency when the throughput is
sufficiently high – 100K and 500K transactions per second for YCSB
and TPC-C, respectively. This occurs when the benchmark frame-
work generates transactions fast enough to advance the minimum
GSN in sync with their commit rate. However, even in the most fa-
vorable scenarios for the competitors, i.e., large TPC-C transactions
with high throughput, the lowest 99P latency they can achieve is
still 78% higher than that of Our4KB.
Group commit vs. flush pipelining. The only difference be-
tween group commit and flush pipelining is whether to run the
group commit task in a background thread. As Figure 10 shows,
the differences between these two are significant, unlike the exper-
iments in Figure 9. This difference is primarily because the CPU
cores are oversubscribed with the background commit thread. Par-
ticularly, because the transaction scheduler (which is in the hot
path of the workers) is compute-intensive [4, 18], hence workers
will consume CPU resources considerably and thus likely preempt
the background commit thread, a finding aligns with numerous
previous studies [19, 25, 33, 35, 53].

6.3 Ablation Study
To better understand the impact of our conceptual building blocks,
we now dissect how each optimization affects the performance.
We start with the flush pipelining as the baseline and end with
Our4KB variant. Step by step, we add additional features: the op-
timized queue in Section 4, autonomous log flush in Section 3.1,
autonomous commit acknowledgment in Section 3.2, and log steal-
ing optimization in Section 3.4. We also use the YCSB workload
with the same parameters as the previous benchmarks. Figure 11
shows the ablation study for throughput (left), 90p latency (middle),
and 99.9p latency (right).
Lock-free queue. As shown in Figure 11, replacing a latch-based
data structure with a lock-free queue improves throughput and
commit latency. Specifically, the optimized queue improves the
throughput of the flush pipelining by 21.5% and reduces 90p latency
by 41%. These improvements show that commit operations can
block workers from adding new transaction objects to the pre-
committed queue for a significant amount of time.

Autonomous log flush: Eradicating I/O spikes. By moving the
log flush to the workers, the background thread is responsible only
for commit acknowledgment. Autonomous log flush can signifi-
cantly reduce the 90th-percentile latency by 8, 867×. There are two
main reasons for this improvement. First, autonomous log flush
effectively mitigates the overheads from I/O spikes. Second, it also
reduces queuing overhead. Specifically, because the workload of
the background thread is lighter, it can initiate many more commit
rounds, thereby considerably decreasing queuing time.
Autonomous log flush: Tail latencies.However, autonomous log
flush exhibits a very high 99th-percentile latency, similar to flush
pipelining. This primary reason, unsurprisingly, is the CPU over-
subscription issue on the background commit thread. That is, the
number of queued transactions is occasionally considerable because
the background thread does not have enough computing resources,
leading to considerable queuing and the commit acknowledgment
overheads, thus resulting in the phenomenon.
Autonomous acknowledgment: Eliminating high 99p latency.
Autonomous commit acknowledgment is free of CPU oversubscrip-
tion by eliminating the background thread, resulting in lower 99p
latency. One surprising finding is that autonomous commit ac-
knowledgment also improves system throughput. This improve-
ment occurs because, at times, the pre-committed queues become
full while the background commit thread cannot progress due to
resource contention.
Stealing logs to optimize latency. Figure 11 shows that the 90p
latency of autonomous commit without log stealing optimization is
even worse than that of autonomous log flush. With log stealing op-
timization, autonomous commit can cut the 90th-percentile latency
in half, and the 99th-percentile latency also reduces by 17.6%. The
only issue with the stealing optimization is that it reduces through-
put slightly by 9.1% because of extra synchronization. However, we
argue that the latency gain is more significant than the reduction
in throughput, which is still higher than all other variants.

6.4 Scalability
In this benchmark, we use the YCSB workload with the same con-
figurations as previous benchmarks. We vary the number of worker
threads to evaluate our design’s scalability and compare it with
group commit and flush pipelining. The experimental results are
depicted in Figure 12.
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Result. As shown, both autonomous commit and the two competi-
tors provide similar performance until 32 threads.When the number
of threads exceeds 32, TradQueue and FlushQueue cannot scale more.
This is because the single-threaded nature is insufficient for that
massive volume of transactions. Consequently, workers often wait
for the group commit to finish the log flush, leading to considerable
delays and poor scalability. Larger log buffers might improve their
scalability but at a higher memory usage. In contrast, autonomous
commit writes log regularly, hence does not require large log buffers
while still exhibiting good scalability, with Our16KB reaching 11
million transactions per second with 192 threads.

6.5 Log Flush Unit
We use the TPC-C workload in this experiment because it more
effectively illustrates the throughput differences between various
log flush units compared to YCSB and TATP. The log flush unit
varies from 4 KB to 128 KB.
Result. As Figure 13 depicts, 4 KB results in the lowest commit
latency. The main reason is that smaller log flush units trigger
log flushes more frequently, which advances the minimum durable
GSN more quickly. Additionally, smaller log flush units increase the
number of independent transactions that meet the RFA conditions,
thereby avoiding remote log flushes (cf., Section 5). Together, these
factors contribute to lower commit latency with smaller log flush
units. On the other hand, Figure 13 also shows that even with 16 KB,
the autonomous commit can saturate the SSD bandwidth, i.e., the
throughput can not increase much with a higher log flush unit.
In short, the autonomous commit with a log flush unit of 4 KB
provides the lowest latency, while a log flush unit of 16 KB is an
all-around solution.
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Figure 14: Acknowledgment group size experiment.

6.6 Acknowledgment Group Size
We will evaluate the acknowledgment group size in this benchmark
using both TPC-C and YCSB with the same configurations as in
previous experiments. The group size varies from one to eight –
with a group size of one, the lock-free queue closely resembles
the private transaction queue proposed by Huang et al. [33]. The
autonomous commit variant we use is Our4KB.
Result. As Figure 14 shows, in TPC-C experiments, the group size
of eight results in the lowest commit latency. The primary reason is
that, given that the number of transactions in TPC-C is low, a bigger
group size means every acknowledgment round can commit more
transactions in time. However, in YCSB, that group size has the
highest commit latency. This is because the number of completed
transactions in YCSB is much higher; thus, a bigger group size leads
to more expensive commit acknowledgment, and ultimately, the
queuing overhead is very high.

Furthermore, bigger group sizes also boost throughput, with a
group size of eight delivering 10% higher throughput compared
to a group size of one (not shown in the figure). We also want to
note that the dependency ratio (i.e., how many transactions require
remote log flush or not) only depends on how fast autonomous
log flush is triggered, and thus is orthogonal to acknowledgment
group size. In short, a group size of two or four allows low-latency
commit in both YCSB and TPC-C, which covers a wide range of
workloads.

6.7 Mixed Workloads
This experiment runs TPC-C and YCSB workloads on different
workers to simulate a scenario where workers generate log entries
at varying rates. Specifically, to challenge the autonomous commit
mechanism, we configure each stealing group so that half of the
workers (i.e., four workers) run TPC-C while the other four workers
execute YCSB. This makes it hard for workers to steal log entries
from their peers and introduces additional synchronization over-
head. In contrast, the two competitors, TradQueue and FlushQueue,
remain unaffected by this configuration. The experimental results
are presented in Figure 15.
Result. Surprisingly, both TradQueue and FlushQueue provide rea-
sonable commit latency in this experiment, unlike previous experi-
ments. This is because the data size of this experiment exceeds the
buffer pool capacity, i.e., out-of-memory. As a result, the average
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execution time of transactions is several times slower than in pre-
vious experiments, leading to significantly lower log volume and
lower transaction objects. Despite that, autonomous commit still
outperforms both traditional group commit and flush pipelining, es-
pecially Our4KB whose 90th-percentile latency is 13.2× and 136.8×
lower than that of TradQueue and FlushQueue, respectively.

7 Related Work
In Section 2, we already introduced the prior work that our ap-
proach is based on. In section, we discuss other commit processing
approaches and contrast their properties with our proposal.
Epoch-based group commit. Epoch-based group commit [52, 62]
divides time into a sequence of epochs, during which a batch of trans-
actions is persisted to storage. While this provides high throughput,
it leads to high commit latency, often taking milliseconds to com-
mit. This is because the commit state is driven by the epoch period,
which is typically tens of milliseconds [52]. Additionally, this tech-
nique is unsuitable for storage-based DBMSs because it relies on
value logging, which requires the whole dataset to reside in memory.
Persistent memory-based commit. To simultaneously achieve
instant commits and high throughput, previous research has used
PM to store transaction logs [28, 31, 38, 39, 54, 61]. However, the
discontinuation of the Intel Optane project [16, 26], along with the
limited availability of NVDIMMs compared to NVMe SSDs [11, 32],
has made PM-based commit protocols less attractive. Furthermore,
adapting PM-based commit protocols for NVMe SSDs is challenging
because (1) the SSD programming model differs from that of per-
sistent memory; (2) modern NVMe SSDs still exhibit significantly
higher I/O latency compared to persistent memory devices; and
(3) the CPU overhead required to persist a log entry is higher on
SSDs. We summarize the conceptual differences between existing
commit protocols and autonomous commit, when combined with
decentralized logging, in Table 1.
Disk-based commit protocol. Throughout this paper, we have
highlighted that the autonomous commit protocol is optimized ex-
plicitly for modern NVMe SSDs, which support low-latency, parallel
writes. However, if the DBMS is deployed on mechanical disks with
millisecond-scale write latencies, the performance of autonomous
commit is likely to degrade significantly. In such scenarios, it may
underperform compared to traditional approaches like group com-
mit or flush pipelining. Addressing this limitation is an area we
intend to explore in future research.
Delays in distributed DBMSs. As discussed in Section 5, the GSN-
based dependency tracking mechanism suffers from the straggler

Table 1: Comparative analysis of existing commit protocols.

throughput latency
support
OOM1

require
PM2

Group commit [2, 3] medium high yes no
Flush pipelining [34] medium high yes no
Epoch-based [52] high high no no
PM2-based [28, 54] high low yes yes
Autonomous commit high low yes no
1 Out-of-memory workloads 2 Persistent memory

problem, where idle workers fail to process transactions, hence
preventing the advancement of the minimum GSN and delaying
transaction commits. This issue is also prevalent in distributed
DBMSs and can be even more pronounced due to challenges caused
by the networking infrastructure, such as network partitioning
and high communication overheads. One approach to address this
problem is write-TID buffering [41, 42], which optimizes transaction
ID assignment to reduce delays from cross-node communication.
Both techniques, barrier transaction and write-TID buffering, aim
to resolve global progress dependencies, effectively mitigating the
impact of delays and stragglers on system performance.

8 Summary
In this paper, we have demonstrated that achieving both high scal-
ability and low commit latency in transactional DBMSs is possible.
By designing and integrating the autonomous commit protocol
with decentralized logging, we have created a system that scales
efficiently while maintaining low latency. Our performance study
shows that our approach can commit transactions swiftly, achieving
90th-percentile latencies in the microsecond range across diverse
workloads.We believe that autonomous commit provides a practical
solution for high-performance DBMSs. Our implementation is open
source and available at https://github.com/leanstore/leanstore/tree/
latency.
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