
Get Real: How Benchmarks Fail to Represent the Real World
Adrian Vogelsgesang, Michael Haubenschild,

Jan Finis, Alfons Kemper, Viktor Leis, Tobias Muehlbauer, Thomas Neumann, Manuel Then

Tableau Software

{avogelsgesang, mhaubenschild, jfinis, akemper, vleis, tmuehlbauer, tneumann, mthen}@tableau.com

ABSTRACT
Industrial as well as academic analytics systems are usually evalu-
ated based on well-known standard benchmarks, such as TPC-H
or TPC-DS. These benchmarks test various components of the
DBMS including the join optimizer, the implementation of the join
and aggregation operators, concurrency control and the sched-
uler. However, these benchmarks fall short of evaluating the “real”
challenges imposed by modern BI systems, such as Tableau, that
emit machine-generated query workloads. This paper reports a
comprehensive study based on a set of more than 60k real-world BI
data repositories together with their generated query workload. The
machine-generated workload posed by BI tools differs from the
“hand-crafted” benchmark queries in multiple ways: Structurally
simple relational operator trees often come with extremely complex
scalar expressions such that expression evaluation becomes the
limiting factor. At the same time, we also encountered much more
complex relational operator trees than covered by benchmarks. This
long tail in both, operator tree and expression complexity, is not
adequately represented in standard benchmarks. We contribute
various statistics gathered from the large dataset, e.g., data type
distributions, operator frequency, string length distribution and
expression complexity. We hope our study gives an impetus to
database researchers and benchmark designers alike to address the
relevant problems in future projects and to enable better database
support for data exploration systems which become more and more
important in the Big Data era.

1 INTRODUCTION
To evaluate the performance of database systems, researchers and
system vendors use standardized benchmarks like TPC-H and
TPC-DS for analytical workloads and TPC-C for transactional
workloads. Unfortunately, there are only few such benchmarks
and the public availability of real-world database workloads is
limited. This especially puts academia but also practitioners at risk
of overfitting their implementations to the few available benchmarks,
leading to bad design choices if the benchmarks lack relevance and
broad applicability [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DBTest’18, June 15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5826-2/18/06. . . $15.00
https://doi.org/10.1145/3209950.3209952

In this paper we focus on the evaluation of real-world analytical
query processing systems. In recent years, visual-based analytics
tools such as Tableau have disrupted the business intelligence (BI)
market. These modern BI tools allow the user to interact with and
understand their data on a higher level, while traditional SQL queries
are automatically generated in the background. These machine-
generated queries introduce new challenges for query processing
systems. In contrast to “hand-written” queries, interactive high-level
interfaces allow users to easily express very complex queries. Even
a simple calculation in the BI frontend can lead to a large query size
due to expression unrolling. There is also an impedance mismatch
for some concepts in the BI tools that cannot be mapped directly to
a SQL query. Consequently, query generation in a BI tool has to
restructure the query, which can lead to complicated structures in
SQL. Further, taking analytics to a higher level not only changed
queries, but also data set characteristics. Users now expect to be
able to easily analyze data of all sizes and of all types. Standardized
benchmarks are relevant, but given the observed long tail in both,
query and data set complexity, we challenge the broad applicability
of standardized benchmarks, especially to modern BI workloads.

In particular, the main contributions of this paper are:
• We offer insights into real-world BI workloads at scale, based
on monitoring and sampling 60k data repositories together
with their query workloads generated by a modern BI tool.

• We point out the high-level differences between a modern BI
workload and standard industry benchmarks.

While we observed a significant discrepancy between standard-
ized benchmarks and the observed real-world usage, we do not claim
that existing benchmarks are not relevant. Instead, we hope that this
paper will augment existing benchmarks that focus on hand-crafted
queries and give an impetus for other database researchers and
vendors to make their systems more versatile and robust for the
challenges imposed by modern BI tools.

2 METHODOLOGY
Tableau Public1 is a free offering by Tableau for sharing BI visual-
izations on the web. It hosts user-generated Tableau workbooks,
each containing one or more visualizations. A workbook comprises
the logical description of a visualization and the visualized data, in
the following referred to as extract. From this logical description,
Tableau generates SQL queries and uses their result to render the
final visualization. The generated SQL queries are executed using
Hyper, Tableau’s query processing backend for extracts.

The workbooks hosted on Tableau Public give us a comprehensive
and fairly representative overview of a modern BI workload. We
1https://public.tableau.com

https://doi.org/10.1145/3209950.3209952
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3209950.3209952&domain=pdf&date_stamp=2018-06-15

DBTest’18, June 15, 2018, Houston, TX, USA A. Vogelsgesang, M. Haubenschild et al.

collected statistics on a random sample containing approx. 62k
workbooks using two methods: First, we obtained metadata about
the data stored in the extracts such as data types, sample values,
domain sizes, and the length of strings. Second, we collected all SQL
queries and query execution plans from Hyper’s log files.

In total, we collected over one million generated SQL queries,
covering a large variety of real-world scenarios. 75% of those queries
are metadata queries that do not reference relations from the dataset
but instead, e.g., retrieve the schema information or the current
server time. This surprisingly high number of metadata queries
is partially caused by our non-interactive measurement method
which nullifies the benefits the metadata cache would provide in
interactive sessions. Nevertheless, the number of metadata queries
is still remarkable, which leads us to our first insight:

Insight 1. BI tools issue many queries to retrieve information
about the schema and other metadata.

Querying the system catalogs therefore needs to be efficient.
Since it is usually straightforward to provide sufficient performance
for meta data queries, we ignore them for the remainder of this
paper and only show results for the remaining 250k queries.

3 DATASETS
In this section we focus on the dataset characteristics before delving
into the query workload characteristics in Sec. 4.

3.1 Strings are Everywhere
The TPC-H benchmark uses integer keys for all relations. In contrast,
our real-world dataset mostly features strings as keys: ISO country
codes are used to identify countries, IANA codes for airports and
ISBNs for books. UUIDs or other alphanumeric identifiers are also
common choices where pre-established keys are not available. All
those different flavors of “surrogate” keys have one thing in common:
They are stored as strings in the database, i.e., either as VARCHAR,
CHAR or TEXT depending on the DBMS and administrator.

Similarly, other non-key columns that a DBA would normally
specify as INTEGER or even as a boolean are also commonly stored
as strings. Our dataset shows that more than 60% of the single-
character strings are 0 or 1. With a combined frequency of 4.5%,
the characters “Y” and “N” are also very popular to represent“yes”
and “no”, respectively. In a cleanly designed schema, those columns
would be represented as booleans. Another common pattern is to
store fiscal years as strings in the form of “2017/18”. In general, while
the schema of TPC-H and other benchmarks is carefully engineered
and designed by an experienced DBA, most real-world queries work
on a schema with a very pragmatic design to just “get the job done”.
This leads us to:

Insight 2. Most data is stored as strings. BI data is often represented
in the application domain, not in a format efficient for processing by
database systems.

Benchmarks should therefore not only work on a perfectly
designed schema, but also on relations with sub-optimal data type
choices. There are multiple reasons for these. One, as hinted above, is
that there are generally no corresponding types to store, e.g., UUIDs
and fiscal years. While most DBMS offer the user the possibility to
create custom datatypes, this feature is seldom used. In that sense,

Text Integer Real Datetime Date Boolean

0

2e10

4e10

6e10

8e10

N
um

be
r

of
 T

up
le

 V
al

ue
s

0.9%1.5%2.6%
20.5%25.6%

48.8%

Figure 1: Distribution of data types used

strings are used as a “dumping yard” for all types other than the
most common SQL types which are supported by all major DBMS.

Even if a specific datatype is supported, it might not be possible
to use it due to dirty values that cannot be parsed cleanly. Their
existence leaves two choices during data ingestion: either store
them as NULL, or fall back to store the whole column as strings. Our
dataset indicates that the latter usually prevails, probably to prevent
loss of information. A human can still extract some meaning out of
the textual representation of, e.g., a date containing a ’\’ instead of
a ’/’, or a number containing an accidental character are examples.

Given all those different reasons to store data as strings, the
distribution shown in Fig. 1 is not surprising. It shows that 48% of all
values are stored as strings. Integers are slightly more common than
floating point numbers. Dates and booleans are pretty rare. This
does not mean that people are not using them. It rather means that
dates and booleans are stored as strings and only interpreted during
query time by calling functions such as TO_TIMESTAMP. Users tend
to import data into Tableau and only afterwards use the calculation
language to clean it up. The calculation language enables users to
refine and clean their data while they are visualizing it. At the same
time, this also means that the data initially imported and stored in
the database files is far from clean.

In contrast to this, industry benchmarks use strings mostly
as ballast. They are either directly presented to the user, used as
group key, or as restrictions. However, this allows one to mostly
ignore the string content itself and instead use, e.g., dictionary
tokens or indices during processing. In the few cases where string
modifications are applied (such as SUBSTRING from TPC-H query 22),
those modifications are cheap to execute.

Fixed-precision numbers, such as NUMERIC or DECIMAL, are miss-
ing from Fig. 1 completely.While TPC-H and TPC-DSmake extensive
use of fixed-precision numbers, Tableau made the design choice not
to support fixed-point data types and instead always uses floating
point values. It is not alone with this choice: Google’s Cloud Spanner
does not support numerics, either.

3.2 Collation and Unicode Support
In our international world, support for plain ASCII strings is no
longer sufficient. Indeed, 0.64% of the strings contain non-ASCII
characters. While those characters are uncommon, a DBMS still
needs to be able to store those Unicode characters and process them
correctly. Doing so influences performance as it complicates string
processing. However, this performance factor is not covered by
existing benchmarks.

Get Real: How Benchmarks Fail to Represent the Real World DBTest’18, June 15, 2018, Houston, TX, USA

<101

0K

5K

10K

15K

N
um

be
r

of
 W

or
kb

oo
ks

14,639
15,642

14,734

10,618

2,591

4,535

553 45 1

Number of Tuples

<102 <103 <104 <105 <106 <107 <108 <109

Figure 2: Distribution of dataset sizes measured as the over-
all number of tuples

Similarly, standard benchmarks completely ignore collations,
although many database systems support them. Microsoft SQL
Server even uses a locale-dependent, case-insensitive collation by
default. PostgreSQL offered collations for more than a decade now,
and it recently introduced unified collation support by relying on
ICU, a library providing unicode and globalization support. Before,
its behavior depended on the underling operating system. Although
now unified, it is still not complete, as it is currently not possible
to sort case or accent insensitive. By covering collation support,
benchmarks could stimulate research in efficient collation support.

Case-insensitive collations are particularly challenging, as com-
parisons and hashing become much more expensive. Nevertheless,
case insensitive ordering is something that appears very commonly
in our workload. Over 85% of the string columns in our dataset have
a collation. For more than 70% of the columns the collation is either
case- or accent-insensitive. In more general terms:

Insight 3. Collations play a large role when working with interna-
tional datasets and highly impact query performance.

Benchmarks should therefore feature more non-English colla-
tions to test how a database system performs when working on
international data. Even machine-readable identifiers, such as ISO
country or MAC addresses, are often stored with case-insensitive
collations. In most cases, the collation does not actually influence
the query result, but query evaluation has to take it into account
nevertheless in order to guarantee the correctness of the result.

3.3 Dataset Size
To get an impression of the datasets uploaded to Tableau Public, Fig. 2
shows a histogram of the number of tuples per table. This histogram
shows that most datasets are rather small. Only approximately 600
out of the 62 thousand workbooks contain more than a million tuples
and thereby reach the order of magnitude of TPC-H scale factor one.
In comparison to both TPC-H and TPC-DS which already deal with
tables containing hundred thousands of tuples at the smallest scale
factor, this is outright tiny. The majority of the datasets on Tableau
Public contain less than a thousand tuples.

The heavy skew towards tiny datasets might be due to the target
audience of Tableau Public, as it is a free service (and thus also
contains a considerable amount of “toy” workbooks) and it limits
the maximum workbook size. Consequently, workbooks of paying
customers will be larger on average. Nevertheless, tiny data sets
with a long tail of huge data sets are also common in industry.

Query text (bytes) Operators Expressions

1 6.7 MB 3 287, 926
2 1.9 MB 2 29, 786
3 1.5 MB 2 20, 024
4 1.1 MB 2 15, 847
5 602 KB 2 9, 549

Table 1: The top-5 largest queries. There is an extremely long
tail with one query having over 200k expressions.

Insight 4. Many BI datasets are tiny, while few are quite large.

Thus, a benchmark simulating the workload of a BI server should
consist of a large number of queries on small datasets and some on
larger datasets. Current analytic benchmarks instead work on a
single, large dataset, which does not reflect the reality of BI systems.
To get more insights of why most BI datasets are rather small, we
looked at those small tables in more detail and found the following
reasons: In most cases, these small tables contain pre-aggregated
data. However, most of the time that data was not actively pre-
aggregated by the user. Instead, the raw data is just not available at
all. E.g., the population count of a country is only available as a
pre-aggregated number. The underlying list of individual citizens is
not existent or at least not publicly accessible.

If they do not contain some form of pre-aggregated measure,
those small tables usually serve as dimension tables similar to the
region table from TPC-H. They are used, e.g., to map ISO country
codes to their respective full country names, airport codes to full
airport names and currencies to their corresponding exchange rates.

4 QUERYWORKLOAD
As we mentioned earlier many datasets are rather small. Similarly,
most queries are also fairly small and only 0.5% of the queries consist
of more than 5KB of query text. There are, however, huge outliers of
up to multiple megabytes of SQL text. Table 1 shows the five largest
queries we observed in our test runs. Outside of our test set, we
encountered even larger queries with up to 27MB query text.

The numbers also show that the queries are not huge just due to
some large inlined string constants or comments but are actually
complex: The largest query contains more than 280 thousand nodes
in our internal representation of the expression tree – even after
applying logical optimizations such as constant folding and partial
evaluation. In other words:

Insight 5. Benchmarks should also scale query complexity, not
only data size.

This is in contrast to most benchmarks: Benchmarks only scale
data sizes but the queries are rather small. The largest queries from
TPC-H only consist of approximately 1.4 KB of query text and do
not cover the long tail of huge queries we observed.

The sheer query size puts stress on parts of the database system
which are not covered by common benchmarks: The network layer
needs to be optimized to receive the query text. The SQL parser
has to process megabytes instead of kilobytes of query text. The
logical optimizer has to deal with expressions containing hundred
thousands of nodes, such that each additional traversal over the tree
should be considered carefully. For compiling databases, during code

DBTest’18, June 15, 2018, Houston, TX, USA A. Vogelsgesang, M. Haubenschild et al.

0K 50K 100K 150K 200K 250K 300K

157,128 56,640

0K 5K 10K 15K 20K 25K 30K

Number of scalar expressions

15,758

18,119

12,223

4,752

3,168

2,6343,840

2,585

3,961

4,746

4,745

4,381

3,616

3,616

1

2

3

4

5

6

7

8

9

10

NULL handling
Comparison
Case
CAST
String handling

Date manipulation

Arithmetics

Boolean

Figure 3: The 10 queries with most expressions, grouped by
expression type

generation the goal is no longer only to produce high-performance
code to reduce query execution time. Instead, it becomes equally
important to optimize query compilation time. For example, if LLVM
is used to generate machine code, some parts of it do not scale
linearly with the code size [9].

While those queries are still the exception, those large and often
slow queries are the ones that impair user experience the most.
Taking multiple days to compile a query which is then evaluated on
a few thousand tuples is just not acceptable.

4.1 Scalar Expressions
As shown in Table 1, the largest 5 queries contain a lot of expressions
but only a small number of relational operators. Most of them even
only contain a TableScan and a GroupBy operator, the largest
one contains an additional Map operator. None of them contain a
Join. Hence, join reordering, the focus of most research on query
optimization, will not help at all to handle those queries. The actual
complexity is contained in the expressions. Hence, we claim:

Insight 6. Optimization and evaluation of complex scalar expres-
sions should be covered by BI benchmarks.

The largest query belongs to a dataset of only 41k tuples, but
the data itself consists of string columns representing integers on
which heavy calculations are done. Thus all the 79k references to
columns in the base table are parsed as an integer first. In addition,
the query contains 7.3k CASE expressions. If all of those would be
evaluated per tuple, the query takes multiple days in Hyper just to
compile. By employing common subexpression elimination and
other techniques, we were able to reduce compilation and execution
time to seconds. It now takes longer for the client application to
generate the SQL query than for the DBMS to answer it.

By adopting techniques known from compilers such as common
subexpression elimination, the removal of unreachable branches of
CASE statements and combining subsequent equivalent branches,
we were able to simplify most queries. Furthermore, optimizing
expressions allows us to trigger traditional query optimization
techniques in more cases. One example here is that we can cull a
join only after removing all unreachable branches which reference
columns from the joined table.

From Fig. 3 we can see the different purposes for which expres-
sions are used. It shows the ten queries with most expressions
representing the expression type by color. As before, the numbers
shown are measured after optimizing the query which includes
constant folding. Expressions were grouped together based on their
purpose into the following groups: Arithmetics such as addition,
multiplication, square roots and logarithms; String handling which
includes both string manipulation, string parsing and regular expres-
sions; Type Casts; CASE expressions; Comparisons, also including IN
clauses with a constant list of values; expressions for NULL handling
such as NULLIF, COALESCE and IS NULL; Date manipulation such as
extracting years or months of timestamps; and Boolean expressions
such as AND,OR and NOT

As expected, arithmetics and string handling are the two most
prevalent expression types. Given the small number of date/datetime
values in the underlying data (see Fig. 1), the large number of
operations on date values is unexpected. It stems from the fact that
dates are stored as strings and only parsed as part of the query.

The high number of CASTs is not because users type those casts
into their calculations. In most cases, they are inserted automatically
during query generation. This is done to avoid overflow errors
in computations. For example, the day extracted from a date has
datatype INT. Tableau always wraps this in a cast to BIGINT, so
that users can apply computations on that result without having to
worry about overflows. In this way, complex expressions are used to
bridge the gap between SQL semantics and end user expectations.

The high number of expressions related to NULL handling are also
due to discrepancies between SQL semantics and user expectations:
One such instance is the division operator. In most database systems,
a division by zero raises an exception and aborts query execution.
For data exploration this behavior is not helpful: You do not want
a complete query to fail just because division for a single tuple
failed. Instead, the user wants to see at least the result tuples for
which no such error occurred. To achieve this, NULLIF is used to
ensure that each division by zero returns NULL instead of raising an
error. In general, Tableau tries to return NULL in all error cases for
expressions and injects custom error handling into the queries to
achieve this behavior. Since NULL is the common error value, users
use IS NULL and COALESCE in order to handle such errors.

Furthermore, BI systems try to provide consistent semantics across
database systems: One such example is the SPLIT function which
allows users to split a string and select the n-th group. Postgres offers
this functionality under the name SPLIT_PART. However, Postgres
throws an exception for negative n while there are other systems
that return the n-th last group in this case. To achieve the desired
semantics, the expression REVERSE(SPLIT_PART(REVERSE(input),
REVERSE(delimiter), n*-1)) is used. Of course, the performance
of such an expression is suboptimal.

All those examples for expensive expressions are due to the same
root cause: BI applications want semantics different from the SQL
standard.

4.2 Relational Operators
Table 2 gives a rough impression of the relational operators that
appear in the workload. As expected, the vast majority of queries
contains at least one Table Scan. Most queries are requesting
aggregated results and hence contain a Group By. At the same time,

Get Real: How Benchmarks Fail to Represent the Real World DBTest’18, June 15, 2018, Houston, TX, USA

Operator Percentage
of queries

Max operators
in single query

Table Scan 97.8% 273
Group By 80.7% 253
Sort 17.7% 254
Inner-Join 4.5% 164
Temp. Table Creation 2.2% -
Outer-Join 1% 247
Percentiles 0.5% 132
Group-Join 0.3% 36

Table 2: Frequency of individual relational operators illus-
trated by 1) the percentage of queries containing at least one
such operator 2) themaximumnumber of times an operator
occurred in a single query

a large percentage of queries contains at least one Sort operator.
Note that those Sort operators are not only used in order to sort
the result set. They are also frequently used in combination with a
LIMIT clause to implement a Top-N selection.

Joins are a bit less common in our workload than one would
expect. This is due to the fact that most datasets on Tableau Public
are single-table datasets. At the same time, it is an interesting
observation that, although most queries target a single table, they
still contain a significant number of joins. Those joins are typically
self joins, although not in their most naive form: They join a base
table with an aggregated version of that same base table. Thereby,
this combination of a Group By with a Join adds additional columns
containing aggregated measures but without reducing the number of
tuples. The same result could be achieved using window functions of
the form SUM(col1) OVER (PARTITION BY col2,col3 UNBOUNDED
PRECEDING UNBOUNDED FOLLOWING).

This is also the reason why our workload does not contain
any window functions: For lack of comprehensive support among
different data sources, Tableau uses the combination of the commonly
available GroupBy and Join operator to emulate most use cases for
window functions. For the rest, e.g. running sums, Tableau computes
the window functions on the client side. Hence, the numbers we
obtained do not contradict statistics obtained in previous work [8]
which identified 4% of the queries to contain window functions. In
our statistics, those 4% just show up as joins instead of window
functions. This leads us to

Insight 7. Benchmarks should cover advanced SQL functionality,
in particular window functions.

Another example of advanced SQL functionality are “Percentiles”.
Percentile operators represent a special type of aggregate function
which calculate percentiles, i.e., an aggregate which in contrast
to COUNT, SUM, MIN and all other basic aggregates requires
materializing and sorting the complete input.While database systems
might implement this functionality as part of the normal Group
By operator, calculating this result involves effort similar to a Sort
operator. Hence, we decided to account for it separately.

Group-Joins are a special operator which fuses a Group By and
a Join operator together[11]. The combined Group-Join operator
achieves better performance by sharing the hash table between
Group By and Join. Again, the small number of Group-Joins is
caused by the small number of joins to begin with.

0 100 200 300 400 500 600 700 800 900 1000

Number of relational operators

252

232

164

122

132

127

126

254237

253

233

123

273

253

233

123

3672

80

66

81

67

81

67

Group Join
Outer Join
Inner Join
Percentiles
Sort
Group By
Table Scan

1

2

3

4

5

6

7

8

9

10

Figure 4: The 10 queries with the most relational operators.
Color indicates operator type

Although the data we collected represents a read-only OLAP
benchmark, still 2% of the queries are used to create and populate
temporary tables. These tables serve two purposes: First, they are
part of a technique to avoid gigantic IN clauses in the query text.
Since IN clauses represent an invisible join [2] anyway, and to allow
reuse across multiple queries, Tableau expresses them by populating
a temporary table first with the qualifying values and then joining
on them in subsequent queries. Second, temporary tables are used
to represent ad-hoc lookup tables. Remapping a set of values to
new values can be expressed in SQL using a CASE expression. To
avoid overly large CASE expressions, a join with a temporary table
is used instead of an otherwise huge CASE expression. Due to this a
conceptually read-only workload still issues write statements. In case
a database system does not support the creation of temporary tables,
query generation falls back to issuing large IN or CASE expressions.
Hence, it is crucial for performance to support creation of temporary
tables, although the workload is actually a read-only workload.

The second column in Table 2 illustrates that some queries contain
a much larger number of operators than covered by any benchmark.
While other database practitioners already observed a similar order
of magnitude of operators per query [4], we see a large number of
operators not only for joins and table scans, but also for Group
By, Sort and Percentile operators. Furthermore, Fig. 4 reveals that
those different types of operators do not occur independently of
each other. Rather the opposite is true: The query with the most
operators contains a lot of table scans, aggregations, sort operators
and joins, all at the same time. For benchmarks this means that

Insight 8. Benchmarks should scale to a much larger number of
relational operators.

While such large numbers of operators are rather the exception
than the rule, those large queries are most demanding for the
optimizer and the execution engine.

4.3 Incomplete/Underspecified Queries
Another interesting observation is that some queries are incomplete
or underspecified. As the users are exploring their data and refining
their queries, the intermediate queries tend to be incomplete: Crucial
parts of join conditions might still be missing, turning joins into
de-facto cross products; WHERE clauses might not contain all filter
conditions yet, leading to much larger scans than intended; ORDER BY
clauses are still missing expressions, triggering undefined behavior
due to ties in the sort order.

DBTest’18, June 15, 2018, Houston, TX, USA A. Vogelsgesang, M. Haubenschild et al.

Insight 9. Benchmarks simulating interactive data exploration
should also include underspecified queries to test system robustness.

Although we collected statistics for static, finished workbooks
only, we came across a few instances of such incomplete queries. In
one workbook, for example, a table with multiple million rows is
joined with itself on a column containing only 7 distinct values.
This obviously leads to a de-facto cross product.

One example of such a bogus query would be the interactive
exploration of the TPC-H dataset: While the user is still editing
the join conditions, a query is already issued in order to display an
intermediate results. This query joins the lineitem table with the
partsupp table only on the suppkey but not on the partkey column.
It would be desirable if such an incomplete and probably meaningless
query would still complete. At least, in combination with a LIMIT,
the query should be fast so the user can see which mistake he made.
The bare minimum expectation for such incomplete or bogus queries
is that they do not impede other concurrent queries and that they
can be cancelled quickly as soon as the user realizes that he posed
an incorrect query and refined his join condition.

However, underspecified queries are not only issued due to
interactive exploration. Sometimes, a query does not need to be
well-defined: To get a quick overview of the data contained in a
table, displaying a few thousand records from that table is usually a
good start. In order to retrieve those records, Tableau uses a LIMIT
clause without a corresponding ORDER BY clause. Strictly speaking,
this kind of query is non-deterministic. Nevertheless it is sufficient
for the purpose of previewing a dataset.

5 RELATEDWORK
While considerable work has been done in developing challenging
benchmarks, none of them stress the dimensions we found in our
data, e.g., string dominant processing, a long tail of expression
complexity and large queries.

The most relevant related work is probably the evaluation of
SQLShare [8], a database-as-a-service project intended to be used
by scientists. They found many of the same characteristics we
observe, including many small datasets with few tables, high skew
in query complexity, data cleansing & transformation directly in
SQL, and calculation-heavy queries. The main difference is that
their queries are handwritten, which manifests itself in the size of
the workload (25k vs. 1M queries), and the absence of metaqueries.

In contrast to this, Martin Boissier et al. [1] analyzed machine-
generated real-world queries, just like we do in this paper. However,
they investigate machine-generated workloads from a different
perspective. As they report different metrics, the results can not be
directly compared.

TPC-H is perhaps the most widespread and well-understood
benchmark for decision support systems. It consists of complex
analytical queries with focus on efficient join processing. This
is in contrast to our analysis of BI workloads, which shows that
calculation heavy aggregation on a single denormalized table often
dominates query performance. Boncz et al. [2] did a thorough
investigation of TPC-H, in which they identify the tested features of
the DBMS, or in other words, the features a DBMS must optimize
for in order to reach competitive results. Some of their findings,
in particular choke point 3.2, are very specific to TPC-H. The

importance of others, such as common subexpression elimination
(4.2a), we observe in our dataset as well, even to a much larger
extent than they are stressed in TPC-H. We can also confirm the
relevance of choke point 4.2c (large IN clauses) and 4.3 (string
matching performance), as IN clauses appear in our dataset in 46k
queries (up to 81 instances in a single query), and 10.8k queries do
string manipulation.

The more recent TPC-DS improves upon TPC-H by adding a
more diverse workload with complex queries. However, it still does
not adequately represent the amount of skew we found in our data
regarding query size and complexity. Also, it does not put enough
pressure on string processing. Each table in TPC-DS has a surrogate
(integer) key which is used for join processing, while most of the
joins we observed are on collation aware string values. We note
that all queries that appear in TPC benchmarks depict crafted SQL
written by a skilled database administrator. They vastly differ from
machine generated queries, which in general are more verbose and
can contain unnecessary and duplicated expressions (see Sec. 4.3).

While TPC-H and TPC-DS are probably the most widespread ana-
lytical benchmarks, there are more specialized benchmarks focusing
on specific aspects like hybrid transactional/analytical processing
(HTAP) [3], join order optimization [10], graph analytics [7], or
various OLTP workloads [5].

6 CONCLUSION
In this paper we presented the analysis of a large body of real-
world BI workloads and extracted 9 core insights from analyzing
these workloads. As modern BI tools can connect to most DBMSs
on the market, our findings are not confined to Hyper, but are
immediately applicable to all major database systems. They depict
the actual challenges that database systems face these days when
being connected to a BI tool.

We showed the discrepancy between current benchmarking
practice and the real world workloads emanating from BI systems.
As these database frontends gain more and more importance, we
hope that future benchmark designers and, in particular, system
builders get an impetus for enabling better database support for
such system-generated workloads.

REFERENCES
[1] Martin Boissier, Carsten A. Meyer, Timo Djürken, et al. 2016. Analyzing Data

Relevance and Access Patterns of Live Production Database Systems. In CIKM.
[2] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:

Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC.
[3] Richard L. Cole, Florian Funke, Leo Giakoumakis, et al. 2011. The mixed workload

CH-benCHmark. In DBTest.
[4] Nicolas Dieu, Adrian Dragusanu, Françoise Fabret, et al. 2009. 1,000 Tables Inside

the From. PVLDB (2009).
[5] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, et al. 2013. OLTP-Bench: An

Extensible Testbed for Benchmarking Relational Databases. PVLDB 7, 4 (2013).
[6] Karl Huppler. 2009. The art of building a good benchmark. In TPCTC.
[7] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, et al. 2016. LDBC Graphalytics:

A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms.
PVLDB (2016).

[8] Shrainik Jain, Dominik Moritz, Daniel Halperin, et al. 2016. SQLShare: Results
from a Multi-Year SQL-as-a-Service Experiment. In SIGMOD.

[9] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In ICDE.

[10] Viktor Leis, Andrey Gubichev, Atanas Mirchev, et al. 2015. How Good Are Query
Optimizers, Really? PVLDB 9, 3 (2015).

[11] Guido Moerkotte and Thomas Neumann. 2011. Accelerating Queries with
Group-By and Join by Groupjoin. PVLDB 4, 11 (2011).

	Abstract
	1 Introduction
	2 Methodology
	3 Datasets
	3.1 Strings are Everywhere
	3.2 Collation and Unicode Support
	3.3 Dataset Size

	4 Query Workload
	4.1 Scalar Expressions
	4.2 Relational Operators
	4.3 Incomplete/Underspecified Queries

	5 Related Work
	6 Conclusion
	References

