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Abstract
Large main memory capacity and even larger data sets have moti-
vated hybrid storage systems, which serve most transactions from
memory, but can seamlessly transition to flash storage. In such sys-
tems, the data structure of choice is usually a B-Tree with pageable
nodes. Most academic B-Tree work considers only fixed size records,
making them unsuitable for most practical applications. Given the
prevalence of B-Trees, surprisingly few available implementations
and benchmarks of optimized B-Trees cover variable-sized records.
In this paper, we describe an efficient B-Tree implementation sup-
porting variable-sized records containing six known node layout
optimizations. We evaluate each optimization to guide future imple-
mentations, and propose an optimized adaptive layout that can even
compete with pure in-memory structures for many workloads. Our
results show that well-engineered B-Trees can efficiently handle
both in-memory and out-of-memory workloads.
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1 Introduction
Out-Of-Memory vs. In-Memory Indexing. Index structures are
crucial for database performance, and for many decades, the B-Tree
has dominated indexing [18]. The falling cost of main memory
has caused the focus of research to temporarily shift from disk-
optimized B-Trees to purely in-memory data structures such as
ART [37], HOT [14], and Wormhole [55]. Now, with cheap and
fast flash storage, stagnating main memory prices [29], and ever-
growing data sets, out-of-memory index structures are becoming
relevant again. A new generation of database systems [20, 21, 32, 35,
42, 50] aims to provide performance competitive with in-memory
systems, while seamlessly transitioning to flash storage for larger
working sets. Data structures developed purely for in-memory are
unsuitable for this, as they do not support efficient paging.
Homecourt Advantage. Another reason to favor B-Trees over
more recent in-memory structures is their long history of use in
database systems. Many features desirable for database systems
such as phantom protection and recoverability have well known so-
lution for B-Trees as a result. Guidance on how to integrate B-Trees
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Figure 1: Lookup throughput of B-Tree vs. Wormhole.

into database systems is widely available, for instance in Graefe’s
“Modern B-Tree techniques” [25] and its recent update [26].
Narrow Focus on Fixed-Sized Records. Given the prevalence
and long history of B-Trees in databases, one might assume that
detailed guidance for an efficient B-Tree implementation is readily
available. However, this is not the case. A lot of research focuses
on simple B-Trees where values are stored in an array in each
node [16, 47, 53, 56]. These only work for keys with a fixed size,
notably excluding strings. String keys are very common in database
workloads [41, 51, 52]. A study of real world use of OLAP systems
found around half of all values to be strings [52], many of which
are used not merely as payload, but as a key. Given that indexes
often span multiple key columns, many will contain at least one
string column, making fixed-sized structures inapplicable.
Missing Focus on Basics. Surprisingly, there is also a general lack
of research on the in-memory performance of B-Trees. Most modern
research instead focuses either on special compute hardware or on
optimizing I/O. The first group contains B-Trees utilizing persistent
memory [17, 45, 58] and GPUs [10, 59]. The second group [29, 31,
48] is mostly spurred by the transition from disk to flash. However,
the simplest case, in-memory performance of B-Trees on commodity
hardware, remains neglected. One might also look for guidance
in textbooks. However, these do not commonly contain a detailed
performance evaluation, instead focusing on qualitative trade-offs.
We provide both general advice and detailed information on the
performance of specific techniques under specific conditions.
Optimizing In-Memory B-Trees.While the widespread use of
B-Trees is motivated by their out-of-memory functionality, our
evaluation focuses on in-memory performance for three reasons:
First, with significant amounts of available memory and effective
caching, many transactions can be served purely from memory.
Second, modern flash offers tremendous I/O throughput (e.g., 12M
IOPS on a single server [30]), making index performance a poten-
tial bottleneck even for out-of-memory workloads. Third, just like
storage has changed, so have processors. The performance char-
acteristics of today’s processors are vastly different from the time
when B-Trees last received major research focus [25, 39].
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Evaluated Optimizations. The algorithmic logic of a B-Tree can
conceptually be split into inter-node operations on the tree struc-
ture (split, merge, traversal) and intra-node operations that concern
only a single page (insert, delete, lookup). This insight allows de-
coupling the former from the latter. In this work, we focus on the
intra-node part, which is more affected by recent processor de-
velopments. Our optimizations could be combined with tree-level
optimizations such as alternative node merging strategies [9, 23].
Specifically, we optimize the representation of nodes in memory,
as modern processors are often limited by memory access perfor-
mance. We evaluate six optimizations: prefix truncation, heads,
hints, fingerprinting, semi dense leaves and fully dense leaves. The
first two are common and have been used for decades, the next two
were proposed more recently. To the best of our knowledge, dense
leaves have never been discussed in the literature, though similar
approaches may be used in real world systems.
Closing the Gap. Based on our implementation of the above op-
timizations and a novel adaption strategy, we show that B-Trees
are competitive with in-memory structures. As Figure 1 shows, a
traditional B-Tree achieves less than half the lookup performance
of the state-of-the-art in-memory Wormhole [55] data structure.
Using the techniques described in this paper, we cut this gap in
half, in the case of dense integer keys even surpass the state-of-the-
art in-memory Wormhole data structure. This is achieved while
keeping a fixed node size (4 KiB by default) and thus enabling fast
and transparent caching using high-performance buffer managers
based on pointer swizzling [28, 35, 42] or virtual memory [34].
Outline and Contributions. We start by defining the baseline
B-Tree in Section 2 and discuss six optimizations in Section 3. We
make the following contributions:
1) In Section 4, we perform an extensive evaluation to determine

the impact of each of the six optimizations.
2) Based on our results, in Section 5, we present an adaptive B-Tree

that selects the best node layout at runtime.
3) We benchmark several state-of-the-art in-memory indexes with

respect to throughput and memory footprint and compare them
with our B-Tree in Section 6.

4) In Section 7, we integrate our adaptive B-Tree into the multi-
threaded storage engine vmcache [34] to show that the pro-
posed data structure optimizations improve overall system per-
formance in multi-threaded and out-of-memory scenarios.

Finally, we give a brief overview of related work in Section 8 and
conclude in Section 9.

2 Background: Basic B-Tree
B-Tree. A B+-Tree is a comparison-based search tree where each
path from the root node to a leaf node has equal length. In contrast
to the original B-Tree [11], records are only stored in leaves. The
inner nodes serve to guide the search to the correct leaf. For brevity,
we will use the term B-Tree to refer to B+-Trees. Each node covers
a specific range of the key space, with the root covering the full key
range. For each inner node, its children partition its own range. The
bounds of a node’s range are known as its fence keys or fences [25].
Logical Node Structure. Each nodemaintains a sorted sequence of
key-value-pairs. For leaves, these are the records stored in the leaf.
For inner nodes, the values are pointers to the children. The key of
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Figure 2: Node with slotted page layout (right), its header
(left), and a slot (top right). Each header line is 4 bytes.

each value is the upper fence of its associated child, or equivalently
the lower fence of the next child. Logically, the keys lie between the
children, so there is one more child than there are keys per node.
B-Trees using Templates. Many open-source B-Tree implemen-
tations use language features like templates or generics to support
arbitrary fixed-size key types with some ordering relation. This
includes the popular C++ library TLX [13], the Rust standard li-
brary [6], and public B-Tree implementations by Google for Go [2]
and C++ [5]. However, many use cases require support for variable-
sized keys such as strings. A generic B-Tree will usually resort to
indirection to store these: The data is allocated on the program
heap and a pointer stored in the tree. This hurts cache locality and
promotes memory fragmentation.
Variable-Sized Records. To avoid these issues, many database
systems store variable-sized records directly inside the tree. Instead
of template type parameters, both keys and values are variable-
length byte sequences. Many other key types can be converted to
byte sequences while preserving ordering, a technique known as
key normalization [25]. As records have variable size, there is no
strict bound on the number of keys in each node.
Physical Node Structure. To store the variable-sized records, a
slotted page layout as in Figure 2 is common. Each node consists
of three parts, the header, the slots, and the heap. At the start of
the node is its header, containing the metadata fields shown on the
left-hand side of Figure 2. It begins with a 1 byte tag indicating
the type of the node. This could be an inner node or leaf node, or
it could be one of the alternative layouts discussed in Section 3.
The field upperChild is used by inner nodes to store a pointer to
the maximum child node. Likewise, prefixLength is used only if
prefix truncation (Section 3.1) is enabled. The heap acts as a bump
allocator for the variable-sized entries and fences. Between the
header and the heap lies a variable-sized array of slots, whose size
is stored in the count field. The slot array and heap grow toward
each other in opposite directions. Each slot refers to an entry on
the heap and stores its offset, key-length, and value-length as 16-bit
integers. The slot array is sorted by key for efficient searching.
B-Tree operations.We consider the following operations:

• insert(key_ptr, key_len, val_ptr, val_len)
• lookup(key_ptr, key_len) -> (val_ptr, val_len)
• remove(key_ptr, key_len)
• scan(key_ptr, key_len, callback)
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The scan invokes the callback for records that are greater than or
equal to the given key, in order, until the callback returns false.
Insert. To insert a record into the tree, first the appropriate leaf
is located. Then, a new record is placed at the end of the unused
region between slots and heap and a slot referencing it is inserted.
If there is not enough space, the node is split and the insert retried.
To split a leaf, a separator key is computed that divides the leaf near
its median. This separator becomes a fence of both nodes resulting
from the split. Then, the records are distributed to the two leaves
and the separator along with a pointer to the newly allocated node
is inserted into the parent. This may in turn cause the parent to
split, cascading up the tree. Unlike leaves, splitting an inner node
does not create a new separator. Instead, one of the keys in the
node is not moved to either node resulting from the split, but to
the parent. If the root node needs to be split, a new root is created
with the old root as its only child before performing a normal split.
Separator Selection. When splitting a leaf, a separator must be
chosen to divide the node. It is common practice to attempt to mini-
mize the length of separator keys [12, 25]. Little motivation for this
is provided in literature and given that these separators will later
be used for prefix truncation (Section 3.1), a case could be made for
instead trying to maximize common prefixes of adjacent separators.
We will nevertheless follow this common practice. To this end, we
consider a range of count

16 keys centered around the median. The
longest common prefix length of this range is determined. Then,
the first byte past the common prefix is inspected for each key in
the range. The first key to differ from the lowest key in this byte is
used to form the separator. Any bytes past the differing byte are
truncated to minimize length.
Remove. To remove a record, its slot is removed from the slot array.
The data on the heap remains, though it is no longer referenced. The
heap is compacted lazily during insertion. During compaction, all
records are packed at the end of the heap and unreferenced records
are discarded. The total size of live objects on the heap is tracked
by the heapUsed field for this purpose. If two adjacent nodes have
at least 3

4 of their space unused after a remove, we merge them.
Remove operations are similar to insert operations: Both need to
locate a record and then shift half of all slots on average. They differ
in that removes do not write to the heap, cannot cause compaction,
and cause merges instead of splits. As remove operations perform
very similarly to inserts and are comparatively rare in common
workloads, we focus on lookups, inserts, and scans.
Multithreading and Out-Of-Memory. We use an unsynchro-
nized in-memory implementation for most of our measurements.
However, support for multithreading and larger than memory data
sets is often needed in practice. For B-Trees both are achievable

with relatively small overhead and implementation complexity.
Optimistic lock coupling can be used to synchronize B-Trees effi-
ciently [9, 36]. All our optimizations work on the node level and
are orthogonal to this style of synchronization, which works on
the tree level. B-Trees are naturally amenable to paging by using
page-sized nodes and storing all values inline. In Section 7, we
port our implementation to vmcache [34] to add support for both
multi-threading and out-of-memory workloads and analyze overall
system performance.

3 Optimizations
We present seven optimizations for the baseline B-Tree presented
in Section 2. The optimizations are prefix truncation, heads, hints,
fingerprinting, semi dense leaves and fully dense leaves. The first two
are common and have been used for decades, the next two were
proposed more recently. To the best of our knowledge, dense leaves
have never been discussed in an academic publication, though
similar approaches are likely used in some real world systems.

3.1 Prefix Truncation
Prefix truncation is a method of key compression almost as old
as B-Trees themselves [12]. It builds on the observation that all
keys within a node share the common prefix of its fences. Keys
are stored with this prefix omitted, and search keys skip the prefix
during comparisons. Figure 3 shows an example set of keys. The
common prefix of fences "https://" is truncated. Even though
all keys have an "a" following the prefix, it is not truncated, as
the upper fence does not share it. The advantage is that local node
operations never affect the prefix, which is determined during splits
andmerges.We store fences untruncated to simplify split andmerge
operations.
Effects. A major benefit of prefix truncation is saving space. This
reduces storage cost, and better utilizes caches. Computing the
length of the common fence prefix is comparatively cheap and only
occurs when nodes are created during splits and merges. The main
cost is the increased implementation complexity of transferring
keys between nodes, where it may be necessary to truncate or
restore prefixes. At runtime this has negligible cost, as splits and
merges are infrequent. During a workload of 100% inserts in random
order, node splitting accounts for approximately 9% of CPU cycles.

3.2 Heads
During binary search within a node, often only the first few bytes
of a key are compared. As the keys on the heap are stored in no
particular order, each comparison entails a random memory ac-
cess. By keeping a copy of the first 4 bytes of each key in its slot,
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cache locality is improved. The idea of storing a fixed size prefix
for improved cache locality is described by Graefe as “poor man’s
normalized keys” [27], who attributes it to an even earlier use in
the context of sorting [43]. We refer to this copy as the key’s head.
Heads are compared as integers in a single instruction instead of
using memcmp. It is possible to omit this head from the key stored on
the heap. However, doing so complicates the implementation sig-
nificantly and slightly decreases throughput. We therefore choose
to keep heads as copies at a slight expense to space use.
Slot Alignment. In addition to the heads, the slots contain three 16-
bit integers to encode offset and key and value lengths. The resulting
10 byte size forces us to choose between adding 2 additional bytes of
padding or storing the heads unaligned. The change in throughput
between the two alternatives is less than 3% either way and depends
on the specifics of the workload. We use a packed representation
with unaligned access for its better space efficiency as we found
the performance impact of unaligned accesses to be negligible.

3.3 Hints
Figure 4 shows the heads optimization along with the next optimiza-
tion, the hint array. Heads from evenly-spaced slots are copied into a
fixed-size array in the node header. The hint at position 𝑖 in the hint
array is taken from slot ⌊ slotCount

hintCount + 1 ⌋ ∗ (𝑖 + 1). This divides the
slot array into 𝑁 +1 partitions using 𝑁 hints. A linear search on the
hints is used to narrow down the starting range of the subsequent
binary search on the heads. This way, the number of cache misses
can be reduced substantially. In line with LeanStore [8], where this
technique was first proposed, we use a hint array spanning 16 hints,
or 64 bytes. After modifications, the hint array needs to be updated.
We update only the entries at or after the insertion point when
possible. If the spacing of sampled entries ⌊ slotCount

hintCount + 1 ⌋ changes,
the entire array is recreated.

3.4 Fingerprinting
FPTree [45] uses one byte hashes of keys (fingerprints) to efficiently
locate candidate positions for records in unsorted leaves. It targets
persistent memory, where keeping records ordered is expensive.
We present an alternative leaf layout based on this idea. Figure 5
shows an example node. An array of fingerprints is stored on the
node’s heap. To perform a point lookup, we compute the key’s hash
and search the fingerprint array linearly using SIMD comparisons.
Sorting. As range scans must return entries in order, the node is
sorted lazily before each scan. This introduces the possibility of scan
operations modifying nodes, which may complicate concurrent
implementations. To avoid unnecessary sorting, we partition the
array of entries into a sorted and an unsorted range. Insertions
append to the unsorted range and thus avoid shifting entries. Before
each scan, the entries of the unsorted range (if any) are sorted
and merged into the sorted range. When sorting, we should apply
the same permutation to the fingerprint array, as we do to the
slot array. However, sorting routines that operate on entries split
across multiple memory locations are not widely available. We use
std::sort on the slot array without rearranging the fingerprints
and recompute the fingerprint array from scratch. In addition to
scans, sorting can also be triggered by node splits. While these

technically only need partitioning, sorting takes up only a small
fraction of total run time.
Prefix Truncation andHashing. The truncated prefix is excluded
from hashing, which reduces the amount of data that needs to be
hashed, but requires recomputing fingerprints when the prefix
length changes, e.g., during splits.

3.5 Dense Leaves
The idea behind dense leaves is to implement the node as plain array
of values if possible. While the keys of the B-Tree are arbitrary-byte
sequences, they are often produced from applying key normaliza-
tion to a tuple of column values. If the last column of the tuple holds
dense integers, e.g., when it is an ID column, frame-of-reference
encoding can be used to represent keys as offsets from some refer-
ence key. We then use these offsets to index an array and locate the
matching record without any key comparisons. This approach is re-
stricted to key sets that are sufficiently dense, as space is otherwise
wasted on arrays with most slots left empty. Therefore, one needs to
use a second type of leaf that can handle the general case of sparse
keys. One ends up with a B-Tree where only the leaves holding
dense keys use the more specialized dense layout, while the others
use the fallback. While frame-of-reference encoding in B-Trees has
been previously discussed in academic publications [15, 24], we
could not find any that combine it with such an array representa-
tion.
Numeric Part Extraction. As we do not handle tuple keys, but
normalized keys, we cannot apply frame-of-reference encoding
directly to the last component. Instead, we treat the whole key as a
large integer. This works because normalized keys are created by
concatenating the normalized representations of each individual
field. For efficient implementation, we impose further restrictions
on the set of keys: All keys within the node must have equal length
and differ only in their four least significant bytes. This allows us
to determine offsets based only on the last four bytes, which can
be loaded directly as a big endian integer. Keys shorter than four
bytes are treated as if they contained additional zero bytes at the
start. In principle, more tail bytes could be considered. However,
this complicates the logic for handling shorter keys for little gain.
We refer to the four least significant bytes of a key as the numeric
part of the key. The remainder is said to be the non-numeric part.
We emphasize that keys in different dense leaves may still have
different sizes and the B-Tree as a whole does not become limited
to a fixed key size. A practical example of this are keys formed by
concatenating a string and an integer column. In this case, if there
are sufficiently many integer values for a given string, then there

header header 100101000
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fencesvalue06
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Figure 6: Semi dense leaf (left) and fully dense leaf (right)
with 3 records each.
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must exist a leaf where all keys differ only in the integer part and
therefore have equal length.
Offset Computation. We map the numeric parts to offsets by
subtracting the numeric part of the reference key. Before locating
a key in this way, we must verify its non-numeric part matches
using the lower fence. The reference key of a node is the minimum
possible same-length key greater than the lower fence. We store its
numeric part in the node header.
Variants.We propose two implementations of this concept: semi
dense leaves and fully dense leaves. Both variants require that
the lower fence key contains the entirety of the non-numeric part
and that all keys have equal length and share the non-numeric
part. Either variant has additional conditions. The creation of a
dense node is attempted whenever a comparison-based leaf would
otherwise be split. If all the layout’s preconditions are fulfilled, and
the set of present records fits (the offsets must not be too large),
the node is converted. The resulting node may still have to be split
after conversion to accommodate the newly inserted key.
Semi Dense Leaves (SDLs). This is a type of slotted page layout.
The left-hand side of Figure 6 shows an example. One slot is allo-
cated for each possible offset between the fence keys. Each holds
a single 16-bit integer, pointing to a length-prefixed value on the
node’s heap. Zero is used to represent the absence of a record. To
compute the number of required slots, the SDL needs the upper
fence to share the non-numeric part of the lower fence.
Space Use. Assuming insertion of random keys, we expect SDLs
to appear within the tree as soon as they are more space efficient
than the comparison-based leaves. With an average value size of
8 bytes and a truncated key size of 2 bytes, this occurs when 20%
of possible (equal length) keys are present. At this density, a fully
utilized 4 KiB SDL has around 1000 slots and holds 200 records,
about the same as a full comparison-based leaf would. With 100%
dense keys, around 330 records are possible.
Fully Dense Leaves (FDLs). This layout additionally assumes that
all values have equal size, as might be the case for a secondary index
storing tuple identifiers as values. With this assumption, values can
be stored in an array with no additional indirection. With 8 byte
values and dense keys, around 500 records can be stored per 4 KiB
node. The right-hand side of Figure 6 shows an FDL. A bitmap
directly after the header stores, for each slot, if a record with the
corresponding key is present. Most of the remaining space is used
to store the array of values. Slots in the array for which no record
is present do not hold meaningful data.
Dense Leaf Split. The set of keys that can be stored is uniquely
determined by the lower fence key together with the sizes of keys,
values, and upper fence. As a result, it does not make sense to adjust
the number of slots depending on the range between the fence keys,
like the semi dense layout does. Instead, we create FDLs even when
their capacity is less than the number of keys that lie between
the fence keys. This allows us to efficiently handle the insertion
of sorted keys, where dense leaves will fill up starting from the
lower fence. For instance, a node might be able to fit 400 entries and
have fence keys (’wiki’, 12) and (’wiki’, 3000). The slots in the array
would then correspond to the keys (’wiki’, 13) – (’wiki’, 412). If the
key (’wiki’,500) were inserted into the tree, it would be routed to this
node. As there is no slot available for this key, the node would have
to be split. This split, however, is special in that it does not distribute

any keys to the new node. As each key has its own slot, the presence
of one key has no effect on the ability to store another. Therefore,
splitting at the median to evenly distribute records makes no sense.
Instead, a new empty leaf is created to handle keys past the last
available slot and the upper fence of the dense leaf is adjusted.
Depending on how far past the maximum slot the new key lies, we
create either another dense leaf or a general purpose leaf. To be
able to change the upper fence of a dense leaf without touching the
keys, we allocate enough space at node creation to hold an upper
fence with the same length as the keys of the node. Theoretically,
this strategy can result in a tree with only one record per leaf. This
can be mitigated by converting back to a comparison-based leaf
instead of splitting if too few records are present.
Partition Detection. This pattern handles the insertion of dense
keys in ascending order efficiently. A closely related case is the
insertion of keys from multiple non-overlapping ranges, where
keys within each range are inserted in order. In practice this occurs
when keys are generated from multiple sources and each source
draws sequential IDs from a different range. With the baseline
separator selection strategy of splitting nodes near the median, the
node at the boundary of two such ranges can often not use the dense
layout, as it contains keys from both ranges. Even as the boundary
node is split repeatedly by insertion of keys in the lower range,
some keys from the upper range always remain in the boundary
node. Thus, the good insert performance of FDLs would be lost. We
therefore implement an alternative separator selection algorithm
when using FDLs. Whenever a comparison-based leaf is to be split,
we find the maximum split point such that the lower of the two new
nodes could use the dense layout. If this split point is greater or
equal to the median, we use it. Otherwise, we proceed with normal
separator selection. Repeatedly applying normal separator selection
on the boundary node quickly moves the boundary past the median.
Thus, this scheme reliably separates ID generation ranges.

4 Evaluation
In this section, we evaluate the proposed optimizations by compar-
ing B-Tree configurations with different sets of optimizations en-
abled.We benchmark seven different combinations of optimizations.
Starting from the baseline presented in Section 2, we cumulatively
add prefix truncation, heads, and hints. Three more configurations
are obtained by applying all the above and one of the alternative
leaf layouts: fingerprinting leaves, semi dense leaves (SDLs), or fully
dense leaves (FDLs). We evaluate each optimization by comparing
the pair of configurations that differ only in the inclusion of that
optimization.
Experimental Setup. For each configuration, we run a synthetic
workload with keys from one of four sets and 8 byte values, repre-
senting tuple identifiers. The key sets we use are: URLs averaging
62 bytes length (urls), Wikipedia titles averaging 23 bytes (wiki),
32-bit integers [0, 𝑁 ) (dense), and random 32-bit integers (sparse).
We chose the number of records such that the total data size is
300 MB. In each benchmark, we first insert 90% of the records, then
benchmark insertion on the remaining 10%. Insertion order is ran-
dom. We then run 5 million lookups and scans each on keys chosen
according to a Zipfian distribution (𝑝 ∝ 1

𝑘𝛼
). Following YCSB [19],

we use 𝛼 = 0.99. For each scan, the number of records requested
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Figure 7: Throughput increase of prefix truncation, heads, and hints. Each optimization is applied on top of the previous.

is chosen uniformly from [1,50]. We run each configuration five
times and present median values. We perform our evaluation on
an AMD Ryzen 9 7950X with frequency boost disabled at 4.5Ghz.
The system has 32 KiB of L1, 1 MiB of L2, and 32 MiB of L3-cache
available to each core and runs Linux 6.2.0. In the following, we
dedicate one subsection to each optimization.

4.1 Prefix Truncation
We first compare prefix truncation with the baseline implementa-
tion. The left group of Figure 7 shows the increase in throughput.
For most key sets, the change is minor. For urls, which often share
long common prefixes, there is a larger increase. The effect is great-
est for scan operations. This is expected, as the number of records
per leaf directly influences how many leaves need to be scanned.
For urls, the average number of records per leaf increases from
36 to 96. The increased density reduces the frequency of L1-cache
misses by 35% for scans and 20% for inserts and lookups. We do not
observe a consistent decrease in CPU instructions per operation,
indicating that skipping prefix comparison has at best a minor ef-
fect. In addition to increasing throughput, prefix truncation reduces
space use by 7 – 64%. The following figure shows the reduction for
each key set:

wiki
urls

0% 20% 40% 60%
dense

sparse

0% 20% 40% 60%
Space Savings

As we see, urls is again affected the most. The trend of urls being
most affected aligns well with the intuitive expectation for URLs
to share long common prefixes due to their hierarchical nature. To
confirm this intuition, we conduct another experiment using the
same data sets. We record the average length of the truncated prefix
after insertion of all keys. We find them to be 49 bytes for urls,
7.0 bytes for wiki, 2.3 bytes for dense, and 1.5 bytes for sparse.
This aligns well with our findings on throughput and space use.

4.2 Heads
Next, we evaluate key heads by comparing against the configuration
with only prefix truncation enabled. The center group of Figure 7
shows the increase in throughput.
Point Operations. For lookups and inserts, throughput increases
by 16 – 64%. The cost of maintaining heads during inserts is out-
weighed by improved cache locality. The increase is greatest for the
two integer key sets. These keys fit completely within the heads, so
comparison of the full keys on the heap is almost always avoided.
As a result, we see both CPU-instructions and cache misses per

lookup reduce by around half for integers. The effect for the strings
is smaller, though still generally positive. Heads are more effective
for wiki than for urls, because the truncated wiki keys are more
likely to differ within their first bytes. Out of all pairs of adjacent
keys within leaves, 38% have distinct heads for urls, while 61% do
for wiki. For inner nodes, the difference is even greater (35% vs.
71%). In the root node, the heads are completely useless for urls,
as all keys begin with http.
Scans. For scans, heads provide less of a benefit. Performance
improves by 3 – 12%. This is because locating an entry, which is
where heads help, is only a small part of the scan process. While
iterating through the entries of a leaf, the heads provide no benefit.
In fact, the space overhead of heads reduces the average number of
records per leaf by 12 – 19%, slowing down iteration. This detracts
from the performance gains of improved cache locality.
Space Use.While heads generally help performance, this comes
at the cost of space use. For dense, each record uses an additional
4.5 bytes. For all other key sets, the increase is around 5.7 bytes.
The smaller increase for dense is an artifact of uneven tree growth.
For random insertions, leaf node splits in a B-Tree occur in waves
and consequently the load factor in leaves fluctuates [23]. Without
heads, a wave of node splits occurs near the end for dense, decreas-
ing the space efficiency of the prefix truncation configuration. The
following figure shows the relative space overhead of heads for
each key set:

wiki
urls

0% 10% 20%
dense

sparse

0% 10% 20%
Space Overhead

Insight 1: Heads increase throughput by up to 64% at the
cost of space use. Their efficacy is affected strongly by the
type of key used.

4.3 Hints
The right group of Figure 7 shows the change in throughput ob-
tained by applying the hint array on top of the two previous op-
timizations. Like the heads optimization it is based on, it is most
effective for the integer key sets. Lookup performance for integers
is boosted by 25 – 26%. For strings, the change ranges from -0.6
to +6%. Like for heads, the efficacy of the hint array depends on
how reliably keys can be distinguished by their starting bytes. The
average size of the narrowed search range varies from 7% (dense) to
30% (urls) of entries. Low selectivity and the cost of updating the
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Figure 8: Change in throughput with fingerprinting leaves.

hint array result in reduced insert performance for the string keys.
The number of CPU instructions per insert operation increases by
around 20%. For integers, this cost is outweighed by improved cache
locality. The number of L1 misses per insert is reduced by 30% for
integers but only by 17% and 8% for wiki and urls respectively.
Downsides. In contrast to heads, the space overhead of the hint
array is marginal at 1.5 – 2%. This is consistent with the ratio of hint
array size to page size. Therefore, unless a workload is dominated by
inserts, a hint array should be employed. In-place updates need not
update the hint array and would not incur a performance penalty
for string keys.

4.4 Fan-Out
More space efficient layouts not only reduce the overall number of
nodes in the tree, but also increase the number of children inner
nodes can have, further reducing the height of the tree. Before we
move on to leaf specific optimizations, we consider the effect the
previous optimizations have on fan-out. Average fan-out in the tree
fluctuates substantially as records are inserted, just as the load factor
of leaves does. We therefore conduct another experiment where
we scale the number of records inserted by 16−𝑅 with uniformly
distributed 𝑅 ∈ [0, 1). Prefix truncation roughly doubles average
fan-out for urls, increases it by 10% for wiki and dense and by
only 1% for sparse. Heads decrease fan-out by around 8% for urls
and by 15 – 20% for the remaining data sets. Hints decrease fan-out
by less than 2%.

4.5 Fingerprinting Leaf
We next compare fingerprinting leaves against comparison-based
leaves with heads and hints. Note that both configurations use heads
and hints in inner nodes, i.e., the difference is only in the leaves.
Figure 8 shows the change in throughput from using fingerprinting
leaves. Fingerprinting is beneficial for strings but detrimental for
integers. Both of these facts can be attributed to cache misses. For
strings, the fingerprint array produces far fewer cache misses, as
only entries with matching fingerprint cause a heap access. As a
result, lookup throughput increases by 13 – 22%.
Integer Keys. For integer key lookups, the fingerprinting array
produces more cache misses. As the records are small, many entries
fit in each leaf and the fingerprinting array itself spans many cache
lines. Given the larger number of records, more fingerprint colli-
sions are to be expected. With the comparison-based leaf, the heads
and hints lead to much fewer cache misses than for the strings.
Scans. Scan performance decreases for all key sets due to two rea-
sons: lazy sorting and the lack of heads and hints. To separate these
two effects, we replace the scan benchmark with two variations:

warm scan, where we sort all leaves before the benchmark, and
YCSB-E [19], which consists of 95% scans and 5% inserts. We see
that throughput decreases for both, though to different degrees.
This confirms that both factors contribute to the slowdown. The
decrease due to lack of heads and hints (measured by warm scan),
is larger for integer keys.
Insert. Not having to maintain ordering improves insert perfor-
mance. Appending an entry accesses only the end of the slot array,
while the comparison-based leaves need to bring half of all slots
into cache on average. A leaf with hint array on average holds 84
records with urls and 130 records with dense. With a slot being
10 bytes, 5 bytes per record need to be moved on each insertion
on average. For string keys, the performance advantage of finger-
printing is roughly doubled compared to lookups. For integers, the
performance disadvantage is mostly negated.
Space Use. Although fingerprinting leaves are not universally
faster than comparison-based leaves, the omission of heads makes
them more space efficient. They save about 4 bytes per record. This
amounts to space savings of 9 – 10% for string keys and 15% for
integers.

Insight 2: Fingerprinting leaves allow up to 20% faster lookups
than heads and hints for string keys. For integers they are
around 10% slower, though they save 15% space.

4.6 Dense Leaves
In this section, we evaluate the two dense leaf layouts, again by
comparing against the hints-array configuration. For string keys
and sparse integers, leaf nodes never reach sufficient density to be
converted to a dense layout, so we end up with the same tree as we
would with the hints configuration. The additional checks come at
a slight performance cost, throughput decreases by around 1%. We
only consider dense integers for the remainder of this section.
Key Set Density. In practice, even sequentially generated keys are
often not perfectly dense. This has little effect on the other leaf
types, but is substantial for dense leaves. Therefore, we generalize
our dense key set. We use 𝑁 integers, chosen uniformly from the
range [0, 𝑀) and call 𝑁

𝑀
the density of the key set. We fix 𝑁 at

25 million and vary density from 4% to 100% in 2% increments.
Again, we report medians of five runs. Figure 9 shows the increase
in throughput over hints depending on density. In general, both
variants become more effective as density increases.
Lookup. Both variants increase throughput substantially if density
is sufficiently high. At 100% density, throughput increases by 71%
over hints with FDLs and by 37% with SDLs. SDLs first achieve a
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Figure 9: Throughput increase of dense leaves over hints
depending on key density.
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Figure 10: Space use depending on density.

10% throughput increase at 28% density, while FDLs do so only at
44%. The reason FDLs are effective only at higher density is that
vacant slots are more costly for these, each using the same amount
of space as an occupied slot. FDLs surpass SDLs at 58% density. The
point at which this occurs depends on the size of payloads, with
larger payloads being more favorable to SDLs.
Insert. As with lookups, FDLs achieve a higher maximum through-
put but become effective only at higher density. At 100% density,
throughput increases by 213% with FDLs and by 97% with SDLs.
Scans. For scans, FDLs increase throughput by up to 105%, while
SDLs only do so by at most 16%. At lower densities, SDLs decrease
throughput by up to 9%. This poor performance is caused by fre-
quent branch misses. The maximum of 30 misses per scan is reached
at 42% density. In comparison, hints and FDLs average at most 11
misses per scan at any density. The branch misses are caused by the
record callback being conditionally invoked for each slot, depend-
ing on if it is occupied. Using SIMD, these could likely be reduced
substantially.

Insight 3: Dense leaves work well for dense integer keys
without compromising performance for other keys. If possi-
ble, the fully dense variant should be used.

Space Use. In addition to increased throughput, dense leaves also
reduce space use. Figure 10 shows the space use per record depend-
ing on density. Either kind of dense leaf uses less space than hints
and becomes more efficient as the key set becomes denser. Again,
we see that higher density is more favorable to FDLs. Compared to
hints, space use is reduced by 52% for FDLs and by 40% for SDLs at
100% density.
Partitioned Sequential Insert.We consider a special insertion
pattern modeling 64-bit IDs generated sequentially from multiple
non-overlapping ranges (partitions). Keys are generated by first
choosing uniformly at random from one of 𝑁 partitions. For each
partition, we generate sequential IDs using a separate counter,
beginning at zero. The key is constructed by concatenating the
32-bit partition and counter IDs. We vary the number of partitions
and generate a total of 10 million keys. The keys are inserted in
order of generation, i.e., keys within each partition are inserted in
order, but keys from different partitions are interleaved.
SDLs. SDLs are ineffective in this benchmark. The upper fence of
the maximum leaf of each partition typically lies in the subsequent
partition or is close to it. The node’s range is therefore too large to
create an SDL. As all insertions happen on the last leaf of a partition,
no dense leaf is ever created. FDLs are specifically designed to avoid
this issue by converting nodes even when the dense layout cannot
support the full key range. Moreover, sequential inserts results in
very compact trees, as the split point is chosen such that the left
node is fully utilized. This alternative approach to managing search
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Figure 11: Insert throughput and space use per record de-
pending on the number of records per partition

ranges and splitting is natural for FDLs. As the fill factor of the
node does not affect its capacity to hold other entries, the typical
pattern of splitting nodes around the median does not make sense.
Although SDLs do not require this approach like FDLs do, it could
be implemented to improve sorted insert performance.

Insight 4: Dense leaves that do not over-commit on their
search range are ineffective for sorted insertions.

Fully Dense Leaves. Figure 11 shows insert throughput and space
use per record depending on the number of records per partition
for hints and FDLs. We see that for small partitions below around
200 keys, both configurations perform identically. This is because
the partitions are too small to convert any leaf to a dense layout. As
we increase the number of keys per partition, throughput improves
for both configurations. This is due to improved cache locality,
as only one leaf per partition needs to remain in cache to handle
the insertion of new keys. The relative performance advantage of
FDLs over hints rapidly increases between 200 and 10k keys per
partition up to a maximum of around 2.7 times higher throughput.
It then slowly declines as the number of active leaves becomes small
enough to avoid cache misses even for hints. The right-hand side
plot shows the space use per record. As a greater fraction of leaves
uses the more compact dense layout, space use drops. For hints,
space use increases as the partition size increases. This is because
ordered inserts lead to a lower fill factor than random inserts with
our near-median splitting strategy. With many small partitions,
insertion order is practically random.

4.7 Discussion
We have shown that the performance impact of each optimization
depends both on the set of keys used and the operations considered.
Table 1 summarizes the impact of each optimization on lookup
performance for each data set. Throughput changes for other oper-
ations are qualitatively similar. The exception to this are fingerprint-
ing leaves, which perform better for inserts and worse for scans.
As a result, they harm scan performance for all key sets, and do
not significantly lower insert throughput for any key set. The first
three optimizations (prefix truncation, heads, hints) are generally
beneficial and have little downsides for in-memory performance.
However, the optimal leaf layout depends heavily on the workload
and data to make any general recommendations. To still benefit
from all optimizations, we propose an adaptive node layout in the
following section.
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Table 1: Impact of optimizations on lookup performance.

urls wiki sparse dense

Prefix Truncation + ≈ ≈ ≈
Heads + ++ ++ ++
Hints ≈ ≈ + +

Fingerprinting ++ ++ - -
Dense Leaves ≈ ≈ ≈ +++

5 Adaptive B-Tree
As our experiments show, there is no universal best set of opti-
mizations. Manually configuring a B-Tree for a particular use case,
while effective, is often not practical. Many database systems have
additional information available that may be used for automatic
configuration. For instance, an index with string keys may use fin-
gerprinting leaves, while one with integer keys uses dense leaves.
However, the information available varies by system. For instance,
SQLite tables are dynamically-typed [7], i.e., a column may contain
multiple different types of values. We propose automatic configura-
tion without complicating the abstraction offered by the tree.

5.1 Concept and Implementation
We present a scheme to automatically use a suitable leaf type de-
pending on the keys stored in a node and the relative frequency
of scan operations. Comparison-based leaves with hint arrays, fin-
gerprinting leaves, and fully dense leaves are considered. Figure 12
summarizes the possible transitions between leaf types. As dense
leaves improve throughput by a great degree when they are applica-
ble, they should be used whenever possible. The core difficulty the
adaptive B-Tree addresses is choosing between fingerprinting and
comparison based leaves. As we previously found, fingerprinting
leaves speed up point accesses on string keys but reduce perfor-
mance for integer keys and scans. Therefore, this choice depends
both on the keys held by the leaf and the operations performed on
it. We address these two challenges using two separate mechanisms:
key-adaption and operation-adaption.
Key-Adaption. Key adaption is performed only during node splits
and merges. These operations are infrequent enough that analyzing
the set of keys in the leaf does not significantly reduce overall
performance. On the other hand, the nature of keys stored changes
only with insert and remove operations, which will typically trigger
splits or merges and therefore key-adaption. Moreover, both key-
adaption and splits and merges involve copying records between
pages, so it is convenient to perform both at the same time. If remove
and insert operations balance out, it is possible for the set of keys
in a leaf to be entirely replaced without a single split or merge. We
consider this scenario unlikely in practice. It could be addressed by
additionally performing key-adaption as a background activity.
Detecting String Keys. Key-adaption should choose the finger-
printing leaf if keys are strings. With the four key sets we use, it is
clear which keys are strings and which are not. However, to auto-
matically pick a layout given arbitrary keys, we must first define
which keys should be considered strings. We found two plausible
explanations as to why keys being strings matters. First, integer
keys have unique heads, which makes comparison-based search

good heads
or many scans

bad heads
and few scans

possiblenecessary

Fingerprinting

Comparison

Dense

Figure 12: Leaf layout transitions.

more efficient. Second, integer keys are smaller and therefore allow
more records per page. This increases the cost of the linear search
on the fingerprint array. To decide how to best handle large records
with mostly unique heads, we conduct an experiment with integer
keys and large payloads. We find that the hint array outperforms
fingerprinting, therefore we use the uniqueness of key heads as
the criterion. To evaluate head quality, we consider the number of
pairs of adjacent keys which have equal heads. If this number does
not exceed 1

16 of the total record count, the heads are considered
good. Strict inequality is used for this threshold, so that in cases
where there are less than 16 keys and no collisions, the comparison
based layout is used and a transition to dense leaves is possible.
Benchmarking thresholds from 1

64 to 16
64 of records suggests that

the exact value used has little effect on performance for our key
sets and is robust. When averaging throughput over all key sets
and operations, the best performing threshold is only 0.6% faster
than the worst.
Operation-Adaption. If our keys are found to be string-like, the
choice of layout comes down to the frequency of scan operations.
We find that for string keys, fingerprinting leaves increase the time
per scan by three times more than they reduce the time per lookup
(averaging the differences in time per operation for both text key
sets). Therefore, we consider scans “common” for this purpose, if
they occur at least one third as often as point operations. To deter-
mine the relative frequency of scan operations, we introduce a one
byte counter into both comparison-based leaves and fingerprinting
leaves. It is incremented with probability 15% at each scan operation
and decremented with probability 5% at each point operation. The
counter ranges from 0 to 3 and saturates at either end of this range.
Changing the probabilities of adjustment by a factor of 0.5× to 2×
does not change performance significantly, nor does increasing the
range of the counter up to 8, i.e., both are robust.
Counter Details. The value of the counter influences layout choice
during splits and merges, but it also triggers immediate conversion
if the counter reaches the end of its range. This ability to perform
adaption on reads is necessary, as the workload could transition
from lookup-only to scan-only without a single write operation
occuring. If the conversion is not possible due to space constraints,
it is aborted, so read operations never modify the tree structure.
Recall that the frequency of scans only matters if keys are string-
like. Thus, a counter triggered conversion must be inhibited if they
are not. To this end, the counter is enabled or disabled during
splits and merges depending on the result of key-adaption. The
counter is disabled by setting it to 255. The saturating increment and
decrement operations use a single unsigned or signed comparison
respectively to honor both the bounds of the counter range and
this sentinel value. During splits and merges, fingerprinting leaves
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Figure 13: Distribution of leaf types for each key set and
workload.

are used if the value of the counter is less than 2. That is, scans are
rare, and the counter is not disabled due to good heads.

5.2 Evaluation
We repeat the experiment from Section 4 with the adaptive B-Tree.
Leaf Distribution. Figure 13 shows the distribution of leaf types
depending on key set after each of the two reading workloads.
The implementation correctly selects the type of leaf we would
expect to perform best in each situation. The occurrence of finger-
printing leaves on urls and wiki after scan is due to incomplete
adaption. At the beginning of the scan workload, the operation
counters indicates that scan operations are rare. As the counters
are incremented only with low probability, converting all leaves to
comparison-based leaves takes many operations. After 50 million
operations (rather than 5 million), fingerprinting leaves make up
less than 0.01% of nodes. The use of comparison-based leaves for
lookups on urls is due to genuinely good heads, such as from IDs
or timestamps in URLs.
Throughput. Figure 14 shows the change in throughput compared
to fully dense and fingerprinting leaves for each key set and op-
eration. In all cases but one, the adaptive B-Tree achieves at least
98% the throughput of the better of the two configurations. The
exception is scans on wiki, where throughput is 8% lower due to
incomplete adaption. If 50 million operations are performed instead,
the throughput gap shrinks to only 2%.

6 B-Tree vs. in-memory structures
In this section, we compare the baseline and adaptive B-Tree against
four state of the art in-memory data structures, ART [37], HOT [14],
Wormhole [55], and LITS[57]. We chose these for their support of
variable sized keys and scans and the availability of open source
implementations. As they are specific to in-memory workloads (not
supporting paging), we expect them to outperform the baseline
B-Tree. We expect to close the gap with our optimizations. To
demonstrate that variable size key support is a crucial feature, we
also compare against the B-Tree implementation of the popular
TLX[13] library, which supports fixed size keys only. We expect
TLX to be comparatively slow for strings. Figure 15 shows the
throughput for each data structure.

6.1 ART and HOT
ART [37] and HOT [14] are radix trees. Like B-Trees and unlike
hash-based approaches, they support efficient range scans. They are
generally thought to perform better than B-Trees for lookups. The
improved lookup performance coupled with the ability to perform
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Figure 14: Throughput increase of adaptive B-Tree vs fully
dense (Dense) and fingerprinting leaves (FP).

scans makes them strong choices for in-memory systems. We use
the single threaded versions of both data structures.
Tuple storage. ART and HOT are not primarily intended for stor-
age, but for use in a secondary index. Both store a 63-bit value for
each key and require that the full key can be computed given the
value. Usually, tuple identifiers are stored and storage of tuples is
delegated to some other data structure. Being able to extract keys
from values is required because both store only parts of the keys in
some cases. The lookup on the tree is performed optimistically with
the assumption that the key is present. If the key is not present,
a value associated with a different key may be returned. Conse-
quently, lookups must be validated by comparing against the key in
the tuple. To implement the same map-like interface offered by the
B-Tree, we therefore store pointers to heap allocated tuples. The
tuples contain a copy of both the key and value and their respective
lengths.
Key Length. HOT expects a maximum key length to be set at
compile time. We use a length of 4 for the integer key sets and a
length of 256 for the string key sets.
String Keys. For lookups of strings, HOT is 5% faster to 14% slower
than the adaptive B-Tree. ART is 34 – 37% slower, achieving roughly
the performance of the baseline B-Tree. Both tries perform about
10 – 20% faster than the baseline for insertions of strings. The
adaptive B-Tree is about 70% faster than the baseline.
Integer keys. ART is 129% faster than the adaptive B-Tree for
lookups on sparse and 73% faster on dense. HOT is 10% faster for
sparse, but 27% slower for dense. For inserts, ART is 9% and 80%
faster, while HOT is 10% and 72% slower than the adaptive B-Tree
for sparse and dense integers respectively.
Scans. For scans, even the baseline B-Tree is 18 – 73% faster than
the better of the two tries. This is expected, as iteration for the
B-Trees spans at most two leaves, whereas the tries need to walk
many nodes per scan. Prefix truncation, heads, hints, and dense
leaves improve further on this. The adaptive B-Tree outperforms
the tries by 85 – 219%.

Insight 5: B-Trees can compete with both tries for string
keys but fall behind ART for integer keys. For scans, they are
always superior.

Benchmarking Secondary Indexes.Whilewe findHOT to achieve
52% lower throughput than ART for lookups of random 32-bit inte-
gers, the paper proposing HOT reports performance competitive
to ART [14]. It is important to note that the HOT paper was mea-
suring a slightly different operation: The retrieval of values from
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Figure 15: Throughput of baseline B-Tree, adaptive B-Tree, ART, HOT, TLX’s B-Tree, Wormhole (WH), and LITS.

tuples was omitted, as it would be identical between all compared
indexes. In contrast, B-Trees come with the advantage of handling
the storage of tuples, so we implement this on top of ART and HOT
for fairness. Our experiment differs in three more ways: First, we
use 32-bit integers, instead of 64-bit. HOT is designed specifically to
address ART’s issues with sparse keys. Thus, it gains an advantage
as keys grow longer and therefore more sparse. Second, the HOT
paper packs integer keys into the tuple identifier, i.e., it assumes
that the keys are equal to the tuple identifiers to simplify bench-
marking. Third, we insert only half as many records, 25 million.
Matching the original experiment in these three respects, we find
HOT to be 39% slower than ART for integer lookups.

6.2 TLX B-Tree
TLX is a C++ library aiming to provide commonly needed func-
tionality lacking in the STL. It includes among other template
based collections a B-Tree implementation. This implementation
was previously known as STX B-Tree, but has since been merged
into TLX. In this section we compare it against our B-Tree. We
use tlx::btree_map<T,std::vector<std::uint8_t>>, where T
is the type of the key. We use std::vector<std::uint8_t> for
strings and std::uint32_t for integers.
Comparison. For strings, TLX performs significantly worse than
the baseline. This is expected given the additional indirection of
std::vector. The baseline is 62 – 108% faster, the adaptive B-Tree
is 148 – 259% faster. For integers, TLX has the advantage of not
handling variable-sized keys and comparing integers directly. The
baseline is 32% slower than TLX for lookups, 9% slower for inserts,
and 0 – 3% slower for scans. The adaptive B-Tree beats TLX by
24 – 58% for sparse and by 112 – 390% for dense.

Insight 6: Widely used generic B-Trees perform poorly.

6.3 LITS
LITS is a recently proposed learned index optimized for string
keys[57]. We use the publicly available implementation referenced
in the paper. As this implementation support only bytes in the range
[1, 127] in keys, we apply an order preserving escaping scheme that
represents values outside the range [2 − 125] using two bytes. Like
ART and HOT, LITS supports only a 64-bit tuple identifier as value.
As LITS already stores each record in a separate allocation and
retains full keys, We store our 8 byte payloads directly in LITS. We
expect that modifying LITS to support variable size values would

reduce throughput only slightly. Inserting a tuple identifier like we
do for ART and HOT substantially reduces LITS performance.
Comparison.The adaptive B-Tree achieves similar lookup through-
put as LITS for wiki and surpasses it by 42% for urls. Non-ascii
characters, on which LITS should perform worse due to escaping,
are less common in urls than in wiki. For both kinds of integers
LITS outperforms the adaptive B-Tree, though not by as much as
ART does. LITS performs worse than either B-Tree for scans.
LITS Training Set Size. We find that the performance of LITS
depends strongly on the size of the training set supplied at index
creation. In this measurement we present 50% of all keys to the
index before insertion, as the authors of LITS do. If we reduce this
to 5%, the throughput achieved by LITS changes by -69% to +41%.

6.4 Wormhole
Wormhole [55] is a B-Tree where the inner nodes have been re-
placed with a hybrid data structure that combines a trie and a
hash table. This enables very fast point lookups while still allowing
scan operations (unlike hash tables, which offer even faster point
lookups). For our benchmark we use the whunsafe API to not incur
synchronization overhead and integrate with Wormhole’s memory
allocator to avoid unnecessary copies.
Lookup. The baseline B-Tree is 53 – 60% slower thanWormhole for
lookups. Our adaptive B-Tree is still 26 – 28% slower. The exception
to this is dense, where fully dense leaves make it 27% faster.
Insert. For insertion of strings, the adaptive B-Tree is 17-27% faster
than Wormhole. It is 21% slower for sparse and 429% faster for
dense, which seems to be a particularly bad case for Wormhole.
Here, Wormhole achieves only 46% of the sparse throughput.
Scan. Like the other structures, Wormhole is much slower than
the B-Trees for scans. Like TLX, Wormhole does not inline records
into leaf nodes, but merely store pointers to them, hurting cache
locality. As a result, the baseline B-Tree is 45 – 103% faster and the
adaptive B-Tree 88 – 430% faster.

6.5 Space Use
To estimate the memory footprint of each structure, we determine
the space use of the process before constructing the data structure
and after completing the benchmark using /proc/<pid>/statm.
Figure 16 shows space used by each of the data structures. Again,
data sets are sized such that total key and value size is approximately
300 MB. The adaptive B-Tree uses the least space in all cases. TLX
uses by far the most due to the 24 byte overhead of std::vector.
Other than that, all in-memory indexes have very similar space
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Figure 16: Size of Data Structure.

use. This is because we include the space used for tuple storage,
which is similar across all indexes. This makes up the bulk of their
space use, even though we use relatively small 8 byte values. In
contrast, the authors of HOT, LITS, and Wormhole measure space
use of only the index structure and show significant space savings
compared to competitors included in our experiment.
Wormhole Case Study.We analyzeWormhole’s memory handling
on dense in detail as an example. The total of all allocations made
is only around 1.1 GB, substantially less than the observed 1.6 GB
process size change.We attribute the difference tomemory allocator
overhead. Records themselves make up 65% of allocated space. Leaf
nodes, which hold pointers to records and an indirection vector
for in-order traversal, take up 32%. In summary, around one third
of space use can be attributed to allocator overhead and a third of
the remainder to pointers to tuples. As all in-memory indexes store
records in separate allocations, we expect them to behave similarly.
Allocator Overhead. As the B-Trees allocate only full pages, they
do not suffer frommemory allocator overhead in the same way. The
growth in process size is only 2% higher than the total size of nodes
in the tree. Instead, memory fragmentation occurs within the tree
in the form of partially filled pages and causes similar overhead.
Prefix Truncation. For the string keys, the space advantage of
the adaptive B-Tree comes from prefix truncation. This is why the
advantage is greater for urls than for wiki and why the baseline
B-Tree performs similar to the in-memory indexes. While tries
naturally share prefixes among keys, this applies only to the search
structure. All in-memory indexes store the full key in each record.
Pointer Overhead. Storing records directly inside the page grants
one more advantage to B-Trees: Records can be referenced using
16-bit offsets rather than 64-bit pointers. For the integer keys, where
this overhead is significant, even the baseline B-Tree uses less space
than the in-memory indexes. For sparse, the adaptive B-Tree suf-
fers space overhead from key heads, while dense leaves increase
the space advantage for dense.

6.6 Skew
As the parameter 𝛼 of the Zipf-distribution of lookup keys increases,
lookups generally become faster due to higher cache locality. How-
ever, throughput increases to different degrees for different data
structures. We vary 𝛼 from 0.5 to 1.5 and perform 10million lookups
for each data structure and key set. We use medians of five runs.
Figure 17 shows the lookup throughput of in-memory data struc-
tures relative to the adaptive B-Tree. As 𝛼 increases, ART, TLX, and
Wormhole perform better in comparison to our B-Tree. In contrast,
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Figure 17: Lookup throughput relative to adaptive B-Tree
depending on Zipf-parameter used for key sampling.

HOT becomes worse. HOT makes extensive use of prefetching to
reduce the impact of cache misses. Therefore, it does not benefit
from reduced cache misses to the same degree. LITS internally uses
HOT in some cases, leading to mixed results.

6.7 Discussion
Overall, we see that the baseline B-Tree is generally slower than
the in-memory structures for point operations. The adaptive B-
Tree is competitive, reducing the gap in some cases and gaining an
advantage in others. The TLXB-Tree storing strings using a separate
heap allocation is by far the slowest of the options. For scans, B-
Trees take the lead, making even the TLX B-Tree competitive.

7 System Integration
All experiments so far were performed single-threaded and in an
in-memory setting. To demonstrate the real world benefits of the
presented techniques, we integrate our B-Tree into the open source
vmcache storage engine [34], which provides synchronization based
on optimistic lock coupling [36] and transparent support for paging
to storage. Because our B-Tree relies on fixed-size pages, the inte-
gration into a buffer manager such as vmcache is straightforward
and does not require any changes to the data structure.

7.1 Synchronization
We first look at a multi-threaded in-memory workload. We repeat
the experiment from Section 4 with a single thread and with 24
threads. Rather than executing a fixed number of operations, we
execute lookups and scans for 30s each. Figure 18 shows the lookup
throughput per thread for the original and the vmcache implemen-
tation. As expected, the throughput decreases slightly with the
additional overhead of vmcache. Increasing the number of threads
again slightly decreases throughput per thread. The adaptive B-Tree
maintains a significant performance advantage over the baseline,
demonstrating its scalability. Experiments with larger volumes
of data, more threads, and the remaining B-Tree configurations
indicate that the results from Section 4 transfer well to the multi-
threaded benchmark, with two exceptions. First, fingerprinting
leaves provide an even greater advantage to inserts, as unordered
insertions consume significantly less memory bandwidth. Second,
dense leaves achieve a smaller speedup, as the handling of locks
adds significant overhead to the very fast dense leaf operations.
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Figure 18: Lookup throughput per thread for the original
(unsynchronized) version and the vmcache integrated ver-
sion with 1 and 24 threads.

7.2 Out Of Memory
To evaluate out-of-memory performance, we make some changes
to the synchronization experiment. First, we increase the number
of records inserted to 600 million for integers and 120 million for
urls. We discard the wiki keys, as there are not enough Wikipedia
titles. We switch to a larger set of URLs averaging 90 bytes long and
generate additional artificial URLs by prepending a byte from the
range [0-127] to each URL. This first byte will be removed by prefix
truncation, giving very similar behavior to real URLs in the lower
levels of the tree. Second, to accommodate the larger number of
keys, we use 64-bit integers for both dense and sparse keys. This
yields a total size of roughly 9 GiB for the integers and 11 GiB for
the URLs. We use a smaller data size for integers to compensate for
the per record overhead of the B-Tree. Most importantly, we limit
the size of the in-memory-buffer pool, which forces vmcache to
evict pages to SSD as the tree grows. We vary this limit from 32 GiB
down to 1 GiB. To issue more read requests to the SSD in parallel,
we use 256 threads. We use a Samsung 980 PRO 1TB SSD. We run
the benchmark for 300s and compute the average throughput.
OOMPerformance. Figure 19 shows the lookup throughput of the
adaptive and baseline B-Trees with varying buffer pool sizes. The x-
axis shows the ratio of the sizes of the input data and the buffer pool.
Performance drops sharply as this ratio exceeds some threshold
and requests need to access evicted pages. Starting from this point,
space efficiency dwarfs the in-memory speed considerations, as it
determines the probability of having to read from SSD. The adaptive
B-Tree performs slightly worse for random integers (due to the
space overhead of heads) but significantly better for urls and dense
integers. At the smallest buffer pool size of 1 GiB, 661k – 777k reads
from SSD are performed per second. This is 61% – 72% of the read
throughput achieved in a benchmark with fio (1080k).

7.3 Contention Split
Our B-Tree performs locking on a page granularity. If multiple
frequently written keys reside in the same leaf, this leads to un-
necessary contention. We implement contention split, a scheme to
split contended nodes for our fingerprinting leaves [9]. It can be
implemented just the same for the other two leaf types. We split
leaves if at least 1

30 of sampled writes encounter contention. For
evaluation, we construct a B-Tree containing 5000 Wikipedia titles,
and perform updates according to a Zipfian distribution (𝛼 = 1)
without index shuffling. With these parameters, 57% of writes are
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Figure 19: Lookup throughput depending on buffer pool size.

expected to hit one of the first 100 keys. We vary page size from
2 KiB to 32 KiB.We limit keys to 450 bytes to enable 2 KiB pages. The
figure below shows throughput with and without contention split.
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Without contention split, throughput
drops as page size increases and a larger
share of writes contends for the first leaf.
With contention split, throughput is rela-
tively constant, indicating that the down-
side of coarse locking can be mitigated.

7.4 Discussion
We have integrated our B-Tree into vmcache, which provides a
synchronization framework and transparent support for paging to
storage. We have shown that the adaptive B-Tree scales to many
threads just as well as the baseline does. Though the optimizations
are targeted at in-memory performance, the adaptive B-Tree often
outperforms the baseline even out-of-memory.

8 Related Work
An extensive literature on B-Trees has accumulated since their
inception in 1970 [18, 25, 26, 39].
B-Tree optimizations. Most optimizations discussed in this pa-
per have been proposed previously. This includes prefix trunca-
tion [12], heads (termed poor man’s normalized keys) [27], hints [8],
and fingerprinting (though optimized for persistent memory) [45].
Frame-of-reference encoding has been proposed multiple times as a
compression method [15, 24]. However, using the resulting offset to
index an array in a B-Tree has to the best of our knowledge not been
discussed in an academic publication. Such an array representation
has been discussed in the context of implementing Equi-Joins[49],
though without frame-of-reference encoding.
In-Memory B-Trees. While there are many papers concerned
with optimizing B-Trees for in-memory use, these reduce the size
of nodes to a degree that makes paging infeasible [33, 40, 46, 47].
MassTree.MassTree is a trie with a span of 8 bytes, where each
trie node is a B-Tree [40]. We do not compare against MassTree, as
it is significantly slower than Wormhole [55].
BP-Tree. BP-Tree [56] is a B-Tree with an alternative leaf layout
that has good performance for point operations on larger leaves. It
does not support variable sized keys, though its working principle
could be transferred to the slot array. However, this would make the
find operation proposed very cache unfriendly. Moreover, larger
leaves are less desirable when using fingerprinting leaves and come
with downsides for out-of-memory workloads[29].
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Bw-Tree. Bw-Tree [38] is a lock-free B-Tree optimized to avoid
cache invalidations in concurrent settings. The techniques discussed
are orthogonal to our optimizations. However, later research finds
that in-memory the Bw-Tree is inferior to a more conventional
B-Tree synchronized using optimistic lock coupling [54].
Compression Alternatives. To increase the space efficiency of the
B-Tree, we use both prefix truncation and truncated separator keys.
A recent analysis compared alternative compression techniques and
found that for some data sets, other schemes can achieve a higher
compression ratio [22]. All of these are variations of delta compres-
sion, where the prefix shared with the previous key is omitted from
each key. Such schemes are employed among others by WiredTiger,
RocksDB, and MyISAM. However, the authors of the study still
recommend an approach that aligns with our implementation, as
the alternatives have too high a performance cost.
LSM-Trees. LSM-Trees [44] are an alternative to B-Trees that orga-
nize data into runs according to how recently it has been written.
This reduces write amplification at the cost of read performance.
Contemporary LSM trees employ compression in their less fre-
quently written levels to save space at the cost of access time.
For instance, RocksDB uses delta compression. Many of the op-
timizations we present should transfer well to delta compressing
LSM-trees. Dense leaves are a good fit, reducing both space use and
access time. Fully dense leaves, however, are not compatible with
value compression. Hints could be applied with little downsides and
would likely improve access time. Sampling hints from the restart
points of delta compression seems advisable. For Fingerprinting,
two byte fingerprints should likely be used to reduce the proba-
bility of false hits, which cause costly key decompression. Heads
are likely not worthwhile due to their space cost and the sorted
nature of blocks. Apache Cassandra applies general purpose com-
pression schemes to its LSM-Trees [4]. Our optimizations can be
applied here, though access time for cold blocks will be dominated
by decompression.

9 Conclusion
In this paper, we discuss and evaluate six optimizations for in-
memory performance of B-Trees. The structure of keys and the
type of operations performed have a strong effect on which tech-
niques are beneficial. Accordingly, we design an adaptive B-Tree
that selects one of three leaf node layouts at runtime. B-Trees can
close the performance gap to pure in-memory structures using
this technique. We integrate the B-Tree into the vmcache storage
engine demonstrating significant full-system performance improve-
ments both in and out of memory. To make our results reproducible,
we make both the unsynchronized B-Tree [1] and the vmcache-
integrated one [3] public.
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