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Abstract
OLTP systems have significantly evolved since the 2008 study that
identified CPU-bound tasks, such as buffer pool and concurrency
control, as primary bottlenecks. In this paper, we revisit these as-
sumptions and demonstrate that communication overhead is now
the dominant factor affecting OLTP performance. Using compre-
hensive whole-stack benchmarks on modern hardware, we analyze
both stored procedure and client-side transaction models, reveal-
ing that messaging costs play a critical role in end-to-end perfor-
mance. Additionally, we explore user-defined code isolation, an
often-overlooked aspect that poses security risks, especially in
multi-tenant database systems. We find that increased isolation can
lead to higher communication costs, highlighting the need for new
strategies to mitigate these overheads.

1 INTRODUCTION
In a 2008 paper, some of us explored OLTP performance on conven-
tional hardware and software [12]. Notably, we ran TPC-C on the
Shore DBMS, a conventional DBMSwith disk-based storage, a buffer
pool, concurrency control based on locking, and standard Aries-
style write-ahead logging. As such, it was typical of the commercial
DBMSs of the time. We found that the overwhelming majority of
CPU time was spent on services such as buffer pool management,
concurrency control, crash recovery, and latching. Hence, to go a
lot faster, one has to deal with these sources of overhead.

Since then, there have been several high-performance OLTP
engines, including H-Store, VoltDB, Hyper, LeanStore, MemSQL,
Silo, and HANA. These systems exploit various innovative solu-
tions to the issues noted above to provide tremendous performance
improvements over traditional systems in benchmarks. However,
most academic OLTP benchmarks (including [12]) have two major
problems.

Ignored Network/Communication. Previous work [12] only
analyzed back-end components of a database system and ignored
the messaging cost of communicating with a front-end applica-
tion or within the database system. Even when running a stored
procedure (SP) transactionmodel, this cost cannot be ignored. More-
over, although stored procedures are standard practice in research
systems, many real-world applications prefer running transaction
logic on the client side for better debuggability, security, and ease
of version control [19]. This makes messaging costs much more
expensive than in the SP model.

Ignored User-Defined Code Isolation. When systems use an
SP transaction model, most assume it is permissible to run stored
procedures in the same address space as the DBMS. This means
there is no isolation between an SP and the DBMS kernel or between
different SPs. This allows errant or malicious SPs to interfere with
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Figure 1: Server-side CPU Overhead Breakdown. In the client-side
transaction model the DBMS only processes SQL queries, while in the
stored-procedure model it additionally runs the transaction logic.

each other and the DBMS. Worse yet, malicious SPs can obtain
unauthorized data, which presents a security flaw. In some use
cases, this risk is acceptable due to careful testing; in others, non-
isolation is unacceptable. As cloud database systems move toward
a multi-tenant architecture, such risks will become less acceptable.

In response, this paper presents “Looking Glass 2.0”. We per-
form whole-stack benchmarks measuring throughput and response
time on modern hardware, comparing the SP model with client-side
transaction logic under different levels of isolation. To avoid the per-
formance bottlenecks of traditional DBMSs, we primarily focus on
high-performance OLTP engine VoltDB in this study. PostgreSQL
results are also included for some minor experiments for reference.

Figure 1 depicts one of the major findings of this paper. When
isolation is not required, the CPU cycles spent in messaging are "the
high pole in the tent", even when using a stored procedure model.
With a traditional transaction model, CPU overhead in communi-
cation is higher. While the stored-procedure model helps reduce
such costs by reducing the number of round trips between transac-
tion logic and the database engine, it does not help with simpler
transactions such as those in YCSB-C and Voter workloads. Hence,
any improvements to DBMS performance impact a minority of the
path length, and the most profitable source of OLTP improvement
is in the arena. When isolation is required, communication cost is
dramatically the highest cost item, overshadowing the CPU cycles
spent in transaction execution.
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Database System Programming Language for Stored
Procedures and UDFs

Isolation Mechanisms

None Language Isolation OS-Level Isolation Virtualization
VoltDB Java ✓
Oracle PL/SQL, Java, JavaScript ✓

SQL Server T-SQL, C# ✓
PostgreSQL PL/pgSQL, C, Python, Rust, JavaScript ✓ ✓
MySQL PL/SQL, JavaScript ✓ ✓
IBM DB2 PL/SQL, Java, C++ ✓ ✓
MariaDB PL/SQL, C/C++ (UDFs) ✓ ✓

SAP HANA PL/SQL, Lua ✓
Teradata PL/SQL, C, Java, R ✓ ✓
MongoDB JavaScript ✓
Snowflake Java, JavaScript, Scala, Python ✓ ✓
Redshift PL/pgSQL, Python, AWS Lambda ✓ ✓ ✓

Table 1: Programming languages and isolation mechanisms for user-defined code in existing database systems

Hence, this paper explores possible improvements to TCP/IP
and Linux kernel. These include kernel bypass with user-space
networking for messages between the client and the DBMS. We
also report unpleasant experiences when applying kernel-bypass to
DBMS, suggesting room for improvement on the OS side. To isolate
SPs from the DBMS we classified five possible levels of isolation
and explored a spectrum of approaches from no isolation to virtual
machine isolation. Higher degrees of isolation resulted in additional
messages and higher costs.

The contributions of this paper can be summarized as follows:

• We performed a systematic whole-stack performance break-
down of a modern OLTP engine.

• We carefully dissected the space of possible isolation mech-
anisms for user-defined code in OLTP systems and experi-
mentally explored the trade-off between the degree of iso-
lation and overall cost.

• We envision several directions for future research based on
the experimental results.

2 BACKGROUND AND METHODOLOGY
We first examine isolation mechanisms before explaining our bench-
marking methodology.

2.1 Isolation Mechanisms for User Code
Client-Server Isolation. The baseline option is to run user-defined
code in a client process separate from the DBMS. This is also com-
monly denoted as interactive transactions and is supported by vir-
tually all DBMSs. The extreme case of isolation is to place the user
and server processes on different servers connected through the
network. Reducing communication overhead requires co-locating
the user code and DBMS on the same server, as we discuss next.

No Isolation. Many systems, including PostgreSQL, DB2, Mari-
aDB, and Teradata, allow user-defined logic in unsafe languages
such as C by loading user code into the DBMS as a shared library.
Given that malicious or erroneous user-defined code can easily ac-
cess the content of DBMS memory or bring down the entire system,

this approach provides effectively no isolation. In exchange for giv-
ing up isolation, this maximizes performance as user-defined code
can communicate with the DBMS kernel through shared memory.

Language Isolation. The next level of isolation is provided by
safe stored procedure (SP) languages running within the DBMS
process. Such languages include domain-specific languages (e.g.,
PL/SQL, T-SQL), virtual-machine-based languages (e.g., Python,
Java, JavaScript), and memory-safe languages (e.g., Rust). By disal-
lowing unsafe memory accesses, safe SP languages provide some
level of isolation. However, the isolation fully relies on the correct-
ness of compiler and language runtime and is therefore somewhat
limited. For example, Oracle [18] and VoltDB run Java-based stored
procedures in the same address space as the DBMS kernel. User-
defined code can break out of the virtual machine by using unsafe
language features, VM exploits [5], or bugs in the compiler.

OS-Level Isolation. To provide better isolation guarantees than
language-based isolation, one can run an SP in a different OS pro-
cess than the DBMS but on the same server. However, important
operating system resources such as the file system and network de-
vices are still shared. One way to provide stronger isolation is using
containers, which virtualize all OS resources, and Linux’ SECCOMP
mechanism, which limits the system calls that can be made by a pro-
cess. Snowflake, for example, runs user-defined code in a separate
container with access to a dedicated file system without the ability
to make network connections. In this approach, user-defined code
uses OS-provided inter-process communication (IPC) mechanisms
such as sockets to interact with the DBMS kernel process. This
provides much better isolation than language-based approaches.

Virtualization. OS-level isolation obviously relies on the cor-
rectness of the OS. Attacks against the OS kernel can compromise
the memory of all running processes. Therefore, a stronger isolation
approach is to run user-defined code on a separate OS kernel in
a virtual machine on the same host. This confines malicious code
execution to the virtual machine. This model requires inter-VM
communication between the DBMS and user-defined code.

To summarize, the five mechanisms discussed provide trade-
offs between the proximity of the user code to the DBMS and the
degree of isolation and communication overhead. We summarize
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Figure 2: Architecture of VoltDB

the isolation mechanisms for user-defined logic of existing DBMSs
in Table 1. Note that the table is non-exhaustive.

2.2 VoltDB Primer
To understand our testing approach, we first review VoltDB’s ar-
chitecture. As shown in Figure 2, VoltDB adopts a shared-nothing
architecture, partitioning data across multiple cores. Each core has
its own partition serviced by a single worker thread. Networking
threads handle client connections and interact with the TCP/IP
stack in the Linux Kernel. Each worker runs stored procedures
(SPs) from a task queue in a single-threaded manner within the
same process as the DBMS kernel. The Java-based query engine
executes SPs using an in-memory C++ storage engine, and SPs are
written in Java with embedded SQL. VoltDB distinguishes between
single-partition and multi-partition transactions. Single-partition
transactions, which access data within one partition, are optimized
to run to completion without locks or latches. As a result, VoltDB
maximizes CPU efficiency in its OLTP engine when executing these
transactions. Conversely, multi-partition transactions are serialized
through a global coordinator, allowing only one at a time, and use
standard two-phase commit. This paper focuses on single-partition
transactions, as they provide state-of-the-art performance, which
we strive to improve on. VoltDB separates the logic of transaction
processing from network I/O activities. A group of dedicated net-
work threads are created for interfacing with the Linux Kernel with
BSD socket APIs and event polling. The network threads parse re-
quests and dispatch stored procedure invocations to dedicate OLTP
workers through message passing. The network threads also write
responses back to the sockets after OLTP workers finish transaction
execution.

2.3 Modeling Network and Isolation Models
Interactive Transactions. Since VoltDB requires a stored proce-
dure model, we simulate interactive transactions by breaking any
stored procedure into multiple stored procedures, one per SQL state-
ment. This closely simulates a classic environment with the client
running on the same machine as the DBMS. As an optimization,

we batch together SQL queries that have no dependencies. These
batches are then run as individual stored procedures.

User-Space Networking. Like most DBMSs, VoltDB relies on
the TCP/IP stack of the host operating system. We extended VoltDB
with support for user-space networking using DPDK and FStack [1],
a user-space TCP/IP stack. In order to interface with F-stack, we
had to rewrite major parts of the VoltDB networking layer because
F-stack requires using a set of new polling/read/write APIs and only
supports a single-threaded TCP/IP stack. Therefore, F-stack-enabled
VoltDB uses only one network thread for performing network I/O.
The network thread spin-polls the NIC for available packets.

Language Isolation. Java SPs for VoltDB are compiled into
individual classes and loaded into the same JVM on which VoltDB
runs. Therefore, VoltDB provides language isolation by default.

OS-Level (Process) Isolation. To provide process isolation, we
modified the VoltDB SP runtime to pair every VoltDB worker with a
separate Linux process in which SPs for that worker are loaded. To
communicate between this process and the corresponding worker,
we compared three IPC mechanisms: TCP/IP, shared memory with
busy-polling for notification, and shared memory with a Unix do-
main socket for notification. When exchanging messages between
the SP process and the OLTP engine, SQL queries and result sets
are serialized and deserialized. Although we could have run each
SP in its own process, we chose not to, as the performance would
be essentially identical to the architecture we tested.

Containerization. In addition to process isolation, we explored
running each SP process in a Docker container and the same set of
communication mechanisms used for process isolation.

Virtualization. The last and strongest isolation approach we
explored is virtualization. We ran each SP process on top of a Linux
kernel in a virtual machine (KVM). For this setup, the DBMS kernel
communicates with each SP process through the TCP/IP stack in
the host Linux kernel as well as the guest Linux kernel. When a
network packet is sent from the DBMS kernel, it needs to first
traverse the TCP/IP stack of the host Linux kernel, and then it is
routed through the kernel network bridge to arrive at a virtualized
NIC maintained in the hypervisor in the kernel. Lastly, the packet
crosses the virtualization boundary to be handled by the receiving
side of the guest kernel’s virtual NIC and TCP/IP stack.

2.4 Profiling Methodology

We use manual instrumentation to profile VoltDB and the Linux
perf tool for the kernel. Specifically, for kernel-space profiling, we
leveraged the perf-trace [14] tool to place trace points inside the
Linux kernel, which replace traced instructions with breakpoint
instructions. When a trace point is hit, the Linux kernel traps into
a breakpoint handler that records timing information and then re-
sumes execution. For VoltDB profiling, we found perf-trace [10]
too expensive as each activated trace point results in a context
switch to the kernel. Instead, we manually instrumented the VoltDB
code to record a trace entry in a memory buffer. At the end of the
benchmark, VoltDB dumps the buffer to a file in the same format
as the output by perf-trace.
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Workload - TX # DB Interactions Ratio
YCSB C - Get 1 100%
Voter - Vote 2 100%

TPC-C - New Order 8-18 45%
TPC-C - Payment 5 43%
TPC-C - Delivery 4 4%

TPC-C - Stock Level 2 4%
TPC-C - Order Status 3 4%

Table 2: Workloads. A DB interaction is the largest batch of SQL
queries that can be sent to the DBMS in one round-trip to be exe-
cuted independently. We break the logic of each transaction into the
shortest sequence of interactions with the database systems where
an interaction depends on the result sets of previous interactions.
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Figure 3: CPU Cycle Distribution for PostgreSQL and VoltDB. Cycles
are classified into Transaction Processing, DBMS Networking Layer,
and Linux Kernel.

3 EXPERIMENTAL EVALUATION

3.1 Environment
Hardware. We ran all experiments on Google Cloud using two
compute instances, each with 16 vCPU (Intel Haswell, 2.3GHz) and
64GB memory. The two instances are connected by a network with
a measured 16-Gigabit bandwidth in one direction and 60us median
round-trip latency (measured using sockperf).

Software. The machines are running Linux version 6.8.0-1007-
gcp. VoltDB is compiled with OpenJDK version 1.8.0_402 and gcc
11.4.0. We configure the client machine to run 512 concurrent con-
nections to the VoltDB server. Each client iteratively runs the bench-
mark script. We evaluate system performance using three work-
loads. As shown in Section 3.1, these workloads cover a wide range
of transaction complexity and round-trips to the database system.

YCSB. The Yahoo! Cloud Serving Benchmark is a key-value
store benchmark. We initialize the YCSB table with 10M 128-byte
key-value pairs and perform random single-tuple index lookups.

Voter. This benchmark simulates a phone-based election process
and contains a collection of single record queries and updates. 10,000
voters are given a fixed number of votes for 6 candidates. Each voter
selects any candidate iteratively until their votes are exhausted.

TPC-C. The TPC-C benchmark is the industry-standard bench-
mark suite for OLTP databases. Each transaction contains complex

interactions with the database. We configure the system with 256
warehouses and partition the database by warehouse. We modi-
fied the benchmark so that every transaction targets only a single
warehouse to avoid multi-partition transactions on VoltDB.

3.2 Where do the CPU Cycles Go?
We begin by showing CPU cycle distribution on the server. We
run simple YCSB-C workloads with 48 connections. The results
are shown in Figure 3. VoltDB spends less than a quarter of the
total cycles on transaction processing. This is partly because the
VoltDB eliminated buffer pool/ locking/latching that were bottle-
necks pointed out by the original looking glass paper [12]. Instead,
the CPU bottlenecks are now shifted to the DBMS networking layer
and the Linux Kernel. Surprisingly, the DBMS networking layer
in VoltDB contributes almost 40% of the CPU cycles. Our profiling
found that 8% of the cycles are spent on epoll_wait/epoll_-
ctl/read/write functions in the glibc library. The rest of the
cycles are mostly spent on message passing and scheduling among
the network threads and OLTP workers. For reference, we also
included PostgreSQL (v13) results. We configure PostgreSQL buffer
pool so that all data fits in memory. This eliminates storage I/O
overhead and allows us to focus on communication within the sys-
tem. As expected, transaction processing dominates with 55% of
cycles due to the bottlenecks of a traditional DBMS [12]. The DBMS
network layer consumes only 4.3% in PostgreSQL compared to 39%
in VoltDB. This is because transaction processing worker directly
read/write to/from a TCP socket, avoiding most of the DBMS inter-
nal communication overhead. Interestingly, there are still nearly
40% cycles spent in Linux Kernel on networking for PostgreSQL,
similar to VoltDB.

Phase Description

1 Network Receive Time from receiving data on the NIC
to readying it in a socket.

2 Socket Read Time to read data from the socket.
3 Request Queuing Time to assign the request to a OLTP worker.
4 Procedure Execution Time to run the transaction logic.
5 Isolation Overhead Time for communication related to isolation.
6 Query Execution Time to run SQL queries.
7 Response Queuing Time to queue the response for transmission.

8 Network Send Time to write the response through
the network stack.

Table 3: Phases of processing a transaction in chronological order.

3.3 Results for No Isolation
We first present detailed results for the no-isolation case, comparing
interactive transactions with SPs. Specifically, in Figure 4 we show
the median latency for the three benchmarks as we ramp up the
throughput on our system. Note that there is a single curve for
YCSB as the two implementations are effectively identical. Also,
note that the logic for both cases is the same; hence, the only differ-
ence between the two implementations is the number of messages.
Obviously, throughput increases as the load is applied until our
system becomes CPU-bound and saturates. Equally obvious is the
increase in latency as load is applied because of queuing delays.
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Figure 4: Median Latency vs. Load for Interactive Transactions and Stored-procedure Transactions
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Figure 5: Server-side Transaction Latency Breakdown (Excluding Queuing).

With the Voter workload, shown in Figure 4b, SP transactions
have up to 72% lower latency and 23% higher achievable through-
put. With more complex workloads such as TPC-C where there
are more network round-trips, shown in Figure 4c, we observe
that interactive transactions incur 3.5× higher latency at similar
throughput points. The SP model can achieve a maximum through-
put that is 2.1× higher than the interactive case. These results show
the desirability of using an SP model.

Server-side Transaction Latency Breakdown (excluding
queuing). To understand the performance of the SP model, we
categorize server-side latency of a transaction into the 8 phases
highlighted using colored numbers in Table 3.

Networking Dominates CPU Time. Figure 5 presents a de-
tailed breakdown of server-side latency for interactive (bars la-
beled as interactive) and SP transactions (bars labeled as stored-
procedure) for our three benchmarks. Each bar represents the av-
erage CPU time spent in each of the eight categories measured
in microseconds (µs). The first conclusion to draw from Figure 5
is the high pole in the tent is usually the server CPU time spent
in networking. Except for TPC-C, networking dominates DBMS
processing. Remarkably, it is more expensive to send work to the
DBMS and receive answers than it is to construct those answers.
Of course, if the transaction stored procedures get beefy enough,

as exemplified by TPC-C, the system remains DBMS-bound. The
second point is that stored procedures are a good idea. They lower
the number of messages and increase the percentage of work spent
on DBMS processing. The third point to make is that there is no
magic bullet for improving network CPU time; the cost is spread
over the whole stack. As a result, one needs to explore kernel bypass
to get better performance, a topic to which we now turn.

Kernel Bypass. To leverage kernel bypass, we replace the Linux
networking stack used by VoltDB with a user-space TCP/IP stack
(F-stack) using the DPDK library. As shown in Figure 5 (bars la-
beled stored-procedure-dpdk), with kernel-bypass and the SP
model, the CPU time spent on transaction processing increases from
33%/48%/70% to 53.8%/72%/91% for YCSB/Voter/TPC-C workloads.
These improvements mainly come from the elimination of system
calls, reduced copying, interrupt processing, and a simpler network-
ing stack. Note that the overhead of internal DBMS communication
for queuing requests and responses remains.

End-to-end Latency Breakdown.We next break down transac-
tion end-to-end latency. To minimize queuing delays distorting the
results, we offer the maximum load before the end-to-end latency
spikes. The results are shown in the following table, with the first
three rows using the SP model and the last three rows using the
client-side transaction model:
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Figure 6: Median Latency vs. Load Across Various Isolation Mechanisms

Workload Total Cli.↔Srv. Srv. Net. Xact Exec.

YCSB-C 410𝜇s 312𝜇s 64𝜇s 34𝜇s
Voter 425𝜇s 343𝜇s 40𝜇s 42𝜇s
TPC-C 483𝜇s 312𝜇s 42𝜇s 129𝜇s
YCSB-C 410𝜇s 312𝜇s 64𝜇s 34𝜇s
Voter 688𝜇s 572𝜇s 67𝜇s 49𝜇s
TPC-C 1,471𝜇s 710𝜇s 310𝜇s 451𝜇s

The results show that the time spent on client-to-server networking
(the 3rd column) is the dominant component. This component
increases further when using the client-side transaction model, as
there are more round-trips. It also shows the superiority of the
SP model. When running TPC-C using client-side model, the time
for transaction execution increases compared to SP model due to
repeated SQL parsing, planning, serialization, and deserialization.

3.4 Results for Isolation
Latency vs. Throughput.We next explore the end-to-end latency-
throughput trade-offs for different isolation mechanisms and exam-
ine server-side overhead in detail. The results for different isolation
mechanisms are shown in Figure 6. Generally, all configurations
experience latency increases as more load is applied to them and sys-
tems get more saturated. Not surprisingly, the configuration with
no isolation (labeled none) has the best latency-throughput trade-
off curve, as there is no IPC overhead between the OLTP engine and
the stored procedure. It achieves up to 65% higher throughput com-
pared to the next-best-performing ones when the highest load is
present. The next best-performing configurations are the ones with
shared memory and polling (shm, docker_shm, vm_shm). At low
load, the latency is very close to the baseline with no isolation. With
more complex transactions and higher load, shared-memory adds a
couple of milliseconds of latency and tops out at dramatically less
throughput. This is mostly due to serialization and de-serialization
overhead. Configurations with TCP and domain sockets have much
worse latency and achieve significantly lower throughput com-
pared to shared-memory and no-isolation. Domain sockets perform
slightly better than TCP because domain sockets in Linux are more
efficient than the general TCP/IP stack. We do not observe a sig-
nificant difference between the procedure process running in a
container and running in the host, suggesting the Linux kernel

uses a similar code path for the IPC mechanisms. We also observe
similar trends for 99-percentile latency for all the configurations.

To summarize, isolation imposes dramatic throughput and la-
tency overheads. The best-performing mechanism involves process
isolation with shared-memory and polling. Containerization does
not impose significant overhead on top of process isolation.

Server-side Transaction Latency Breakdown. As before, we
perform the same server-side transaction latency breakdown. The
results are shown in Figure 7, which provides a detailed analysis
of the three benchmarks: YCSB, Voter, and TPC-C using different
isolation mechanisms.

One should note that all mechanisms that provide some degree
of isolation are primarily dominated by the CPU path length in the
communication stack. Specifically, using process isolation and TCP,
Isolation Overhead dominates server-side overhead, taking up
58%/68%/62% of the CPU time on YCSB/Voter/TPC-C workloads.
Each DB interaction requires a traversal through the local TCP/IP
stack between the procedure process and the OLTP engine. Unix
domain sockets help reduce the overall overhead by about 31%
compared to TCP, as the kernel path is shorter. However, it is still
significantly higher than no isolation. The next best-performing
configuration is process isolation with shared memory and polling
for communication that still has 20%/60%/60% higher overall over-
head compared to no isolation. Note that with shared memory and
polling, we do not observe a significant difference between running
the procedure process in the host and container. This is because
shared memory allows for exchanging messages directly through
physical memory, bypassing the container boundary completely.

Note that, when running the procedure process in a virtual
machine, Isolation Overhead drastically increases. To isolate
why virtualization introduces such high overhead, we ran a micro-
benchmark for TCP using sockperf, obtaining the following round
trip times (RTT):

Config RTT

VM ↔ VM 60us
VM Guest ↔ Host 176us
TCP via Loopback 21us
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Figure 7: Server-side Transaction Latency Breakdown (Excluding Queuing).

Surprisingly, the RTT between two Google Cloud instances is lower
than that of the RTT between a guest VM and host on the same
instance. From the table, we can see that the overhead introduced
by the guest VM is about 8.5× compared to communicating through
the loopback interface on the same host. This is consistent with
the difference between vm tcp and tcp shown in Figure 7a. We
attribute this high cost to QEMU/KVM and nested virtualization,
as each packet needs to traverse two TCP/IP stacks and the VM
boundary in one direction.

4 DISCUSSIONS AND RESEARCH DIRECTIONS

In this section, we summarize the lessons we learned from the
experiments and lay down a few research directions that we think
are worth exploring.

4.1 Lessons Learned

Lesson 1.Both the interactive transactionmodel and stored-procedure
model are bottlenecked on messaging when transactions are simple
(YCSB/Voter), accounting for 52%-67% of the runtime overhead. The
stored procedure model helps relieve these bottlenecks when trans-
actions are more complex at the expense of security. Kernel-bypass
and user-space network stacks can help reduce such overhead down
to 28%-46%.

Lesson 2. On modern networks, the stored-procedure model
still has substantial latency and throughput advantages over the
interactive transaction model. These increase with the number of
interactions with the DBMS. The two models are on par when a
transaction contains only one round trip with the DBMS.

Lesson 3. Stronger isolation mechanisms for stored-procedure
introduce substantial overhead. For example, process isolation with
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Unified TX & Network Thread Dedicated Network Threads

PostgreSQL Redis
MySQL VoltDB
SQL Server Oracle
AWS Aurora Cassandra
TiDB ScyllaDB

OceanBase
Table 4: How DBMSs Perform Network I/O.

shared memory and polling offers a good balance but still incurs
20%-60% higher overhead than no isolation. TCP/IP and domain
socket communication for process isolation further increases that
overhead. Lastly, virtualization imposes an order of magnitude
higher overhead on communication.

4.2 Research Direction #1: Beyond VoltDB and
Main-Memory

Beyond VoltDB. This paper focuses primarily on VoltDB and
single-partition transactions. However, we believe many conclu-
sions also apply to other modern memory-optimized engines with
shared-memory concurrency control, such as LeanStore [15], where
the majority of CPU cycles are spent on useful work. An intrigu-
ing next step would be to explore distributed transactions and
replication with proper concurrency control. In such scenarios,
we anticipate that communication overhead would be even more
pronounced, as distributed transactions and replication require
additional network messages.

Beyond Main-Memory.While in-memory DBMSs have gained
significant attention over the last decade, disk-based DBMSs con-
tinue to dominate the commercial market due to their cost-efficiency [17].
Network stack overhead is also critical for disk-based DBMSs, as
shown in Figure 3, where networking accounts for 45% of CPU
cycles in PostgreSQL when data fits in memory. Disk-based DBMSs
have also seen renewed innovation driven by the trend of cloud dis-
aggregation, where systems separate compute from storage[4, 21].
In such disaggregated OLTP systems, persisting log records and
handling buffer pool misses involve network I/O operations with
storage servers. A systematic analysis of the overhead in these
systems could uncover valuable insights and future research direc-
tions.

DBMS Internal Networking. A notable finding in this study
is that VoltDB’s internal networking layer consumes a substantial
portion of CPU cycles, as shown in Figure 3. In contrast, the in-
ternal networking overhead in PostgreSQL is significantly smaller.
We also summarized how various DBMSs handle network I/O in
Table 4, based on whether dedicated threads are used for network
operations. The results reveal no clear consensus on network I/O
strategies among DBMSs. A promising research direction would
be to systematically investigate the trade-offs between these ap-
proaches.

4.3 Research Direction #2: Better Bypass
Mechanisms

Better Kernel Bypass Mechanisms. While kernel bypass mecha-
nisms like DPDK reduce networking overhead, they require exclu-
sive NIC access and busy polling, which is inflexible and energy-
inefficient. Our experience integrating DPDK into VoltDB was chal-
lenging and painful, as DPDK operates as a layer-2 stack without
support for routing and transport protocols, on which most DBMSs
depend. As a result, DBMS developers must either build their own
transport and routing protocols or use third-party implementations,
which are also known to have unstable APIs across versions [20].
Integrating DPDK requires significant engineering effort to rewrite
the DBMS networking layer and adds maintenance burdens for
environments lacking DPDK support. Additionally, standard Linux
networking tools are unavailable in the DPDK ecosystem, compli-
cating debugging, development, and monitoring [20]. Similar chal-
lenges with DPDK integration in DBMSs have been reported [7].
The only DBMS using DPDK in production we know of is Yellow-
brick [9]. Such usability issues are one reason kernel bypass has
seen limited adoption in data systems. Therefore, further research
is needed to design a user-friendly, efficient kernel bypass approach
with full transport support for DBMSs.

Bypass for Client-side Network Stack. An often-overlooked
but critical area for improvement is the client network stack sup-
porting applications that connect to DBMSs. Most clients, such
as web servers or API servers, rely on kernel-provided network
stacks, which are inefficient. In terms of end-to-end latency, the
client network stack likely adds as much overhead as the DBMS
server stack. From a cost perspective, optimizing client stacks for
DBMS communication could reduce the number of application in-
stances required, lowering the total cost of ownership. However,
kernel-bypass frameworks like DPDK are typically used on back-
end servers, where administrators can control the hardware stack
and dedicate a NIC exclusively to the application. Such stringent
constraints are impractical in environments where servers host
multiple applications for efficiency. This underscores the need for
more usable and resource-efficient kernel bypass mechanisms that
can be deployed in diverse and constrained environments, not just
controlled back-end servers.

Better User Bypass Mechanisms. Another promising direc-
tion is exploring approaches that push database logic into the kernel
space. Recent works have demonstrated that the eBPF infrastructure
enables data-intensive operations, such as database proxying [7]
and caching [11], to be integrated into the OS networking stack,
avoiding costly data transfers between user space and kernel space.
Building on this foundation, an intriguing avenue for research is
pushing more, if not all, stateful database components—such as
query execution and buffer management—into the Linux kernel [6].
However, a significant research challenge lies in eBPF’s constraints,
as it only supports user programs that are verifiably safe. For ex-
ample, loops must be bounded, and programs are restricted to a
predefined set of kernel data structures for stateful operations. Addi-
tionally, the Linux kernel prohibits floating-point operations, which
are critical for many database applications. These restrictions neces-
sitate addressing portability and compatibility challenges. Despite
these limitations, this remains a promising research direction.
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4.4 Research Direction #3: Better Isolation
Mechanisms

Tighter DB-OS Co-Design. Existing mechanisms provided by
general OSs are often insufficient for database system needs. For
example, the isolation mechanisms explored in this study cannot
simultaneously meet the demands of safety, low communication
overhead, and high efficiency. More research on the intersection
of the DB and the OS is needed to design mechanisms that can
strike a better balance in this area. In particular, process-level isola-
tion provides the most practical and widely used safety guarantees
based on virtual memory and privilege separation hardware. It is,
therefore, worth exploring better IPC mechanisms tailored to this
approach. Although bypass mechanisms help relieve some of the
overhead, they come with their own set of challenges. Most of these
challenges are a result of security concerns. For example, interrupt
processing, virtual memory, and privilege separation are key to
implementing efficient IPC and process isolation. However, they
are only programmable in the kernel space. The database system
that runs in user space needs to cross expensive security bound-
aries and traverse complex kernel paths to access these hardware
constructs. Direct and safe access to these hardware constructs
would enhance the efficiency and flexibility of the database system.
DB-OS co-design approaches [16, 22] that utilize virtualization offer
a potentially fruitful research direction.

WebAssembly Sanboxing for Isolation. WebAssembly [3]
(Wasm) is an emerging binary instruction format for language
virtual machines that shows significant promise for sandboxing
untrusted code. A compelling research direction is the integration of
WebAssembly into DBMSs to sandbox user-defined code. However,
it remains unclear whether WebAssembly can meet the flexibility
and performance demands of user-defined code in a DBMS context.
Thus, a systematic study of this integration would be valuable.

4.5 Research Direction #4: Better Transaction
Models

While stored-procedure transactions are known to reduce com-
munication overhead and end-to-end latency for complex trans-
actions, many applications favor client-side transactions due to
their simplicity, decoupling, language flexibility, ease of integration
with external services, and manageability. Additionally, the client-
side transaction model inherently provides the strongest isolation
guarantees. Research is needed to combine the advantages of both
models. For instance, stored-procedure synthesis [2, 8, 13] with
program analysis techniques converts client-side transaction logic
into stored procedures, offering a promising approach to bridging
the gap between these two paradigms. However, this approach
still faces many challenges, such as incompatibility between source
programming languages and stored procedure languages (e.g., Java
vs. PL/SQL), and often requires manual intervention and complex
setup.

5 CONCLUSION
This work provides a detailed analysis of OLTP performance in a
modern database engine on contemporary hardware. Our findings
reveal that bottlenecks have shifted toward communication, and
the increasing demand for enhanced security in user-defined logic

significantly amplifies these challenges. Consequently, the database
community should prioritize improving networking and communi-
cation around the DBMS, rather than focusing solely on the DBMS
core engine.
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