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Abstract What is the best architecture for cloud OLTP
systems? How costly is it to run a specific workload?
Which and how many hardware instances should be
provisioned? To answer such questions systematically,
we develop an analytical model framework for cloud
OLTP. It enables the analysis of a wide variety of work-
loads and determines the cost-optimal architecture and
hardware configuration for each. Workloads are speci-
fied in terms of dataset size, performance, latency, avail-
ability and durability requirements. System designs are
evaluated based on the CPU, memory, storage, and net-
work resources they require. We study a concrete model
instance that is calibrated with the LeanStore stor-
age engine and real-world hardware/service options and
prices from AWS, one of the major cloud providers. Our
analysis yields several observations on how to achieve
fast, durable and cost-efficient OLTP in the cloud.

1 Introduction

Cloud OLTP. OLTP is increasingly moving into pub-
lic clouds, and mission-critical workloads often have
strict requirements in terms of durability, availability,
and performance. Any cloud database system must en-
sure that these workload requirements are met.
Lift-And-Shift Architectures. The most straight-
forward way to run a database system in the cloud is to
take a Classic (i.e., disk-based) or In-Memory system
and deploy it on a cloud instance with built-in storage.
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The downside of this approach is that any hardware in-
frastructure fault will likely result in data loss. When a
cloud instance has a hardware defect, there is no way
to recover the data even when instance storage is unaf-
fected. To increase durability, cloud vendors therefore
offer network-attached Remote Block Devices (RBD)
such as AWS Elastic Block Store or Azure Managed
Disk. If the database instance fails, its remote block
device can simply be attached to another instance that
can resume operation after running database recovery.
Another conventional way to increase durability is the
High Availability Disaster Recovery (HADR) architec-
ture. With HADR, the primary database instance sends
its Write Ahead Log (WAL) continuously to one or
more secondary instances with identical hardware.

Cloud-Native Architectures. Arguably the most in-
fluential cloud-native OLTP architecture has been Ama-
zon Aurora [1]. Instead of instance storage or RBD,
Aurora relies on disaggregated, multi-tenant, and fault-
tolerant storage for both the database pages and the
WAL. This allows scaling compute and storage inde-
pendently. The architecture of Microsoft Socrates [2]
is even more disaggregated by having not just a page
service but also a separate log service for the WAL.

Options and Tradeoffs. Each of the six architectures
just described (Classic, In-Memory, RBD, HADR, Au-
rora, Socrates) offers a different tradeoff in terms of
durability, availability, throughput, latency, and mon-
etary cost. Public clouds also offer multiple variants
of RBD and hundreds of heterogeneous hardware in-
stances, creating even more options. OLTP workloads
themselves can have different requirements in terms
of dataset size, transaction rate, and durability. To-
gether, these options and constraints form a large multi-
dimensional design space.
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Current Practice: Uninformed Decisions. In prac-
tice, system designers and users cannot fully explore
this large architectural and configuration space. Instead,
they must rely on intuition, vendor claims, or limited
benchmarking, which can only cover a few points of the
design space [3]. To the best of our knowledge, no sys-
tematic comparison of cloud OLTP systems exists that
would enable rigorous decision-making.
Our Approach: Cost Optimization. Given specific
workload requirements and the cloud hardware land-
scape, how can one determine the best architecture and
hardware configuration? For example, if a workload re-
quires a high lookup performance, is it better to

– choose an instance with a large main memory,
– use secondary instances to offload the lookups, or
– rely on a multi-tenant page service?

We argue that the only sensible way to answer such
questions is to select the cheapest option that satisfies
the workload constraints. In other words, the fastest ar-
chitecture (e.g., In-Memory) is not necessarily the best,
as it may be much more expensive than the alternatives.
Contribution 1: Model Framework. Given the large
size of the design space, a purely experimental approach
that exhaustively measures all configurations is not fea-
sible. Prior experimental work measuring existing cloud
DBMS can only cover a small subset of the design and
configuration space [4–6]. We therefore argue that the
only realistic option to explore the full design space
is through an analytical model. This paper presents a
general framework for such a model. It incorporates six
OLTP architectures and derives their CPU, memory,
network, and storage requirements within the charac-
teristics of public cloud environments. As Figure 1 illus-
trates, for a given workload, the framework enumerates
all feasible hardware/architecture combinations and com-

putes the cheapest setup. Using actual AWS hardware
options, we calibrate two concrete models and validate
each of them. One is for our open-source storage engine
LeanStore and the other one is for the commercial AWS
Aurora PostgreSQL.
Contribution 2: Analysis. With the LeanStore model,
we analyze OLTP workloads of varying dataset sizes,
transaction rates, and durability requirements. Based
on the results, the paper presents 12 observations that
are valuable for researchers and database system ar-
chitects. The analysis shows that cloud-native architec-
tures perform well and scale to very large dataset sizes,
while usually being cheaper than traditional designs.
Model Applications. Our model-based approach can
serve multiple use cases. It enables database adminis-
trators to determine which system and hardware con-
figuration to use to minimize cost while satisfying work-
load requirements. It informs database engineers which
architecture and building blocks are worth implement-
ing and optimizing, e.g., whether to build a cache on
instance SSDs. Finally, it can help database researchers
identify areas for further research, e.g., how to build a
low-latency log service on cloud hardware.
Towards Cost-Optimal Systems. This study devi-
ates from most research papers, as it does not provide
incremental advancements for a specific problem. In-
stead, it seeks to consolidate existing knowledge and
expand the conceptual understanding of an extensive
design space and a broad cloud landscape. The paper
is the result of a multi-year effort to determine the best
way to move our OLTP system LeanStore [7] to the
cloud. We believe that the findings are of interest to
designers of durable cloud systems.
Limitations of this Study. Our framework mod-
els systems using page-based clustered B-tree indexes,
which is a widely-used design choice for OLTP. Us-
ing other data structures, such as LSMs, could lead
to different results. For determining the optimal data
structure for a particular workload, our work could be
combined with Cosine [8]. Our findings are based on
the premise that systems are able to exploit available
hardware resources. Prior work [7, 9] has shown that
our LeanStore storage engine achieves this at least for
NVMe drives and CPU. However, this limits the appli-
cability of our results to other systems. Furthermore,
while the six OLTP architectures we model span a vari-
ety of lift-and-shift and cloud-native ones, other (novel)
architectures may be even more cost efficient. The work-
loads we consider are static, i.e., they have a fixed data
set size and lookup/update rate. Modeling dynamic work-
loads, such as those with growing datasets typical in
real-world applications, requires setting the workload
parameters to the peak values that should be supported.
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Adding such a buffer is a good idea in practice anyway
to reduce the frequency of instance and system migra-
tions. Lastly, we focus our analysis on AWS as it is
the largest cloud provider. Given that most competi-
tors have a similar pricing structure and service offer-
ing, they can be added to our framework with low effort,
which would be interesting future work.
Outline. Section 2 provides the necessary background
information by presenting six widely-used OLTP ar-
chitectures and discussing related work on OLTP and
cost optimization in the cloud. Section 3 introduces our
methodology and describes the model framework. We
calibrate and validate two concrete models in Section 4.
With the LeanStore-calibrated model, we analyze the
different architectures across a multitude of workload
dimensions and hardware options in Section 5, yielding
a number of key observations both for researchers and
system designers. We discuss the implications of those
findings for cloud OLTP systems in Section 6 and con-
clude with potential future work in Section 7.

2 Background and Related Work

Single-Writer Designs in The Cloud. We focus
on general-purpose, ACID compliant transaction sys-
tems that employ a single-writer design [10]. Most com-
mon commercial cloud OLTP systems, including AWS
Aurora [1], Microsoft Socrates [2], and the recently-
launched Google AlloyDB [11] and Neon [12,13], follow
this paradigm. Ziegler et al. [10] qualitatively compared
single-writer systems to other designs and found that
the alternatives — partitioned-writer and shared-writer
— have higher complexity, which may explain why the
former are dominant.

2.1 Classic

Everything on a Single Node. Historically, OLTP
systems were deployed on a single dedicated server, us-
ing a scale-up approach to increase performance. We
call this architecture Classic. In the cloud, it can run
on a single compute instance, e.g., using AWS EC2.
The whole database is stored on instance-local storage
and organized in fixed-size pages. We only consider cur-
rent generation instances with NVMe SSDs, as high ac-
cess latency makes HDDs unsuitable for modern OLTP.
Tuple accesses might either hit the in-memory buffer
cache, or require reading the data from SSD. Modifi-
cations to database pages are first accumulated in the
buffer cache before the buffer manager asynchronously
writes them out. Durability of committed transactions
is guaranteed by the WAL protocol. Figure 2 shows the

flow of data in this design: WAL records are written to
SSD alongside dirty pages from the cache, while pages
are read back into the cache during data accesses. The
SSD provides durability in this design, and is in fact
how people have looked at the concept of durability in
the past. In-memory changes are at risk of being lost
(when the system fails), but once they have reached
the non-volatile SSD, they are safe against power fail-
ures and software crashes. This architecture generates
no (internal) network traffic, all CPU cores are used for
transaction processing, and storage is modeled in terms
of capacity and I/O operations per second (IOPS).
Discussion. Having everything on a single node avoids
the intricacies of a distributed system, e.g., handling
high tail latency in the network. Another benefit is that
instance-local storage is fast (e.g., up to 3.3M random
4 KB reads per second in AWS [14]) and has no addi-
tional per-request cost. On the downside, if an instance
is shut down or has a hardware failure, all the data
on the ephemeral local SSD is lost. This differs from
the on-premise world, where data on an SSD can still
be recovered if, for example, the CPU or power supply
breaks down. The fixed coupling between storage and
compute, resulting from the limited number of cloud in-
stance types, is not ideal for low-intensity workloads on
large datasets, or for high-intensity workloads on small
datasets, and limits the maximum database size.

2.2 High Availability Disaster Recovery (HADR)

Multiple Replicas. The High Availability Disaster Re-
covery (HADR) architecture builds on the Classic ar-
chitecture, but adds one or more additional instances
that continuously replay the WAL on their local copy
of the database [15–18]. The primary node still handles
all write transactions, while the secondary nodes can
be used to handle read-only transactions. Other names
for the latter are standbys, hot-failovers, or read repli-
cas. The flow of data inside each node is the same as
in Classic, with additional network traffic between the
instances for shipping the log. This architecture has no
further costs besides the instances themselves as long
as everything is deployed in the same data center, but
when instances are put into different data centers, cloud
providers typically charge for network traffic.
Discussion. Having multiple replicas of the entire data-
base increases availability, durability, and adds process-
ing capacity for read-only transactions. In case of a
failover, a replacement instance can be spawned auto-
matically in the cloud, which is more convenient than
in on-premise deployments where machines need to be
physically replaced. In order for data loss to occur, all
nodes would need to fail before replacement instances
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Fig. 2 Architecture overview with data flows and technologies used.

can be provisioned and restored from the remaining
instances, which becomes increasingly unlikely with a
larger number of secondaries. Secondaries need to re-
play all changes on their own local copy of the data,
which reduces their capacity for processing read-only
transactions. The maximum dataset size of HADR is
the same as for Classic, as each replica has to keep a
copy of the entire dataset.

2.3 Remote Block Device (RBD)

Remote Disks. As mentioned above, instance-local
storage is ephemeral, so data is lost when an instance is
stopped or fails. To solve this problem, cloud providers
started to offer remote block storage early on, e.g., AWS
Elastic Block Store (EBS) or Azure Managed Disks.
This storage is exposed to compute instances as a reg-
ular block device, but internally data is sent over the
network and replicated like in a storage area network
(SAN). Amazon, for example, uses dedicated hardware
(called Nitro) to connect an instance to the storage
devices (likely via NVMe over Fabrics) so that band-
width is not shared with regular network traffic [19].
Due to the different pricing, durability, and provisioning
model, we treat systems that store the data on remote
block devices as a separate architecture.
Discussion. As remote disks can be re-attached to
other (smaller or larger) instances, this architecture of-
fers a crude solution for scaling storage independent of
compute. Since the storage device is internally repli-
cated and survives instance failures, it offers higher
durability than instance storage. Cloud providers even
offer different durability options [20, 21]. While in the-

ory there is a feature for attaching a remote disk to
multiple instances at the same time, the raw unsynchro-
nized access over the block device interface makes this
only feasible for special applications, i.e., distributed file
systems. RBD can be seen as an optimization of HADR,
as instead of the whole instance, only the storage de-
vice is (internally) replicated to achieve higher durabil-
ity. This saves cost, but takes away the option of hav-
ing replicas handle read-only transactions. As we show
in Section 4.1, remote disks have worse latency and
throughput than instance-local NVMe, placing RBD
at a potential performance disadvantage compared to
Classic and HADR.

2.4 In-Memory

Simple And Fast. Before discussing cloud-native ar-
chitectures, we examine the In-Memory architecture,
which is somewhat orthogonal to other architectures. It
keeps the entire dataset in RAM, which enables major
simplifications in the DBMS design. There is no need
for a buffer manager nor for storing the data on fixed-
size pages. Transactions directly access and modify in-
memory data structures. As Figure 2 shows, redo log
records are still written to SSD to guarantee transaction
durability. The undo log is kept in memory, as no un-
committed changes are written out (no-steal). During
normal processing, no data other than the log is written
to instance storage, and no data is read from SSD at
all. On startup, the entire database is loaded from some
persistent snapshot (not shown in the Figure 2). Cloud
providers today offer instances with dozens of terabytes
of main memory, but they are expensive and their avail-
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ability is limited [22]. But even regular instance types
offer up to 4TB of main memory, e.g., the x2iedn.32xl
in EC2, allowing large workloads to be run.
Discussion. In-Memory achieves high performance, but
keeps the entire dataset in expensive DRAM. Intuitively,
it should best fit workloads with high transaction rates
on small datasets. In-Memory has the same durability
as Classic, as both store the log on instance storage.

2.5 Aurora: Disaggregated, Redundant Storage

Separate Storage Servers. Cloud providers offer fully
managed OLTP services such as Azure SQL Database,
GCP Cloud SQL, and the multi-engine AWS RDS. One
of the offered OLTP engines in RDS is Aurora, an in-
house development by Amazon [1]. To differentiate Au-
rora’s underlying architecture from the commercial prod-
uct, we will refer to it as Aurora-like. In this archi-
tecture, the database is outsourced from the primary
to a fleet of multi-tenant storage servers. The data is
sharded into chunks of 10 GB (which the authors call
protection groups), and each chunk is managed by a
different group of six instances that store the data on
their local SSDs. As Figure 2 shows, the primary does
not write dirty pages back to the storage layer. Instead,
it sends WAL records for a particular chunk to all of
its six servers, and considers them durable when at
least four of them have acknowledged it. Storage servers
continuously apply WAL records to page images and
garbage collect old log records. Materialized page im-
ages are retained only on three of the storage nodes
to reduce the storage footprint [23]. The consistency
model of Aurora-like is that of a distributed, quorum
based system. However, the primary holds bookkeeping
information, so during normal processing it can pick a
single node when it needs to fetch a page image from the
storage servers. Only during recovery, the latest state is
reconstructed via quorum reads. Aurora-like supports
read-only replicas, which replay the log from the pri-
mary as in the HADR architecture.
Discussion. This architecture decouples storage and
compute, which allows scaling them independently. Since
both the log and the data are replicated multiple times,
the durability of the system is very high. At the same
time, keeping at least three full copies of the database
on instance SSDs incurs significant cost for some work-
loads, as detailed in Section 5.2. Aurora-like’s storage
servers make most sense in a multi-tenant environment,
as the substantial fleet of nodes required to adequately
distribute data chunks can be shared among many ten-
ants. Thus, this architecture is inherently cloud-native.

2.6 Socrates: Separate Log and Page Services

Separate Logging And Page Services. Microsoft
also offers a commercial cloud-native OLTP system called
SQL Database Hyperscale. We call its architecture, con-
sistent with its academic name [2], Socrates-like. It par-
titions the database across multiple page servers, each
of which manages a shard for which it applies log records,
serves pages to the processing nodes, and creates snap-
shots/backups. In contrast to Aurora-like, a dedicated
log service receives log records from the primary, per-
sists them, and disseminates them further to secon-
daries and the respective page servers. As shown in
Figure 2, the log service itself consists of two com-
ponents: a compute instance with local storage, and
a remote block device (which the authors call landing
zone). The primary writes log records to the block de-
vice for synchronous transaction commits, while the log
instance asynchronously consolidates, distributes, and
eventually archives the log. Both the primary and the
page servers employ a technique called resilient buffer
pool extension (RBPEX), i.e., each instance combines
its memory and local storage into one large uniform
buffer pool. Page servers use a covering cache for their
particular shard, i.e., pages move between memory and
SSD but are never evicted.
Discussion. Socrates-like divides the DBMS into five
components: primary, storage service, log service, a num-
ber of secondaries, and the backup. The remote disk to-
gether with the backup provide durability. Page servers
are conceptually only a cache on top of the backup,
enabling low-latency access. Each page is cached on
two nodes [24], which is different from the Aurora-like
model which keeps three copies. Both architectures of-
fload the application of log records to pages from the
primary, which does not have to write back dirty pages.
Socrates-like can increase availability by adding secon-
daries and/or page servers.

2.7 Backup

OLTP Needs Backups. So far we have excluded the
backup component from our discussion, but it is an im-
portant part of every OLTP system. A dedicated sepa-
rate backup facility provides high durability for the log
archive and database checkpoints. Some architectures
integrate it actively into their design, e.g., In-Memory
has to write the entire dataset to SSD on shutdown, and
periodically for snapshots, which essentially are also
backups. Socrates-like relies on the backup for durabil-
ity and utilizes it for fast point-in-time recovery. In con-
trast, Aurora-like and HADR already store redundant
copies of the data in their main system, so they do not
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strictly need it for durability. However, even these two
still require a backup, as in practice all production-level
OLTP systems need to guard against data loss or cor-
ruption due to end user mistakes or software bugs [25].
Backups in the Cloud. The target service for the
backup should be scalable, highly durable, and cheap in
terms of storage cost per month. It does not, however,
have to provide cheap point accesses nor low latency.
All cloud providers offer a foundational storage service
that fits those requirements well, e.g., AWS S3, Azure
Blob Storage, or Google Cloud Storage. Since these ser-
vices are deployed and operated at a very large scale, it
is hard to match their price point and reliability with
other solutions. Thus, all sensible cloud systems should
just back up their data regularly to such a service.

2.8 Related Work

While there is a large body of work on running analyti-
cal workloads in the cloud [4,26–36], with some focusing
on serverless query processing [37–39], there is less re-
search on OLTP in cloud environments [40–45]. Li et
al. [46] give a qualitative comparison of cloud database
systems. To the best of our knowledge, our paper is
the first extensive and quantitative analysis of different
OLTP designs in the cloud.
Commercial Cloud OLTP Systems. In the recent
past, there has been one industry paper each year about
commercial cloud-native OLTP systems. Amazon pre-
sented Aurora, which is available in AWS RDS, in 2017 [1]
and 2018 [23]. Microsoft described Socrates [2], which
is commercially marketed as SQL Database Hyperscale,
in 2019. We presented the architectures of both systems
in detail in Section 2.5 and Section 2.6. In 2020, Huawei
proposed Taurus [47], which refines the Socrates ap-
proach and presents implementation details for page
servers. Finally, in 2021 Alibaba presented PolarDB
Serverless [48], which exploits RDMA to enable efficient
transaction processing in disaggregated data centers.
We do not model PolarDB, as RDMA is not available
in AWS EC2. So while the industry is clearly interested
in cloud OLTP systems, we are only aware of one aca-
demic work in this area which analyzed different design
decisions of disaggregated storage architectures by im-
plementing them in PostgreSQL [3].
Model-Based Approaches. Chatterjee et al. [8, 49]
propose a self-optimizing key-value store as part of their
Data Calculator project [50]. Their goal is to find an in-
stance optimized data system [51] using LSM, B-tree,
and hash-table templates as building blocks, and tak-
ing cloud hardware and costs into account. Leis and
Kuschewski [52] employ a cost-optimizing approach to
analytical query processing in the cloud. They consider

data size and CPU time for analytical queries that use
full table scans and model a Snowflake-like distributed
query processing architecture where data is stored on S3
and cached on compute nodes. In contrast, we model
index operations, compare six different architectures,
and consider additional workload parameters that are
important in the context of OLTP, e.g., latency, durabil-
ity and availability. Ziegler et al. [10] analyze different
architecture types for distributed OLTP in a high-level
qualitative fashion. This paper, in contrast, focuses on
the market-dominating single-writer design and per-
forms a detailed quantitative cost-based comparison.
Such cost-optimizing approaches are becoming more
popular in the context of cloud query processing, as the
many recent papers on this topic show [53–57]. Moza-
fari et al. [42] developed a framework called DBSeer
which combines both analytical and regression models
for OLTP workloads. We model log writes, dirty page
writes, and cache misses similar to them, and share
some of their assumptions, e.g., transactions use index
operations instead of full table scans. Their paper pre-
dates cloud-native OLTP systems and the widespread
adoption of NVMe SSDs. It focuses on modeling the
CPU, memory, and IO characteristics of MySQL. In
contrast, our work is based on recent storage engines
which can exploit the massive IO parallelism of modern
NVMe drives, models multiple architectures including
disaggregated cloud-native ones, and considers a large
variety of cloud compute instances to find the cost-
optimal setup.

3 A Model Framework For Cloud OLTP

3.1 Methodology

Downsides of Comparing Existing Systems. Which
of the architectures described in Section 2 is the best?
They all utilize different building blocks for data stor-
age, access, and log writing. With hundreds of instance
types available in the cloud and diverse application re-
quirements for performance, availability, and durabil-
ity, this question becomes a multi-dimensional prob-
lem with no obvious answers. One could imagine se-
lecting existing systems that implement each of the
presented architectures and running all possible work-
load combinations on them. However, the vast num-
ber of workloads and deployment options makes such
an approach impractical. For instance, the analysis in
Section 5 required evaluating ∼380M model configu-
rations. Furthermore, measuring existing (commercial)
systems would not conceptually compare the architec-
tures themselves but rather specific implementations of
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Fig. 3 Model inputs: workload constraints and possible hardware options; Outputs: concrete system with performance and cost.

them. Implementations vary significantly in code effi-
ciency, pricing models, and hardware options.
Modeling Ideal Archetypes. For the reasons men-
tioned above, we instead design an analytical model
that captures the essence of each architecture and pre-
dicts their behavior based on real-world cloud pricing
and hardware capabilities. The balance to strike here is
— as with every model that abstracts away from the
real world — to identify the right parameters to pro-
duce meaningful results, and leave out the unimportant
ones to keep to model understandable. Our model is
based on the expected values of CPU work, I/O op-
erations, and network traffic that each architecture re-
quires for a given workload assuming an underlying en-
gine that is both efficient and can utilize the available
hardware. Elastic resources, e.g., a remote block device
or a multi-tenant storage service, are sized appropri-
ately for those requirements. For fixed resources like
the primary, only instance types with sufficient CPU,
storage, and network specifications are considered. For
our analysis in Section 5, we calibrated the model with
data from AWS (Section 4.1), though it could also be
populated with data from other cloud providers such
as Google Cloud or Microsoft Azure, which are struc-
turally similar to AWS.

3.2 Model Overview

Exhaustively Enumerating All Configurations.
As Figure 3 illustrates, our model acts as a cost function
that takes a workload specification and a list of cloud
hardware options, and outputs the system setup with
the lowest cost. To compute this function, the model
framework iterates through all architectures and cloud
compute instances, assembling a separate system con-
figuration for each. For the three architectures from Fig-
ure 2 with additional components, e.g., a remote block
device or a log service, it further evaluates each com-
bination of device type and viable instance type (for
that service). Then, it computes the achievable perfor-
mance for each configuration. Configurations that do
not meet the workload requirements are removed. Fi-
nally, the remaining systems are sorted by ascending
total cost. For example, one of the resulting config-
urations could be the RBD architecture on an AWS

c5.4xl instance, with an attached EBS io2 device pro-
visioned with 100GB and 8000 I/O operations per sec-
ond (IOPS). To calculate its performance capabilities,
the model considers the amount of all resources one up-
date/lookup consumes, and checks how many the sys-
tem can handle before the first resource is exhausted.
Not all transactions take the same amount of resources
though; for example, if 10% of the data is in an in-
memory cache, then accessing it only requires CPU and
memory resources, while for the remaining 90%, addi-
tional storage or network requests are considered.

Illustrating Example. Imagine the c5.4xl instance
mentioned above manages a dataset of 96 GB, from
which 32GB fit into the in-memory cache while the
remaining 64GB need to be accessed from the block de-
vice. The specified target throughput is 9K lookups and
1K updates per second, easily handled by the 16 CPU
cores of the instance (see Section 4.1). Ignoring group
commit for now, each of those 1K updates flushes one
log entry to SSD. Assuming a random access pattern,
2/3 of the operations result in a cache miss and read
data from SSD, which translates to 6.66k IOPS. Thus,
the EBS device needs to be provisioned with at least
7.66k IOPS in total. Note that our actual model would
employ group commit, account for dirty page writes,
and provision the EBS device with the exact amount of
required IOPS for that.

Model Assumptions For All Architectures. To
model the behavior of an OLTP system, we make a
number of general assumptions. All architectures store
data in page-based clustered B-tree indexes. Key ac-
cesses are assumed to be randomly uniform, or use a
Zipf distribution for skewed workloads. The systems
are able to do effective caching using the available stor-
age hierarchy, i.e., DRAM and/or local NVMe caches.
Transactions are hardened via write-ahead logging us-
ing group commit. Based on these assumptions we cal-
culate the expected hardware resources a lookup or up-
date requires. If, for example, the dataset is ten times
the size of the cache, then a random lookup will have
to load the data from storage with 90% likelihood, thus
requiring on average 0.9 read ops. The details on how
we derive these expected values are presented in the
rest of this section. We also make the implementation
of the model available for full reference [58].
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3.3 Workload Definition

Parameters. How well the six architectures presented
in Section 2 perform and how expensive they are de-
pends on the workload requirements, which we specify
through the following parameters:

Parameter Unit Range Abbr.
Dataset size Gigabyte 10GB - 100TB DB
Transactions #/s 1k/s - 100M/s TXS
Lookup Ratio % 0% - 100% READ
Durability 9’s/year 1×9 - 11×9’s DUR
Latency µs 1µs - 1ms LAT
Availability Failure types Node, AZ, Region AVAI

Dataset Size. The most basic property of an OLTP
workload is the dataset size, which we assume to be
static. We analyze datasets that fit into the memory
of a moderate node, e.g., 10GB, as well as ones that
exceed the total storage capacity of even the largest
cloud SSD instances, e.g., 100 TB. Only systems that
decouple their storage layer and partition the data over
a cluster of machines can handle the latter.
Performance. Most OLTP workloads can be decom-
posed into single-tuple index operations, which is why
we chose to focus on point lookups and updates. We
usually model the most challenging situation where the
access pattern is randomly uniform. When we look at
skewed workloads, we use a Zipf distribution and only
consider lookups. We specify system performance in
terms of transactions per second the system can sustain
in steady state and which percentage of those transac-
tions are (read-only) lookups. An update (write trans-
action) is modeled as a lookup which additionally marks
the affected data page as dirty and writes a log entry.
In our experiments, transaction rates range from a light
load of 1000 tx/s up to a very demanding 100M tx/s to
cover the whole spectrum of possible OLTP workloads.
Latency. We consider the average latency of transac-
tions in the database system itself, excluding the round-
trip time to the client. Sensible latency bounds vary in
the range of 1 µs up to 1 ms, as an in-memory B-tree
lookup takes about one microsecond. Even if an oper-
ation has a cache miss and needs to retrieve the data
from remote storage in the same data center, this oper-
ation takes less than one millisecond (see Section 4.1).
In order to improve average operation latency, systems
have to cache a larger share of the data.
Availability. Availability is commonly measured as the
percentage of successful requests or the time the sys-
tem is able to answer requests [59]. Cloud instances use
commodity hardware, so they are susceptible to occa-
sional hardware failures [60]. In addition, there are more
components and systems that could lead to an instance
not being reachable, e.g., top-of-rack switches, power

supply, DNS, public internet connectivity, etc. [61, 62].
Cloud providers typically offer a service level agreement
(SLA) that contractually guarantees a certain “uptime”
for an instance on a monthly basis. Typical promised
uptimes are 99.5% per month, but range down to as
low as 95% for certain instances with HDDs [63, 64]. If
the cloud provider misses their SLA, i.e., a machine is
not reachable for the guaranteed time, the customer is
eligible to a refund. AWS, for example, gives back 10%
(30%; 100%) of service credits if the machine is reach-
able less than 99.5% (99%; 95%) of the time. But even
an availability of 99.5% means an instance could be un-
reachable for more than 3 hours per month, which is un-
acceptable for mission-critical OLTP systems. A refund
on the raw instance cost will likely not compensate the
losses of a company that cannot access their data. Since
there is no option to increase the availability of a sin-
gle instance, one must design cloud systems for failover,
meaning that when (not if) the primary becomes un-
available, another instance needs to take over. Corre-
lated failures are also a risk. When an instance becomes
unavailable, other instances in the same rack, or even
the same data center, are disproportionately affected as
well. Thus, cloud providers recommend deploying addi-
tional instances in other, geographically-close data cen-
ters often called “availability zones” (AZs). Our model
allows placing secondary instances and multi-tenant ser-
vices, e.g., Aurora storage servers, across AZs to reduce
the impact of failures affecting a whole data center.
However, this can increase operation latency and have a
non-negligible impact on cost, as most cloud providers
charge for inter-AZ network traffic by volume [65, 66].
This policy might change, though, as Azure recently
switched to no longer charging for inter-AZ traffic [67].

Durability. A central aspect of any OLTP system is
durability. In contrast to availability, it describes the
ability of a system to access data at some point in the
future, possibly after recovery has run. Cloud providers
usually state it as the number of leading nines of the
probability that data is intact after one year, e.g., 0.9997
would translate to 3×9’s. We assume that OLTP sys-
tems do regular backups to a cheap object storage ser-
vice (see Section 2.7) with such high durability that the
loss of the backup is practically irrelevant. To show that
this assumption is justified, let us assume the backup
is stored in chunks of 100MB on AWS S3. With the
11×9’s durability that S3 provides per object per year [68],
one can back up 1 PB of data and expect only one chunk
to be lost in 10,000 years, which is unlikely enough
to be ignored. We further model that all architectures
keep the last hour of changes in their system, and that
log records older than that are incorporated into the
log archive/backup. Thus, the durability of the whole
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OLTP system translates to the durability of the tail
of the WAL. How different architectures store it deter-
mines their durability.

3.4 General Model Traits

Assumptions in Detail. We assume that all archi-
tectures store their data in page-based clustered B-
trees indexes. By default, we configure a page size of
4 KB to match the block size of NVMe drives. Larger
page sizes would increase read/write amplification for
random access workloads. Each CPU core can process
a fixed number of B-tree index ops/s, and in-memory
transactions scale with the number of CPU cores (see
Section 4.1), i.e., the system is not limited by unscalable
synchronization. Thus, we ignore the overhead of trans-
action isolation and synchronization of data structures.
In practice, there will be an architecture-independent
CPU overhead which does not affect how architectures
fare relative to each other. Secondary indexes can be
modeled with additional lookups and a larger data size
in the workload specification. We assert that 90% of
the memory of a machine can be used as cache, or for
In-Memory to store the entire dataset. The cache hit
rate for random accesses is calculated as the memory
size divided by the total data size. We model the prob-
ability of a page being dirty as the ratio of updates to
all transactions for architectures that write back dirty
pages. Furthermore, we assume that the DBMS is able
to keep inner B-tree nodes always in the buffer cache.
Thus, an operation can have either zero pages misses (if
the leaf node is in the cache) or exactly one page miss
(if the leaf node is on secondary storage). The model
considers WAL records and page images that are sent
over the network, but ignores client traffic as it is the
same across all architectures. For systems that can em-
ploy secondaries, we limit their number to a maximum
of three. The secondaries use the same instance type as
the primary, as they must be able to handle the pri-
mary’s workload when a failover occurs. For the same
reason, we exclude the first secondary from read-only
processing, as otherwise the system capacity could be
exceeded. By default, all resources of the system are
placed into the same data center. All architectures em-
ploy group commit by default, as this feature is widely
used in real systems and often reduces the required
IOPS significantly. We assume each log record has a
48 byte header, and the total size for log storage is set
to keep one hour of updates, after which log records
are staged to a remote log archive (e.g., a cloud ob-
ject store such as S3) which we do not model as it is
common across architectures.

Algorithm 1 Computing the properties of Classic
computeClassicProperties(W,N)
Input: workload parameter W ,

cloud compute node N

Output: system properties S for Classic

1: if(WdbSize + ariesLogStorage > NstorageCapacity) return ⊥
2: readsPerUpdate = p(cacheMiss)

3: logWritesPerUpd =

{ WariesRecordSize
NmaxIOSize

if WgroupCommit

1.0 otherwise
4: writesPerUpdate = p(dirtyPageEvict) + logWritesPerUpd

// Limit updates by the most restrictive resource

5: Supdates = min


NreadOps

readsPerUpdate
,

NwriteOps

writesPerUpdate
,

NcpuCycles

cpuCyclesPerTx
, WreqUpdates


// Calculate the resources left for lookups

6: readsPerLookup = p(cacheMiss)

7: writesPerLookup = p(dirtyPageEvict)

8: cpuLeft = NcpuCycles − Supdates ∗ cpuCyclesPerTx

9: readOpsLeft = NreadOps − (Supdates ∗ readsPerUpdate)

10: writeOpsLeft = NwriteOps − (Supdates ∗ writesPerUpdate)

// Limit lookups using the remaining resources

11: Slookups = min


readOpsLeft

readsPerLookup
, writeOpsLeft

writesPerLookup
,

cpuLeft
cpuCyclesPerTx

, WreqLookups


// The data is durable if the SSD does not fail

12: Sdurability = 1−AFRSSD

// The average latency of transactions

13: StxLatency =
p(cacheHit) ∗memoryOpLatency +

p(cacheMiss) ∗ nvmeReadLatency

14: return (Supdates , Slookups , Sdurability , SopLatency)

Model Implementation. Our model is implemented
as a 4,000 line C++ program. The hardware configura-
tions are compiled with data from three sources: Basic
instance information is retrieved programmatically, en-
hanced with manually crawled data from the vendor
documentation, and calibrated through extensive ex-
periments (see Section 4.1). In order to process the 1.5M
combinations that are possible for each set of workload
parameters, the program eagerly removes provably sub-
optimal combinations. This is done by pruning configu-
rations that do not meet workload requirements and by
employing heap select instead of exhaustively establish-
ing a total order over qualifying options. With these op-
timizations, the invocation of the model for one specific
workload takes around one second, which even allows
running the model in online scenarios.

3.5 Architecture-Specific Model Traits

Classic. The Classic architecture runs on a single in-
stance with local storage which has to fit the entire
dataset. Its properties are calculated as shown in Al-
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gorithm 1. First, in line 1, we check if the instance
has sufficient storage capacity for the database and the
WAL. If not, the model immediately returns ⊥, indi-
cating that the workload cannot run on this instance.
Then in line 2-4 the model calculates how many stor-
age reads and writes are required on average per update
transaction. A page read occurs for every cache miss,
and a page write occurs when a dirty page is evicted
from the cache. When group commit is enabled (the de-
fault), the log records of multiple transactions can be
hardened with a single write. Without group commit,
each transaction requires a separate write for its WAL
records. In line 5, the achievable update rate is deter-
mined by the most constrained resource (reads, writes,
or CPU). It is capped by the workload’s requirements,
so the model can calculate how many resources are re-
maining for lookups (line 8-10), which are then calcu-
lated in a similar fashion (line 11). The durability (line
12) of the Classic architecture is determined by the
annualized failure rate (AFR) of SSDs, as they are the
component with the highest chance to fail. Also, storage
device failures are most often not transient and lead to
data loss [69]. A study by Microsoft [70] showed an SSD
AFR ranging between 0.1% for enterprise grade devices
up to 1.0% for consumer drives used in data centers.
The average transaction latency (line 13) is modeled
as the weighted average of in-memory and SSD access
times, which we measure in Section 4.1. For brevity,
the general model parameters as well as the remaining
architecture specifications are listed in Appendix A.

HADR. In addition to the constraints that apply to
the primary instance for Classic, we put a resource
limit on log records that are sent to secondary instances
based on the network bandwidth of the instance. In case
those secondaries are placed in other availability zones,
we account for inter-AZ traffic costs as well. Since sec-
ondaries need to individually apply log records they
receive from the primary, we model their remaining
capacity for lookups to be equal to that of the pri-
mary. Also, we do not make any assumptions about
the possibility of partitioning lookups to increase cache
efficiency on the read-only replicas, and employ the
same cache hit rate, and thus also latency, on all in-
stances. For our analysis, we vary the number of sec-
ondary nodes between one and three. HADR has a
much higher durability than Classic, because for data
loss to occur, all instances would need to fail simulta-
neously before the dataset could be replicated to newly
spawned nodes. We model the probability that k in-
stances fail in the same repair interval with a Poisson
distribution Pr(X = k) = λk ∗ e−λ/k! where λ is the
number of failures we expect during one repair interval.
We calculate λ as #nodes ∗ pnode failure and estimate

pnode failure = 1−monthly node availability
#repair intervals per month . The number of

repair intervals per month is calculated via the mean
time to repair (MTTR), for which we conservatively
assert that we can copy the dataset to a new instance
with 50MB/s even if the remaining nodes are under
high load. Finally, when we have n instances in total,
we calculate the durability as the probability that at
most n− 1 instances fail in every single repair interval
of a year. As an example, with a monthly availability
of 99.5%, an MTTR=10h and two secondaries, HADR
would have 8×9’s durability.
Remote Block Device. The storage volume is sized
so that it exactly fits the dataset plus the log tail, i.e.,
1 hour of WAL records. It is provisioned with enough
bandwidth and IOPS to handle the workload. If one
device does not suffice, multiple devices are combined
in a RAID-0-like fashion. There are additional instance
limits that apply, e.g., an AWS c5.large instance can
only handle at most 27 EBS devices with an aggregate
bandwidth of 594 MB/s and 20k IOPS [71, 72]. Thus,
larger instances are required for higher IOPS. Latency
of remote block devices is higher than, for instance, lo-
cal storage. When the system fails, the block device is
attached to a new instance, which needs to start up and
run database recovery. The durability of remote storage
devices is documented by cloud providers, e.g., in AWS
“99.8-99.9%” for an io1 volume [73], while Azure repli-
cates data “across three availability zones in the region”
for zone-redundant managed disks [21]. The primary
does not use local storage in this design.
In-Memory. All data is kept in memory, while the
log is written to local storage. We estimate an index
operation to cost the same CPU resources as in the
other architectures, and all lookups and updates have
in-memory latency, as all B-tree nodes are kept in mem-
ory. Durability is equivalent to the Classic architecture.
Aurora-like. The primary uses an in-memory buffer
cache but does not require local storage. Both the pri-
mary and the secondaries need sufficient network band-
width to receive page images from the storage servers
when they have a cache miss. Additionally, the primary
requires enough network bandwidth to send each log
record to six storage servers and all secondaries. The
storage servers are modeled as a multi-tenant scale-
out service. Thus, a particular Aurora-like database can
employ one or more NVMe-backed instances, not neces-
sarily matching the primary instance type. In fact, the
multi-tenant nature of this component makes it reason-
able to provision arbitrary fractions or multiples of an
instance for one specific database. The factor is set so
that the log tail can be stored six times and the dataset
three times. It is further increased if more IOPS, net-
work bandwidth (for more log writes and page reads),
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or memory (for lower latency page reads) are required.
Unlike in the commercial Aurora system, we place all
storage servers in the same AZ as the primary for a
meaningful comparison with the other architectures,
and vary this only for the availability analysis.
Socrates-like. The primary uses instance storage not
for storing the dataset, but for extending the buffer
pool. In case there is a cache hit for a page that resides
on SSD, both a storage read and a write are required
to swap it with a page from memory. The same applies
to the buffer pool of page servers, which are modeled
much like the Aurora-like storage servers as a fraction/-
multiple of an instance with local NVMe storage. Their
combined memory and SSD capacity is sized to fit two
copies of the entire database. A remote block device is
provisioned and conceptually attached to the primary
for storing log records, and another fraction of an in-
stance with local storage is allocated for the log service.

4 Model Calibration and Validation

4.1 Calibration in AWS

EC2 Instance Types. We instantiate our model with
the specifications of the hardware available in AWS,
currently the largest cloud services provider. All data
we use is as of March 2024. A basic list of EC2 instances
with their CPU cores and frequencies, memory capac-
ity, network bandwidth, and storage devices is retrieved
from Vantage [74], a cloud cost management provider.
We manually assembled data not available from Van-
tage, such as instance storage read and write opera-
tions, EBS instance limits for IOPS and bandwidth,
and provisioning constraints for EBS, from the AWS
documentation. We exclude GPU and machine learning
instances. We also filter out instances that lack clearly
quantified performance metrics, such as those with net-
work throughput described as “moderate” or similar, as
well as CPU burstable and legacy instance types. For
instances with burstable network or EBS performance,
we only consider the baseline performance. These de-
cisions minimize exposure to noisy neighbor effects, as
for the remaining instances AWS statically assigns CPU
cores, memory bandwidth, and IOPS to each instance
slice. All in all, we end up with 555 different EC2 in-
stance types and five different types of EBS volumes.
For the multi-tenant storage and page servers, we con-
sider the largest NVMe-backed instance sizes of these
types: is4gen, im4gn, i4i, i4g, c6gd, r7gd, i3en, i3, r6gd,
m5d, m6gd, r6id, r5dn, m7gd, m5ad, m6id, c5ad, c5d,
m6idn, c6id, c7gd, r6idn, m5dn.
AWS Prices. All prices we report are for the us-east-1
region. For EBS, S3, and network traffic, we use the

list price. For EC2 instances, there are different pric-
ing models to consider. One can choose between on-
demand, provisioned for one or three years (paid up-
front or monthly), savings plans, and spot instances. A
cost-optimizing company will likely use a mixture of 1-
year and 3-year reserved instances to best fit changing
workload requirements. For example, the hourly price
for the different reserved categories for a c7g.16xl in-
stance varies between $0.88 and $1.53, which is on av-
erage 52% of the on-demand price of $2.32. Across all
EC2 instance types, a mix of reserved instances on aver-
age costs 50.8% of the on demand price. For simplicity,
we assume a uniform discount of 50% on the on-demand
instance prices in this paper. We do not consider spot
instances, although they provide even higher discounts,
since we model steady-state production OLTP work-
loads and spot instances could be reclaimed by AWS at
any time due to high demand. Note that the discount
on EC2 prices is conceptually different from any blan-
ket discount that big companies may receive, as the
latter applies to all AWS resources, while the former
changes the relative pricing model of resources inside
AWS, and thus has an impact on the outcome of our
analysis. Specifically, it makes EC2 instances relatively
more attractive compared to storage services such as
EBS, which do not offer discount models. In conclusion,
calculating with 50% of the EC2 on-demand prices and
regular prices for all other resources creates a more re-
alistic AWS pricing structure.
Network. Network is modeled in terms of bandwidth
limits and latency. Experiments have shown that the
limit can be reached with page-sized packets. Even with
smaller packets, high packet rates can be achieved, e.g.,
2.2M/s on an m5.24xl instance [75]. We assume a la-
tency of 90µs (2ms) between two instances in the same
data center (different AZs in the same region) [76–
78]. Although network latency in cloud data centers is
not stable due to multi-tenancy and quality-of-service
mechanisms, we do not model complex latency distribu-
tions. Extending our model or exploring the impact of
techniques like ENA Express [79] on latency variability
would be interesting future work.
Storage. We performed extensive experiments to de-
termine the limits of both instance storage and EBS
using the fio benchmarking tool (v3.32) configured
with direct I/O and the libaio engine on an i3en.24xl
instance. Its local storage comprises 8×7.5 TB NVMe
SSDs, which we combine into a RAID-0 using mdadm.
The EBS device is an io2 volume provisioned with the
maximum possible 64K IOPS. Based on the IOPS and
latency results in Table 1, instance storage in our model
is configured with a write latency of 44µs, a read la-
tency of 132µs, and 80% of the documented read ops.
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Table 1 Model calibration using microbenchmarks.
EBS: io2(64k iops); NVMe: i3en.24xl instance store.

Device Thr. Q-Dep. IOPS Limit Op. (Fsync) Lat.
4KB Random Reads

NVMe 32 64 1.66M 2M 1.2ms
NVMe 1 1 7.5K 2M 132µs
NVMe 1 64 193K 2M 331µs
EBS 1 1 2.7K 64K 374µs
EBS 1 32 64.0K 64K 500µs

Sequential Writes with fdatasync every 100 operations
NVMe 1 1 22.5K 1.6M 44us(31µs)
NVMe 16 64 935K 1.6M 1.1ms(1.1ms)
EBS 1 1 3.4k 64K 292µs(7.4µs)
EBS 16 64 3k 336ms(336ms)

Sequential Writes with fdatasync every operation
NVMe 1 1 20.9k 1.6M 42µs(45µs)
NVMe 16 64 283K 1.6M 3.6ms(3.6ms)
EBS 1 1 3.4k 64k 292µs(6.5µs)
EBS 16 64 2.9k 64K 343ms(344ms)

For EBS, we assume 100% of the provisioned IOPS, and
use a write (read) latency of 292µs (374µs).
B-tree Operations. To approximate how many trans-
actions an OLTP system can achieve, we benchmark B-
tree operations using our high-performance storage en-
gine, LeanStore, which is available as open source [7,80].
Again, we use an i3en.24xl instance, which has 96 vir-
tual CPU cores running at 3.1 Ghz and 768 GB of main
memory. We create a B-tree with 147M entries (8 byte
key and a 60 byte value), totaling 10 GB of data. The
buffer cache is configured so that the entire tree fits into
memory. With a single thread, LeanStore achieves 1.8M
lookups/s, or alternatively, 1.1M updates/s. With 10
threads, it achieves 18M lookups/s. These results illus-
trate that in-memory operation performance is rarely
the bottleneck with modern storage engines. However,
we conservatively cap the number of transactions to
1M/s per CPU core (∼ 4000 cycles) to ensure that,
even on small instances, enough CPU capacity is left
for non-transaction processing related work.
Concrete Example. To illustrate how the model
uses all the numbers obtained above, we apply them to
Algorithm 1 for an example workload of DB=100GB,
TXS=200k tx/s, READ=50% on a c7gd.4 instance.
With a log retention time of 1 hour and 68 byte tuples,
the required storage is calculated as 100GB + 3600s ∗
200k tx/s ∗ 0.5 ∗ (2 ∗ 68 + 48) byte = 161GB which fits
within the 950GB instance storage. The 16 CPU cores
can sustain 16 ∗ 2.5GHz/4000 cycles = 10M tx/s. With
32 GB RAM, the probability of a cache miss for a page
access is 68%. For the instance store’s 268k read opera-
tions, this translates to at most 268k/0.68 = 316k tx/s
from a storage read perspective. Using group commit,
each update requires (2∗68+48) byte/4096 byte = 0.045

log writes. Dirty page writes per transaction are esti-

Table 2 Validating model accuracy for the different architec-
tures. Each workload is executed on the predicted cost-optimal
instance. READ=70%, DUR=1x9, LAT=1ms, AVAI=Node.

Workload Model Prediction Measured
Dataset Target Perf. Architecture Instance Perf.
1TB 100k tx/s Classic is4gen.xl 104k tx/s
1TB 100k tx/s In-Memory x2gd.16 3,150k tx/s
1TB 100k tx/s HADR is4gen.xl 105k tx/s
1TB 100k tx/s RBD c6gn.12 99.9k tx/s
1TB 100k tx/s Aurora-like c7gn.l 106k tx/s
1TB 100k tx/s Socrates-like c6gd.2 171k tx/s

10GB 1M tx/s Classic i4g.l 1.21M tx/s
10GB 1M tx/s In-Memory r6gd.l 1.20M tx/s
10GB 1M tx/s HADR i4g.l 1.23M tx/s
10GB 1M tx/s RBD c6g.2 3.12M tx/s
10GB 1M tx/s Aurora-like r5n.l 1.13M tx/s
10GB 1M tx/s Socrates-like r6gd.l 1.05M tx/s

100GB 2M tx/s Classic r6gd.4 9.71M tx/s
100GB 2M tx/s In-Memory x2gd.2 4.80M tx/s
100GB 2M tx/s HADR r6gd.4 9.18M tx/s
100GB 2M tx/s RBD r5b.4 2.43M tx/s
100GB 2M tx/s Aurora-like r6g.4 3.83M tx/s
100GB 2M tx/s Socrates-like x2gd.2 4.81M tx/s

mated as #updates/(#updates + #lookups) ∗ 0.68 =

0.34, so together with log writes, the storage can han-
dle 134k/(0.34 + 0.045) = 349k updates/s. After the
updates have been accounted for, the remaining CPU
cycles would suffice for 9.9M, storage reads for 216k,
and storage writes for (134k−100k ∗0.39)/0.34 = 281k

lookups/s. Finally, the average transaction latency is
computed as 0.32 ∗ 2µs+ 0.68 ∗ 132µs = 90µs.

4.2 Model Validation using LeanStore

Implementing Architectures. We discussed in Sec-
tion 3.1 that there are too many configurations to ex-
haustively validate them all. Nevertheless, we still want
to confirm the accuracy of our model. For that, we
choose LeanStore as the storage engine, as it can fully
utilize modern NVMe devices, which traditional engines
often fail to achieve [9]. It implements a buffer man-
ager and logging, which means the I/O is the same
as in a full-fledged OLTP system. Out of the box, we
can use it for the Classic, In-Memory, and RBD ar-
chitectures. For validating the architectures that send
the WAL to a different node (HADR, Socrates-like, and
Aurora-like), we extended LeanStore to send the WAL
over the network using TCP and io_uring with a con-
figurable write amplification, e.g., six for Aurora-like.
We simulate page server accesses for Aurora-like and
Socrates-like by requesting dummy pages from another
node over the network with the cache miss probability
our model predicts for a certain architecture, e.g., 99.6%
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Table 3 Validating model accuracy for different workloads. Each workload dimension is varied individually.

Workload Model Prediction Measured Performance
DB TXS READ DUR LAT AVAI Architecture Instance Throughput Latency
100GB 10k 70% 1x9 1000µs Node classic c6gd.l 25.1k tx/s 318µs
10GB 10k 70% 1x9 1000µs Node classic c6gd.m 15.4k tx/s 519µs
500GB 10k 70% 1x9 1000µs Node classic is4gen.m 20.3k tx/s 394µs
1TB 10k 70% 1x9 1000µs Node classic i3en.l 29.9k tx/s 535µs
5TB 10k 70% 1x9 1000µs Node classic is4gen.2 75.9k tx/s 422µs
100GB 1k 70% 1x9 1000µs Node rbd c6g.m 1.1k tx/s (*) 7257µs
100GB 100k 70% 1x9 1000µs Node classic c6gd.2 129k tx/s 496µs
100GB 1M 70% 1x9 1000µs Node in-memory x2gd.2 4,850k tx/s 12µs
100GB 10M 70% 1x9 1000µs Node in-memory i4g.4 9,900 tx/s 1µs
100GB 10k 0% 1x9 1000µs Node classic c6gd.l 10.5k tx/s 762µs
100GB 10k 30% 1x9 1000µs Node classic c6gd.l 14.3k tx/s 558µs
100GB 10k 100% 1x9 1000µs Node classic c6gd.l 25.4k tx/s 314µs
100GB 10k 70% {3,4,11}x9 1000µs Node aurora c6g.m 19.8k tx/s 404µs
100GB 10k 70% 1x9 100µs Node classic x2gd.l (**) 10k tx/s 83µs
100GB 10k 70% 1x9 90µs Node classic x2gd.xl (**) 10k tx/s 50µs
100GB 10k 70% 1x9 20µs Node in-memory x2gd.2 4,850k tx/s 12µs
100GB 10k 70% 1x9 1000µs AZ aurora c6g.m 19.8k tx/s 404µs
100GB 10k 70% 1x9 1000µs Region hadr c6gd.l 25.1k tx/s 318µs

(*) When the EBS devices is under load, the read latency increases drastically. Our current model does not capture this property.
(**) The transaction rate is fixed to the requested rate as the focus is on the achievable latency.

for the 1 TB dataset using Aurora-like on an c7gn.l in-
stance. Note that this way, the CPU work, disk I/O,
and network I/O on the primary are realistic, while the
log and page servers only execute the network stack.
Since they are not doing CPU heavy work, they should
not become the bottleneck in a full implementation.

Experiment 1: Validating Architectures. First, we
want to confirm that our model produces accurate pre-
dictions across all six architectures. Table 2 shows the
evaluated workloads. They vary in dataset size and trans-
action rate, with the lookup ratio set to 70%, durability
to 1x9, latency to 1ms, and no guard against node fail-
ures. We configure LeanStore for each of the architec-
tures and execute each workload on the cheapest EC2
instance that the model predicts for it. Every workload
runs for 150s to ensure a steady state, from which we
report the average of the last 20s. Throughput shows
little variance, with deviations in any one-second inter-
val remaining within 5% of the average. Table 2 shows
that our model predictions are accurate, i.e., all config-
urations meet the required performance bar. It is not
surprising that RBD achieves performance closest to
the required level in the 1TB dataset workload, as its
IOPS are provisioned precisely for the high page miss
rate which is the bottleneck in this scenario. For the
workload with 2M tx/s, the achieved performance is
up to 4.9× higher than required, but on smaller in-
stances that cannot cache the entire dataset perfor-
mance would immediately drop far below 2M tx/s. Sim-
ilarly, In-Memory on the 1TB dataset is much faster
than required, but there is no cheaper instance that
would provide enough DRAM for it. Thus, the results

also indicate that our model does not recommend overly
expensive instances, but indeed the cheapest ones that
can still execute the workload.

Experiment 2: Validating Workload Dimensions.
Now that we have established the model captures each
architecture well, we validate it across a greater vari-
ety of workloads. As a baseline we use a workload with
10k tx/s on a 100 GB dataset, 70% lookups, 1x9 dura-
bility, 1ms latency, and no availability guarantees. Our
model recommends using the Classic architecture for
that on an c6gd.l instance, which has 4GB RAM and
2 vCPUs. With that setup LeanStore achieves 25.1k
tx/s with an average latency of 318µs. Next, we vary
each workload dimension individually and use the ar-
chitecture that results in the cheapest setup for that
workload. As the results in Table 3 show, the required
performance and latency can be achieved on the rec-
ommended instance in all cases except for two. With
TXS=1k, RBD is not able to stay within the predicted
latency because our model fails to capture that latency
of the remote block device increases significantly un-
der load. Also, with TXS=10M, In-Memory is actually
missing the required throughput by 1%. However, the
results generally show that our model can predict cloud
OLTP performance reasonably well for the LeanStore
engine across a variety of workloads. Cases where the
model prediction deviates from the observed perfor-
mance indicate that either the model has to be extended
or that the tested system fails to exploit the given hard-
ware, and both of these outcomes are instructive.



14 Michael Haubenschild, Viktor Leis

Table 4 Model validation with AWS Aurora. For 12 out of 18
workloads, Aurora achieves ≥ 90% of the predicted throughput.

Workload Pred. Measured Perf.
Dataset Target Perf. Instance READ=100% READ=70%

10GB 10k tx/s db.r6g.l 10.5k tx/s 10.4k tx/s
10GB 100k tx/s db.r6g.xl 147k tx/s 90.7k tx/s
10GB 1000k tx/s db.r6g.8 1,180k tx/s 509k tx/s

100GB 10k tx/s db.r6g.xl 10.8k tx/s 9.85 tx/s
100GB 100k tx/s db.r6g.4 115k tx/s 97.8k tx/s
100GB 1000k tx/s db.r6g.8 1,160k tx/s 478k tx/s

1TB 10k tx/s db.r6g.xl 11.5k tx/s 9.98k tx/s
1TB 100k tx/s db.r6g.8 49.3k tx/s 46.4k tx/s
1TB 1000k tx/s db.r6i.32 424k tx/s 385k tx/s

4.3 Model Validation with AWS Aurora

Recalibrating the Model. To demonstrate that our
model framework is not tailor-made for LeanStore, but
is adaptable to production-grade cloud OLTP systems,
we configure it for AWS Aurora PostgreSQL. This re-
quires several small changes to the model because Au-
rora’s frontend is based on a traditional disk-based sys-
tem, which is not optimized for efficient CPU usage. We
increase the in-memory cost per transaction to 60.000
cycles (∼24µs) and set the page size to 8 KB, a charac-
teristic inherited from PostgreSQL. Additionally, since
Aurora can only be configured on a subset of EC2 in-
stance types, we restrict our model to use only those
instances. Finally, we add support for non-clustered in-
dexes to the model, as Aurora PostgreSQL does not
have the capability to create index-only tables. For the
measurements, we use a stored procedure which exe-
cutes 1000 transactions with just a single client interac-
tion, minimizing network roundtrips. Each transaction
retrieves or updates a random tuple based on the spec-
ified lookup ratio. We use pgbench as the benchmark
driver, configure it with multiple clients, and run it un-
til the system achieves steady-state performance. The
reported tps is the average from a 20s run.
Aurora Benchmark Results. Table 4 shows Aurora’s
performance for different dataset sizes and requested
transaction rates. Interestingly, the model predicts the
same instance type for both 100% and 70% lookup ra-
tios in all scenarios. Aurora meets the required through-
put in 8 out of the 18 experiments. In 4 experiments,
the performance is within 10% of the predicted value,
while in the remaining 6 cases, the actual performance
ranges from 51% to 38% of the prediction. In particu-
lar, we were not able to achieve more than half a million
tx/s in any of the workloads containing updates, which
indicates some scalability limit in Aurora. For the work-
load with 100k tx/s on 1TB data, our model predicts
the primary reading pages at 1.1 GB/s over the net-
work, but the actual rate is only 630 MB/s, despite the

9.5 Gbit/s network interface and CPU load at 43%. We
suspect the reason for this is contention and overhead
in the IO stack, but as Aurora is a hosted service we
cannot obtain detailed performance profiles, so the ex-
act reason remains unknown. Having an engine that we
can fully study, profile, and tweak is one of the reasons
why we use LeanStore for our study in Section 5.

5 Multi-Dimensional Analysis of OLTP

Choice of Model Configuration. In the previous
section we have shown that our model can be configured
for a flash-optimized research system like LeanStore as
well as for a full commercial system like AWS Aurora.
Which one of the two should be used for gaining insights
across the cloud OLTP landscape? For this analysis, we
choose the LeanStore configuration. It is closer to what
database engines are theoretically capable of on current
cloud hardware, and thus gives more generic insights
than any particular production-grade system would.

5.1 Choice of Workloads

Reasonable Parameter Ranges. For the initial work-
loads, we assume a moderate update rate of 30%, al-
low transaction latencies up to 1ms, and require at
least 3×9’s durability. The latter corresponds to a 0.1%
chance of log tail loss per year, which seems reasonable
for many OLTP applications. In later experiments we
vary durability between 1×9 (10% chance of data loss in
a year) and 11×9’s (0.000000001%). We choose 100 TB
as the upper limit for the dataset size, as it is just above
what a single EC2 instance can store (i3en.24xl), and
also the maximum database size that Azure SQL Hy-
perscale supports [2]. We also look at workloads with
up to 100M tx/s, which is pushing the limits for an
OLTP database and only needed in extremely large
operational systems [81]. However, our analysis shows
that some system architectures conceptually allow such
high throughput1. The vast majority of customer work-
loads will fall more towards the center of the parameter
ranges, not the extremes.
Example Workload. One such workload could for ex-
ample be: DB=1TB, OPS=100k/s, READ=70%,
DUR=3x9, LAT=1ms, AVAI=Node. Our model deter-
mines these system configurations are the cheapest:

1 At these rates, network communication with clients would
likely be a bottleneck. This issue could be solved by using stored
procedures or co-locating the application with the database.
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Architecture Primary Total Hourly Cost Factor
Classic cannot satisfy workload constraints
In-Memory cannot satisfy workload constraints
HADR is4gen.xl $0.58 1.7x
RBD c6gn.12 $1.81 5.3x
Aurora-like c7gn.l $0.34 1.0x
Socrates-like c6gd.2 $0.37 1.1x

The cost numbers are per hour, and cover all resources
that the DBMS internally uses, i.e., instances, network,
and EBS (if used). For Classic and In-Memory, there is
no result because instance storage cannot guarantee the
3×9’s durability that the workload requires. Aurora-like
is the architecture with the overall cheapest configura-
tion in this case, while the cheapest one using RBD
costs 5.3× as much. Note that the results for Aurora-
like and Socrates-like should not be confused with the
corresponding commercial systems. In the next experi-
ments, we will only show the overall cheapest architec-
ture configuration (not the one with the highest perfor-
mance) for each workload using the following notation:

c7gn.l

$0.34A

Architecture:
   urora-like

Primary Instance

Total System
Cost per Hour

A

Next, starting with the example workload above, we
vary the dataset size and transaction rate. Here, the
full potential our of model comes into effect, as it al-
lows us to look at many different combinations of the
two parameters and compare them with each other in
a single plot.

5.2 Dataset Size and Transaction Rate

Overview. The plot on the left-hand side of Figure 4
shows the cost-optimal architecture and instance type

combination for datasets ranging from 10 GB to 100TB
and transaction rates between 1k and 100M per second.
As expected, system cost increases for larger datasets
and higher transaction rates. The plots on the right of
Figure 4 show for each architecture the cost ratio com-
pared to the optimal choice for each particular work-
load. Note that the workload discussed in the previous
subsection appears in the fourth row and third column
from the top-left in each of the plots.

Low Transaction Rates. For low transaction rates,
the RBD architecture offers the lowest cost, because
storage capacity on EBS gp3 devices is inexpensive (see
Table 5). However, at higher transaction rates, the re-
mote block device must be provisioned with more (ex-
pensive) IOPS, and an instance capable of supporting
these has to be selected. These requirements make this
architecture less attractive. In the worst case, for a
10 TB dataset and 1m tx/s, it is 13 times more ex-
pensive than Aurora-like and Socrates-like, as it must
use a very large (and expensive) primary instance to
keep over 90% of the dataset in cache. No instance is
available that can handle the EBS IOPS that would be
required for smaller cache hit rates. Similarly, RBD can-
not support workloads with 100M tx/s at all. Note that
all configurations shown in Figure 4 use EBS gp3 de-
vices, as they provide a strictly better price point than
io2 devices, and the 3×9’s durability of the workloads
can be provided by the gp3 devices.

Observation 1: RBD becomes expensive with
higher transaction rates due to the cost of provi-
sioning IOPS and instances than can handle them.

Higher Transaction Rates. For higher transaction
rates, the picture is more diverse. For very high transac-
tion rates on small datasets, the Socrates-like architec-
ture is the cost-optimal choice. As the right-hand side
of Figure 4 shows, Aurora-like is 70% more expensive
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Fig. 5 The cost of having at least {1, 3, 5, 11}×9’s of durability. READ=70%, LAT=1ms, AVAI=Node.

here, because it cannot scale the page and log service
independently, even though a small page service would
be sufficient for these workloads. HADR wins for three
particular workloads, but there is no clear pattern when
it is a good choice, indicating that the workload has to
closely fit the available instance sizes for HADR to be
cost effective. Furthermore, HADR is not able to han-
dle the 100 TB dataset, as there are currently no cloud
instances with that much NVMe storage available.

Observation 2: The HADR architecture has lim-
ited and inflexible scaling behavior, which makes
it cost-efficient for very few use cases.

Classic and In-Memory do not appear in the plot at
all, as they do not meet the (only moderate) durability
constraint. We reconsider them for suitable workloads
in Section 5.3.
Good Default Choice. As the rightmost plot in Fig-
ure 4 shows, Socrates-like is a reasonable default choice,
being cost-optimal or nearly cost-optimal for most work-
loads except those with very few transactions. Further-
more, along with Aurora-like, it can handle the widest
range of workloads, with only two extreme workloads in
the upper right not being conceptually possible.

Observation 3: Socrates-like is the most cost-
efficient architecture for a wide variety of work-
loads under moderate durability requirements.

For the workloads on the lower right, Aurora-like has
higher cost because it replicates the database on three
storage servers, while Socrates-like keeps only two copies.
This effect would have been even more pronounced ac-
cording to the original papers, which proposed that Au-
rora stores six copies and Socrates only one.

Observation 4: The 3× replication of the database
dominates overall system cost of Aurora-like for
large cold datasets.

Finally, for 21 out of the 28 workloads, using a Gravi-
ton instance is the most cost effective choice, underlin-
ing the cost effectiveness of ARM instances in AWS [82].

For instance, for the workload with 100k tx/s on a 1 TB
dataset, the cheapest alternative with an Intel CPU
would have been the c5n.xl, which is 13% pricier.

Observation 5: ARM support in modern cloud
OLTP systems offers access to more economical
instances.

5.3 Durability

As we argue in Section 2.7, in the cloud it always makes
sense to store backups, including the log archive, on
cheap blob storage with very high durability, e.g., S3.
Thus, data loss can only occur for the tail of the WAL
which is not backed up yet. Accordingly, our model cal-
culates durability based on how the log component is
implemented. In line with common practice, we specify
durability as the leading nines of the probability that
no data loss occurs over a period of one year. To ana-
lyze the cost of varying durability requirements, we con-
sider the workloads from Figure 4 again, which require
at least 3×9’s (99.9%), and compare them against ones
requiring at least 1, 5, and 11×9’s. Figure 5 shows the
resulting architecture and system cost for each combi-
nation. RBD cannot obtain 11×9’s durability in AWS,
as there are no EBS devices with more than 5×9’s dura-
bility. As Socrates-like stores the WAL on an EBS de-
vice, it is subject to the same limitation. Only HADR
and Aurora-like achieve 11×9’s durability. In fact, due
to the six copies of the log, we calculate Aurora-like’s
durability at around 20×9’s [83]. At the same time, for
most workloads it is cheaper than HADR.

Observation 6: Aurora-like’s log replication is
suitable for workloads with extremely high dura-
bility requirements.

Although there are mission-critical OLTP uses cases
where durability cannot be too high, staging and test
systems are also common. For these systems, data loss
is not an issue and they are regularly reset anyway. As
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the left plot in Figure 5 shows, our model automatically
exploits this property, and now most often selects Clas-
sic, as it proves to be the most cost-effective architec-
ture choice. In-Memory only wins for one combination
of parameters we examined, which highlights that while
this architecture is fast, it is not very economical.

Observation 7: For workloads with low durabil-
ity requirements, the Classic architecture is often
still the most cost effective choice in the cloud.

Comparing the leftmost and rightmost plots in Figure 5,
one can see that the cost savings between requiring a
durability of at least 1×9 and 11×9’s are up to 3.5×
(1M tx/s on a 10GB dataset). For many dataset sizes
and throughput rates, in particular the common ones
on the diagonal, the cost difference is surprisingly low,
often below 60%. However, when looking at the lower
right corners of all four plots, which represent work-
loads on large but mostly cold datasets, Aurora-like
is more than twice as expensive as the alternatives.
This comes from the threefold replication of the en-
tire dataset, which we already highlighted in Observa-
tion 4. That is unfortunate, as only the replication of
the (small) log tail would be required to achieve high
durability. We discuss this aspect further in Section 6.

5.4 Availability

For mission-critical operational systems, availability can
be as important as durability. In the cloud, failure cases
include single instance failures up to whole data center
outages. We analyze the cost composition for a basic
system configuration with no secondaries and workloads
with 1k and 10k tx/s. The two plots in the left of Fig-

ure 6 show Socrates-like is the cheapest, as its page
service costs less than either the EBS device for RBD
or Aurora-like’s storage servers. HADR is not shown
here as it always has a secondary node. The two plots
in the middle of Figure 6 show the additional cost of
adding a standby node which takes over in case the pri-
mary fails. For HADR, the total cost is twice that of
the primary. Aurora-like and Socrates-like, in contrast,
can execute the workload with a smaller (cheaper) pri-
mary, as storage is separated. Thus, adding a secondary
node does not double the system cost for these architec-
tures. So far, all resources (primary, secondaries, shared
services) were placed into a single data center (avail-
ability zone or AZ). For a system to become robust
against whole data center outages, which are not that
uncommon [61, 62], cloud vendors recommend placing
instances across AZs. This has an impact on cost, as
inter-AZ traffic is priced expensively in public clouds,
e.g., $20 / TB in AWS. The two plots on the right of
Figure 6 show that placing the secondary in another
AZ has minimal cost impact on HADR, as only log
records are shipped over the network. But Aurora-like
and Socrates-like get significantly more expensive, as
log records are shipped multiple times, and some page
accesses go to other AZs. In particular for the work-
load with 10k tx/s, Aurora-like costs increase by 13×
compared to the single AZ deployment, just because it
reads ∼17 MB/s of database pages from storage servers
in remote AZs. Note, however, that as mentioned in
Section 3.3, Azure recently decided to stop charging for
inter-AZ traffic, so other cloud providers might follow,
which would invalidate this observation.

Observation 8: Inter-AZ traffic cost can be sig-
nificant in distributed OLTP workloads.

For Socrates-like, failures of the page servers are also
relevant. Imagine a page server managing 10 TB of data
becoming unavailable once a month. Even if only 1 TB
of that data is accessed frequently, (bulk) recovery from
S3 takes at least 100 s, during which data accesses must
wait. The problem worsens with larger databases or
more granular partitioning. With 100 page servers and
assuming 99.5% instance availability, recovery would
run for some part of the data almost 40% of the time.
Microsoft apparently realized this issue, as their com-
mercial version caches each page on two different page
servers [24], which we do in our model as well.

Observation 9: Socrates-like page server replica-
tion is important not for durability, but for avail-
ability of the system.
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5.5 High Update Ratios

Intuitively, an update transaction involves more work
than a lookup. Thus, a workload which is more update-
heavy should be more expensive to execute. To examine
the impact, we compare different update/lookup ratios
against the 30% update rate that we used in our previ-
ous experiments. The largest cost difference is for high
transaction rates on smaller datasets:
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This has two reasons: 1) For low transaction rates, stor-
age dominates workload cost (lower half) and 2) for a
larger database, the scaled-up storage can sustain the
required writes for the workload anyway (right area).

Observation 10: Update are more costly than
lookups mostly for workloads with high transac-
tion rates on small datasets.

5.6 Operation Latency

Our analysis focused on throughput so far. While im-
portant for many OLTP applications, latency can also
be crucial for the end-user experience. Figure 7 shows
how the system cost is affected when different latency
constraints are applied on a workload consisting of 10K
lookups per second on a 1 TB dataset2. Without a la-
tency constraint, most accesses are served from flash-
based storage, i.e., NVMe instance SSDs, EBS, or NVMe-
based page servers. The one exception is In-Memory,
which always has the same cost as data is always in

2 Note that we do not account for the round-trip latency to the
client, which – similar to the packet rate limitation – could be
removed by co-locating the application with the database server.
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Fig. 8 The effect of access skew on workload cost.
DB=1TB, TXS=1M/s, READ=100%, DUR=1×9, AVAI=Node.

DRAM. For the other architectures, the cost varies be-
tween $0.11/h (Classic) and $0.27/h (Aurora-like). In
the range between 400µs and 50µs, an increasing por-
tion of the data has to be kept in DRAM to satisfy the
latency constraint. To reach 10µs latency, all systems
effectively have to keep the entire dataset in DRAM us-
ing EC2’s x2 instances. As DRAM dominates cost here,
all systems converge to a similar cost between $2.7/h
(Classic) and $2.9/h (Aurora-like). The only exception
is HADR, which needs an additional stand-by node,
doubling the cost.

Observation 11: Sub-millisecond latency can be
achieved in the cloud at low cost using flash stor-
age. Reducing the latency below 100µs requires
caching the data in DRAM, which increases cost
by an order of magnitude.

Another way to look at this is that for applications
without very strict latency constraints, caching the en-
tire data in DRAM is unreasonably expensive given cur-
rent cloud prices.

5.7 Data Access Skew

Uniform accesses over the entire dataset exhibit no lo-
cality which the DBMS could exploit. We assumed this
access pattern in our experiments so far, as it con-
stitutes the most challenging, and thereby the most
generic case. However, in reality, most workloads have
some degree of locality. Thus, in this section we look
at the effect skew has on the cost of different archi-
tectures. We focus on lookups and use a Zipf distribu-
tion to model that some parts of the dataset are ac-
cessed more often than others. Also, we assume that
the systems implement a replacement strategy that can
successfully identify the hot part of the data. Figure 8
shows for a workload of 1M lookups/s on a 1 TB dataset
that, in general, costs decrease for higher Zipf factors.
RBD can benefit the most from higher skew, as the
EBS device can be provisioned with much fewer IOPS,
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Table 5 Cloud storage options in AWS, their cost, durability, and latency; ordered by storage cost. Read/write granularity is 4KB.
Durability is taken from documentation or estimated where not available. EC2 instances use 50% of the on-demand price, see Section 4.1.

$/month $/month for
Storage Primitives per TB↓ 1K reads/s 10K reads/s 100K reads/s 10K writes/s Durability Latency

S3 $23 $1,037 $10,368 $103,680 $129,600 11×9’s >10ms
Instance NVMe (i3en) (*) $66 $2 $20 $198 $25 ∼1×9 <1ms
EBS gp3 $80 $0 $35 $395 (**) $35 2×9’s <1ms
Instance NVMe (i3) (*) $120 $0.6 $5.5 $55 $13 ∼1×9 <1ms
EBS io2 $125 $65 $650 $4,704 $650 5×9’s <1ms
S3 Express One Zone $160 $518 $5,184 $51,840 $64,800 ∼5×9’s (‡) ∼1ms
Instance DRAM (x2iedn) (*) $2,434 $0.2 $2 $19 $2 N/A <1µs

Services
Aurora Standard [84] $100 $518 $5,184 $51,840 $5,184 >11×9’s (†) <1ms
Aurora I/O-Optimized [84] $225 $0 $0 $0 $0 >11×9’s (†) <1ms
DynamoDB (provisioned) [85] $244 $94 $936 $9,360 $18,720 N/A ∼1ms
DynamoDB (on-demand) [85] $244 $648 $6,480 $64,800 $129,600 N/A ∼1ms

(*) Total EC2 cost is max(storageCost, accessCost), e.g., on an i3 instance 4TB and 500k reads/s cost max($480, $220) = $480
(**) Requires 7 EBS volumes and at least 194GiB storage to provision the required IOPS
(†) At least the durability of S3 standard due to its sixfold log replication into three AZs
(‡) Similar durability as EBS io2 due to intra-datacenter replication

which reduces cost from $2.8 for uniform accesses down
to $0.4 for a high Zipf factor of 2.0. Looking at this
the other way around, it once more validates Observa-
tion 1, which shows that IOPS are what makes EBS
devices, and thus RBD, expensive. The In-Memory ar-
chitecture, in contrast, cannot benefit from access skew
at all, as the entire dataset (including the cold part)
has to fit into DRAM. All other architectures exploit
higher skew by scaling down the primary and employ-
ing a smaller buffer cache. Aurora-like and Socrates-like
can also scale down their storage service.

Observation 12: In all architectures except In-
Memory, exploiting access locality can drastically
reduce system cost.

6 Discussion: Implications for Cloud OLTP

Summary. Our analysis confirms the intuition that
cloud-native engines generally outperform traditional
designs deployed in a cloud environment. They han-
dle a wider variety of workloads while providing high
availability and durability. In particular, the Aurora ar-
chitecture achieves extremely high durability with six
copies of the log, while Socrates is cost-efficient by caching
data on NVMe. Moreover, for many (though not all)
workloads, these two cloud-native architectures are more
cost-efficient than lift-and-shift architectures (Classic,
In-Memory, or HADR). For workloads with low trans-
action throughput up to 1k tx/s and a durability re-
quirement of up to 3×9’s, RBD is a viable alternative.
Storage Options for Cloud OLTP. One of the main
reasons for the cost-effectiveness of the cloud-native ar-

chitectures is their choice of storage technology, as stor-
age is a significant cost factor in OLTP workloads. To
better understand the results from Section 5, we exam-
ine storage options in the cloud. Table 5 shows differ-
ent storage primitives available in AWS with their cost,
durability, and latency properties. As one can see, S3
has the lowest storage cost and high durability, but its
high access latency and access cost are prohibitive for
primary OLTP storage. However, its properties make
it the ideal archival storage for both the log and the
database backup. At the other end of the spectrum,
main memory offers the best performance and lowest
latency, but capacity costs at least one order of mag-
nitude more than for the other options, rendering it
uneconomical in many situations.

NVMe Instances as a Building Block. Table 5
also shows that NVMe instance storage, such as on
an i3en instance, has low access cost and latency at
a reasonable storage cost, making it highly suitable for
OLTP storage. However, storing only one copy of the
data on NVMe does not provide sufficient durability for
many workloads. To address this issue, using NVMe in-
stances as a building block, Aurora stores three redun-
dant copies of the database. In contrast, Socrates stores
one copy of the database on object storage for durabil-
ity and maintains two copies on NVMe for cost-effective
access. Note that the second copy on NVMe is required
for availability in this case, not durability (see Obs. 9).

NVMe vs. EBS. An alternative to NVMe that looks
appealing from a cost perspective is EBS. However,
EBS gp3 only guarantees low durability. While EBS
io2 offers better durability, IO is an order of mag-
nitude more expensive. Besides, a dedicated storage
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service provides even better durability, can implement
some DBMS functions itself as it includes compute and
memory, can be deployed across multiple availability
zones, and NVMe flash itself provides almost 3× lower
access latency than EBS (see Table 1). For all these
reasons, we believe a storage service based on NVMe
instances is the most promising approach for storing
OLTP databases in the cloud.

Higher-Level Services. For comparison, the lower
part of Table 5 shows a selection of available OLTP
services in AWS. Their price structure aligns with the
storage primitives with some exceptions, such as the on-
demand variant of DynamoDB which is relatively ex-
pensive. Interestingly, the pricing structure would also
allow building services on top of EC2 that are compet-
itive with existing in-house AWS services.

Further Benefits of a Storage Service. A large-
scale storage service provides further benefits that we
do not even capture in our model: The separation of
storage and compute leads to better elasticity, and op-
erating it as a multi-tenant service allows fine-grained
and almost unlimited allocation of storage to individ-
ual databases while saving costs. Users can profit from
consumption-based billing, where they do not have to
reserve capacity upfront and only pay for what they ac-
tually use. Finally, distributing a single database over
many storage nodes enables absorbing load spikes, trans-
parent migration off faulty machines, and shorter recov-
ery intervals. Further research should investigate how
exactly such a page service should be implemented.

Towards Workload-Adaptive Systems. Another ob-
servation from the analysis in Section 5 is the cost-
saving potential of exploiting workloads with relaxed
requirements, such as latency, durability, or availability.
For example, a system that does not need require high
availability does not need to store database pages re-
dundantly to guard against failures. Similarly, for most
testing and staging systems, a single-node Classic ar-
chitecture would be sufficient. Thus, one could imagine
a DBMS service which allows users to specify their ac-
tual workload requirements and proposes an adequate
hardware and storage engine configuration for them,
for example, by storing a variable number of copies of
each page depending on the required durability. This
would enable users to make informed decisions and al-
low them to choose, e.g., if they are willing to pay extra
for higher durability or lower transaction latency. Ad-
ditionally, such an adaptive system would enable sub-
stantial cost savings compared to the current situation
where users can typically only choose between instances
with different numbers of CPU cores and memory ca-
pacity, but the architecture configuration is fixed.

Potential Architecture Improvements. Our main
goal in this work is to compare existing OLTP designs
for the cloud. Therefore, we deliberately modeled Au-
rora and Socrates as closely as possible to how they are
described in literature. However, our analysis indicates
that there are potential improvements to both of them.
While the Socrates architecture nicely divides respon-
sibility for the database and the log into separate ser-
vices, choosing a remote block device for persisting log
records limits its durability (see Section 2.6). Aurora’s
approach of streaming the log to multiple nodes seems
to be the better alternative, as it provides very high
durability and performance. Unfortunately, Aurora also
ties the log and the database storage together in one ser-
vice, which makes independent development and scaling
more complicated. An architecture that combines the
two into a new design would provide the best of both
worlds: 1) Cache the database pages on cheap NVMe
storage backed by an object storage service and 2) send
the WAL redundantly to multiple logging nodes that
form a separate service. In future work, we plan to eval-
uate such an alternative design by incorporating it into
our model and validating it with the same methodology
we have applied in this paper, comparing it against ex-
isting designs. However, even in that new architecture
each page would still be cached twice for availability
reasons. As we have found that storage capacity domi-
nates overall system cost for larger datasets, the reduc-
tion of this space amplification is yet another promising
avenue for further research.

7 Future Work

Model Extensions. We believe cost optimization is
a sensible design principle in a cloud-dominated world.
In the future, our model framework could be extended
with additional architectures and include other index
and data structures. One could even integrate it with
Cosine [8] to find workload-optimal data structures.
Furthermore, the accuracy and predictive power of the
model could be improved by accounting for complex
latency distributions, modeling more complex transac-
tions, and incorporating network variability.
Other Cloud Providers and Pricing Models. A
study that compares cost across different cloud ven-
dors would be interesting, as subtle differences in pric-
ing structures could lead to vastly different total costs
for certain workloads, such as those dominated by cross-
data-center traffic cost. Even within a single cloud provider,
one could model various pricing strategies (e.g., reserved,
on-demand, and spot instances) to explore their poten-
tial for cost savings.
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A Appendix

A.1 General Model Parameters

Input: workload parameter W , cloud compute node N

// Cache and in-memory performance
cpuCyclesPerTx = 4000

dataInCache = min(NmemorySize,WdbSize)

p(cacheHit) = dataInCache/WdbSize

p(cacheMiss) = 1.0− p(cacheHit)

pageSize = 4096byte

// Log size
recordHeaderSize = 48byte

ariesRecordSize = 2 ∗WtupleSize + recordHeaderSize

ariesLogStorage = ariesRecordSize ∗WreqUpdates ∗WlogRetention

redoRecordSize = WtupleSize + recordHeaderSize

redoLogStorage = redoRecordSize ∗WreqUpdates ∗WlogRetention

// Latencies
memoryOpLatency = cpuCyclesPerTx/NcpuFrequency ≈ 2µs

nvmeReadLatency = 132µs

ec2Latency = 90µs

// Durability
AFRSSD = 0.995

A.2 Model for HADR Architecture

computeHADRProperties(W,N, numSecondaries)
Input: workload parameter W ,

cloud compute node N ,
number of secondaries numSec

Output: system properties S for HADR

// Return “incompatible” (⊥) if instance is too small
if(WdbSize + ariesLogStorage > NstorageCapacity) return ⊥
// Updates like in Classic, but also send WAL to secondaries
readsPerUpdate = p(cacheMiss)

maxIOSize = 4096byte

logWritesPerUpdate =

{
ariesRecordSize

maxIOSize
if WgroupCommit

⌈ariesRecordSize
maxIOSize

⌉ otherwise

writesPerUpdate = p(dirtyPageEvict) + logWritesPerUpdate

networkOutPerUpdate = WlogRecordSize ∗ numSecondaries

// Limit updates by the most restrictive resource

Supdates = min


NreadOps

readsPerUpdate
,

NwriteOps

writesPerUpdate
, WreqUpdates ,

NcpuCycles

cpuCyclesPerTx
, NnetworkOutLimit

networkOutPerUpdate



// Calculate the resource requirements for lookups
readsPerLookup = p(cacheMiss)

writesPerLookup = p(dirtyPageEvict)

// Calculate the resources left for lookups
readOpsLeft = NreadOps − (Supdates ∗ readsPerUpdate)

writeOpsLeft = NwriteOps − (Supdates ∗ writesPerUpdate)

cpuLeft = NcpuCycles − Supdates ∗ cpuCyclesPerTx

// Calculate the lookups the primary can do

lookupsPrimary = min


readOpsLeft

readsPerLookup
, writeOpsLeft

writesPerLookup
,

cpuLeft
cpuCyclesPerTx

, WreqLookups


// Assume each secondary can do just as many lookups as the
// primary, as they need capacity to replay updates as well.
// Exclude one secondary from processing lookups for failover.
Slookups = min(lookupsPrimary ∗ numSecondaries,WreqLookups)

// The average latency of transactions
SopLatency = p(cacheHit) ∗memoryOpLatency +

p(cacheMiss) ∗ nvmeReadLatency

// MTTR = mean time to repair, i.e., how long does it take
// to replicate the data to a new instance.

tMTTR =
WdbSize

50MB/s
// λ is the expected number of failures in one MTTR
numNodes = numSecondaries + 1

monthlyFailureRate = 1.0−NmonthlyAvailability

λ =
numNodes ∗monthlyFailureRate ∗ tMTTR

30 ∗ 24 ∗ 3600s
// Durable in one MTTR interval if ≥ 1 instance survives.
// Calculate probability that 0..(numNodes-1) fail using
// Poisson distributions.

DurabilityMTTR =
numNodes−1∑

i=0

λi ∗ e−λ

i!

// Durable for an entire year if durable in all MTTR intervals
Sdurability = DurabilityMTTR

(365∗24∗3600s)/tMTTR

return (Supdates , Slookups , Sdurability , SopLatency)

A.3 Model for Remote Block Device Architecture

computeRBDProperties(W,N,Rtype)
Input: workload parameter W ,

cloud compute node N ,
device type Rtype

Output: system properties S for RBD

// Provision the block device(s) as necessary

maxIOSize = 256 kbyte

readOps = p(cacheMiss) ∗WtotalTx

writeOps = p(dirtyPageEvict) ∗WtotalTx

logWriteOps = Wupdates ∗
{

ariesRecordSize
maxIOSize

if WgroupCommit

⌈ariesRecordSize
maxIOSize

⌉ otherwise

capacity = WdbSize + ariesLogStorage

iops = readOps + writeOps + logWriteOps

bandwidth =
pageSize ∗ (pageWrites + pageReads) +

ariesRecordSize ∗ logWriteOps

R = configureBlockDevice(capacity, iops, bandwidth,Rtype)

// Check if R exceeds documented instance limits
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if( (R#devices > NmaxDevices) || (Riops > NmaxIops) ||
(Rbandwidth > NmaxBandwidth)) return ⊥

// Still cap if CPU is the bottleneck

Supdates = min

{
NcpuCycles

cpuCyclesPerTx
, WreqUpdates

}
cpuLeft = NcpuCycles − Supdates ∗ cpuCyclesPerTx

Slookups = min
{

cpuLeft
cpuCyclesPerTx

, WreqLookups

}
SopLatency = p(cacheHit) ∗memoryOpLatency

+ p(NcacheMiss) ∗RreadLatency

Sdurability = Rdurability

return (Supdates , Slookups , Sdurability , SopLatency)

A.4 Model for In-Memory Architecture

computeInMemoryProperties(W,N)
Input: workload parameter W ,

cloud compute node N

Output: system properties S for In-Memory

// Return “incompatible” (⊥) if instance is too small

if(redoLogStorage > NstorageCapacity) return ⊥
if(WdbSize > NmemorySize) return ⊥
// In-Memory only writes log entries

maxIOSize = 4096byte

logWritesPerUpdate =

{
redoRecordSize

maxIOSize
if WgroupCommit

⌈ redoRecordSize
maxIOSize

⌉ otherwise

// Limit updates by the most restrictive resource

Supdates = min
{

NwriteOps

writesPerUpdate
,

NcpuCycles

cpuCyclesPerTx
, WreqUpdates

}
// Calculate the CPU left for lookups
cpuLeft = NcpuCycles − Supdates ∗ cpuCyclesPerTx

// Limit lookups using the remaining resources
Slookups = min

{
cpuLeft

cpuCyclesPerTx
, WreqLookups

}
// All data is retrieved from memory
SopLatency = memoryOpLatency

// Same durability as Classic
Sdurability = 1−AFRSSD

return (Supdates , Slookups , Sdurability , SopLatency)

A.5 Model for Aurora-like Architecture

computeAuroraProperties(W,N,Dtype, numSec)
Input: workload parameters W ,

cloud compute node N
storage node type Dtype ,
number of secondaries numSec

Output: system properties S for Aurora-like

// Storage servers can scale and are never a bottleneck

D = configureAuroraStorageService(W ,Dtype)
// Send log to storage servers and secondaries

networkOutPerTx = WredoRecordSize ∗ (DlogReplicas + numSec)

// Read pages from storage servers for cache missses

networkInPerTx = p(cacheMiss) ∗ pageSize

// Calculate the resource requirements for updates

Supdates = min


NnetworkOutLimit
networkOutPerTx

, NnetworkInLimit
networkInPerTx

,

NcpuCycles

cpuCyclesPerTx
, WreqUpdates


// Calculate the resources left for lookups
cpuLeft = NcpuCycles − Supdates ∗ cpuCyclesPerTx

networkInForUpdates = Supdates ∗ networkInPerTx

networkInLeft = NnetworkInLimit − networkInForUpdates

lookupsPrimary = min


networkInLeft

networkInPerTx
,

NcpuLeft

cpuCyclesPerTx
,

WreqLookups


// Lookups on secondaries as in HADR
Slookups = min(lookupsPrimary ∗ numSec,WreqLookups)

// The average latency of transactions on the primary

SopLatency =
p(cacheHit) ∗memoryOpLatency +
p(cacheMiss) ∗ (ec2Latency +Dlatency)

// The durability is determined by the storage service
Sdurability = Ddurability

return (Supdates , Slookups , SopLatency , Sdurability)

A.6 Model for Socrates-like Architecture

computeSocratesProperties(W,N,Ptype, Ltype, numSec)
Input: workload parameters W ,

cloud compute node N

page node type Ptype ,
log node type Ltype ,
number of secondaries numSec

Output: system properties S for Socrates-like

L = configureSocratesLogService(W ,Ltype ,numSec)

P = configureSocratesPageService(W ,Ptype)

// Send log to log node and block device

networkOutPerTx = WredoRecordSize

// Read pages from page servers for cache missses

// Use local NVMe drive to extend buffer pool

p(rbpexHit) =
min(NmemorySize+NstorageCapacity ,WdbSize)

WdbSize

p(rbpexMiss) = 1.0− p(rbpexHit)

networkInPerTx = p(rbpexMiss) ∗ pageSize

// Calculate the resource requirements for updates

Supdates = min


NnetworkOutLimit
networkOutPerTx

, NnetworkInLimit
networkInPerTx

,

NcpuCycles

cpuCyclesPerTx
, WreqUpdates


// Calculate the resources left for lookups
cpuLeft = NcpuCycles − Supdates ∗ cpuCyclesPerTx

networkInForUpdates = Supdates ∗ networkInPerTx

networkInLeft = NnetworkInLimit − networkInForUpdates

lookupsPrimary = min


networkInLeft

networkInPerTx
,

NcpuLeft

cpuCyclesPerTx
,

WreqLookups


// Lookups on secondaries as in Aurora and HADR
Slookups = min(lookupsPrimary ∗ numSec,WreqLookups)

// The average latency of transactions on the primary

SopLatency =

p(cacheHit) ∗memoryOpLatency +

(p(rbpexHit)− p(cacheHit)) ∗ nvmeReadLatency +

p(cacheMiss) ∗ (ec2Latency + Platency)

// Durability determined by log service
Sdurability = LDurability
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return (Supdates , Slookups , SopLatency , Sdurability)

A.7 Models for Supplemental Building Blocks

configureBlockDevice(CAP , IOPS ,BW , type)
Input: required capacity of the block device CAP ,

required IO operations per second IOPS

required bandwidth (reads+writes) BW
device type type

Output: block device configuration

Rdurability =

{
0.999 if Rtype ∈ {gp2 , gp3 , io1}
0.99999 if Rtype ∈ {io2 , io2x}

RIOPS = IOPS

// The current implementation is limited to EBS, but can easily

// be extended to the specifics of other cloud providers

RreadLatency = 374µs

Rbandwidth = BW

maxIopsPerGB =


3 if Rtype ∈ {gp2}

50 if Rtype ∈ {io1}
500 if Rtype ∈ {io2 , gp3}

1, 000 if Rtype ∈ {io2x}

maxIopsPerDevice =


16, 000 if Rtype ∈ {gp2 , gp3}
64, 000 if Rtype ∈ {io1 , io2}

256, 000 if Rtype ∈ {io2x}

maxBWPerDevice =


250MB/s if Rtype ∈ {gp2}

1GB/s if Rtype ∈ {gp3 , io1 , io2}
4GB/s if Rtype ∈ {io2x}

maxCapPerDevice =

{
16TB if Rtype ∈ {gp2 , gp3 , io1 , io2}
64TB if Rtype ∈ {io2x}

Rcapacity = max{CAP , IOPS
maxIopsPerGB

}

// Provision as many devices as necessary

R#devices = max

{ Rcapacity

maxCapPerDevice
, IOPS
maxIopsPerDevice

,

B
maxBWPerDevice

}
return (R#devices , Rcapacity , RIOPS , Rbandwidth , RreadLatency)

configureAuroraStorageService(W ,Dtype)
Input: workload parameters W ,

storage node type Dtype

Output: properties of storage service D

// Total storage required for copies of db and log

DlogReplicas = 6, DdbReplicas = 3

requiredCapacity =
DlogReplicas ∗ redoLogStorage +

DdbReplicas ∗WdbSize

// Receive log records for every replica

networkRecv = Wupdates ∗ redoRecordSize ∗DlogReplicas

// Send a page for every cache miss on the primary

pageRequests = WtotalTx ∗ p(cacheMiss)

networkSend = pageRequests ∗ pageSize

// The page servers have a cache as well

p(cacheMissPageServer) =
DstorageCapacity−DmemorySize

DstorageCapacity

storageReads = pageRequests ∗ p(cacheMissPageServer)

maxIOSize = 4096byte

storageWrites = Wupdates ∗ redoRecordSize
maxIOSize

// Allocate a share (can be smaller or greater 1.0)

// of storage nodes so all requirements are satisfied

DnodeAllocation = max


requiredCapacity
DstorageCapacity

, networkSend
DnetworkOutLimit

,

networkRecv
DnetworkInLimit

, storageReads
DreadOps

, storageWrites
DwriteOps


Dlatency =

p(storageCacheHit) ∗memoryOpLatency +
p(storageCacheMiss) ∗ nvmeReadLatency

// When a storage node from the fleet fails,
// one 10GB protection group needs to be restored.
// Assume this takes 10 sec with a 10Gbit/sec NIC.
tMTTR = 10 s

monthlyFailureRate = 1.0−DmonthlyAvailability

λ =
DlogReplication ∗AFR ∗ tMTTR

30 ∗ 24 ∗ 3600s
// Durable in one MTTR interval if a read chorum
// of three instances survives. Otherwise like HADR.

durabilityMTTR =
3∑

i=0

λi ∗ e−λ

i!

Ddurability = durabilityMTTR
(365∗24∗3600s)/tMTTR

return (DnodeAllocation , Ddurability , Dlatency , DlogReplicas)

configureSocratesLogService(W ,Ltype ,numSec)
Input: workload parameters W ,

storage node type Ltype

number of secondaries numSec

Output: properties of log service L

networkRecv = Wupdates ∗WredoRecordSize

// Ship log to secondaries and two page servers

networkSend = (2 + numSec) ∗Wupdates ∗WredoRecordSize

logIops =

{
redoRecordSize

maxIOSize
if WgroupCommit

⌈ redoRecordSize
maxIOSize

⌉ otherwise

logBW = Wupdates ∗ redoRecordSize

R = configureBlockDevice(redoLogStorage, logIops, logBW , io2 )

if(!R) return ⊥

LnodeAllocation = max


redoLogStorage
LstorageCapacity

, networkRecv
LnetworkInLimit

,

networkSend
LnetworkOutLimit

, logIops
LwriteOps


Ldurability = Rdurability

return (LnodeAllocation , Ldurability , R)

configureSocratesPageService(W ,Ptype)
Input: workload parameters W ,

page node type Ptype

Output: properties of page service P

// Keep two copies of DB for availability

requiredCapacity = 2 ∗WdbSize

networkRecv = 2 ∗Wupdates ∗WredoRecordSize

networkSend = WtotalTx ∗ p(rbpexMiss) ∗ pageSize

PnodeAllocation = max

{ requiredCapacity
PstorageCapacity

, networkRecv
PnetworkInLimit

,

networkSend
PnetworkOutLimit

}
return (PnodeAllocation)
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