
KDD’17, August 2017, Halifax, Nova Scotia Canada A. Bojchevski et al.

DETAILED PROOFS
Proof of Lemma 4.1.

P����. First note that L(A�) = D (A�) � A� = (D (A) � D (Ac)) �
(A � Ac) = L(A) � L(Ac). �us, Eq. (2) can equivalently be wri�en as
Tr(H T · L(A�) · H) = Tr(H T · (L(A) � L(Ac)) · H) = Tr(H T · L(A) ·
H) � Tr(H T · L(Ac) · H).

Given H , the term Tr(H T · L(A) · H) is constant. �us, minimizing
the previous term is equivalent to maximizing Tr(H T · L(Ac) · H).

Let �k be a column vector of H . Noticing that (see [19]) �Tk L(A
c)�k =P

i, j
1
2 · aci, j · (�k,i � �k, j)2, and exploiting orthogonality it follows: Tr(H T ·

L(Ac) ·H) =
P
k
P
i, j

1
2 · aci, j · (�k,i � �k, j)2 =

P
i, j

1
2 · aci, j · ���hi � hj ���22,

where the last step used �k,i = hi,k .
To ensure that Ac as well as A� are non-negative, it holds 0 aci, j

ai, j . �us, if ai, j = 0 then aci, j = 0. Exploiting this fact and the symmetry of

the graph leads to
P
i, j

1
2 · aci, j · ���hi � hj ���22 = P(i, j)2E aci, j · ���hi � hj ���22.

Next, we show that there exists a solution where each aci, j 2 {0, ai, j }.
As known, 0 aci, j ai, j . Let M = [ace]e2E be a maximum of Eq.
(3) where some aci, j > 0 but < ai, j . Let M 0 be the solution where this
entry is replaced by aci, j = ai, j . Since only k . k0 constraints are used,

M and M 0 ful�ll the same constraints. Since ���hi � hj ���22 is non-negative,
f1 (M 0) � f1 (M). It follows, that a solution minimizing Eq. (2) can be found
by investigating aci, j = 0 or aci, j = ai, j only. ⇤

Proof of Lemma 5.1.

P����. �e goal is to �nd a matrix A� whose sum of the �rst k eigen-
values is minimal (and ful�lls the given constraints). Since, however, A� is
not known, we refer to the principle of eigenvalue perturbation.

LetAt be the matrix obtained in the previous iteration of the alternating
optimization and let �i be the ith generalized eigenvector of L(At) (these
are the columns of the matrix H from above, i.e. �i, j = hj,i). Furthermore,
denote the corresponding eigenvalues with �i . We de�ne L(A�)�L(At) =:
�L and D (A�) � D (At) = �D .

Based on the theory of eigenvalue perturbation [18], the eigenvalue ��i
of L(A�) can be approximated by

��i ⇡ �i + �Ti · (�L � �i · �D) · �i
= �i + �Ti · ((L(A�) � L(At)) � �i · (D (A�) � D (At))) · �i

Using the fact that L(A�) = L(A)�L(Ac) andD (A�) = D (A)�D (Ac),
and a�er rearranging the terms, we obtain

��i ⇡
=:ciz }| {

�i + �Ti · ((L(A) � L(At)) � �i · (D (A) � D (At))) · �i
� �Ti · ((L(Ac)) � �i · (D (Ac)) · �i| {z }

=:�i

Since ci is constant, minimizing ��i is equivalent to maximizing �i . Simpli-
fying yields:

�i = �Ti · L(Ac) · �i � �i · �Ti · D (Ac) · �i

=
X

j, j0

1
2
acj, j0 (�i, j � �i, j0)2 � �i

X

j
�2
i, j · dcj

where dcj = [D (Ac)]j, j =
P
j0 acj, j0 . �us

�i =
X

j, j0

1
2
acj, j0 (�i, j � �i, j0)2 � �i�2

i, ja
c
j, j0

=
X

j, j0
acj, j0

✓ 1
2
(�i, j � �i, j0)2 � �i�2

i, j

◆

and exploiting the symmetry of the graph, we obtain

�i =
X

(j, j0)2E
acj, j0

⇣
(�i, j � �i, j0)2 � �i�2

i, j � �i�2
i, j0
⌘

Since the overall goal is to minimize
Pk
i=1 �

�
i , we aim at maximizing

kX

i=1
�i =

kX

i=1

X

(j, j0)2E
acj, j0

⇣
(�i, j � �i, j0)2 � �i�2

i, j � �i�2
i, j0
⌘

=
X

(j, j0)2E
acj, j0

*.
,
kX

i=1
(�i, j � �i, j0)2 �

kX

i=1
�i�2

i, j �
kX

i=1
�i�2

i, j0
+/
-

By noticing that �i, j = hj,i we obtain

=
X

(j, j0)2E
acj, j0

*...
,

���hj � hj0���22 � ���
p
� � hj ���22 � ���

p
� � hj0���22| {z }

x

+///
-

Note that some of the terms x might be negative. Clearly, since we
aim to maximize the equation – and since aci, j � 0 – for these terms we
have to choose aci, j = 0. For the remaining (non-negative) terms, the same
arguments apply as in the proof of Lemma 4.1: i.e. they are either 0 or ai, j .
�us, overall, for each term we have ace 2 {0, ae }. ⇤

Proof of Lemma 5.2

P����. Note that a�i, j = ai, j � aci, j and d�i = di � dci . Let �k be a

column vector of H . It holds �Tk · Ls�m (A�)�k
[19]
=

P
i, j

1
2a

�
i, j (

�k,iq
d�i
�

�k, jq
d�j

)2 =
P
i, j

1
2a

�
i, j (

�2
k,i
d�i
+

�2
k, j
d�j
� 2·�k,i�k, jq

d�i
q
d�j

) =
P
i
1
2�

2
k,i +

P
j
1
2�

2
k, j �

P
i, j

a�i, j�k,i�k, jq
d�i
q
d�j

. Since �k is given, the �rst two terms are constant.

Furthermore, due to orthogonality it holds T r (H T Ls�mH) =
P
k �

T
k ·

Ls�m�k . �us, minimizing the trace is equivalent to maximizing
P
k
P
i, j

a�i, j�k,i�k, jq
d�i
q
d�j

=
P
i, j

a�i, jq
d�i
q
d�j

hi · hTj , noticing that �k,i = hi, j .

Exploiting the graph’s symmetry concludes the proof. ⇤

Proof of Corollary 5.4

P����. Adding e = (i, j) to X has the following e�ects: the term
ace changes from 0 to ae ; the degree of the two incident nodes becomes
dX[{e }i = dXi � ae . �erefore,

f3 (vX[{e }) = f3 (vX) � peq
dXi ·

q
dXj
�

X

(x,�)2(Ei[Ej)\X
(x,�),(i, j)

px,�
q
dXx ·

q
dXx

+
X

x,j
(i,x)2Ei \X_(x,i)2Ei \X

pi,x
q
dXi � ae

q
dXx
+

X

x,i
(j,x)2Ej \X
_(x, j)2Ej \X

px, j
q
dXj � ae

q
dXx

= f3 (vX) + s (i, ae , X) + s (j, ae , X) + � (e, X) = f3 (vX) + �(e, X)
Since X is given, f3 (vX) is constant. �us, the edge e 2 E0 maximizing
f3 (vX[{e }) is found by maximizing �(e, X). ⇤

PSEUDOCODE AND COMPLEXITY ANALYSIS
For convenience, we provide in Algorithm 2 the excerpt of the pseudocode
to compute the edge set X for the case of Ls�m . �is code excerpt replaces
the lines 5 - 15 of Algorithm 1.
Complexity analysis: Let � denote the number of unique edge weights per
node and x the number of nearest neighbors (x -nearest neighbor graph).
Using a heap, we note the following complexities:

Robust Spectral Clustering for Noisy Data KDD’17, August 2017, Halifax, Nova Scotia Canada

/* Update of Ac
/A�

*/

1 X = ; ;
2 for each node i set counti |Ei | �m;
3 priority queue PQ on tuples (�ain, ed�e);
4 for each node i and unique edge weight ai, j compute

s (i, ai, j, X) ;
5 for each edge e add tuple (�(e, X), e) to PQ ;
6 for x = 1, . . . , � and PQ not empty do
7 get �rst element from PQ! (�ain, ebest = (i, j)) ;
8 if �ain 0 then break;
9 X X [{ebest };

10 counti � �; countj � �;
11 recompute s (i, ., X) and s (j, ., X) ;
12 for edges e = (i 0, j0) incident to i and j do
13 remove e from PQ ;
14 if counti 0 > 0 ^ countj 0 > 0 then
15 recompute � (e, X) ;
16 add tuple (�(e, X), e) to PQ ;

17 construct Ac according to vX ; A� = A �Ac ;
Algorithm 2: RSC for Ls�m . Replace lines 5 - 15 of Algorithm 1
with the above code.

- line 4: O (� · n · x) ✓ O (� · |E |)
- line 5: O (|E |)
- line 7: O (lo� (|E |))
- line 11: O (2 · � · x)
- line 13: O (lo� (|E |))
- line 15: O (1)
- line 16: O (lo� (|E |))
Noticing that line 12 iterates at most 2 · x times, and line 6 at most �
times, leads to: O (� · |E | + � · (lo� (|E |) + � · x + x · lo� (|E |))) =
O (� · |E |+� · (xlo� (|E |)+� ·x)). �us, in our case O (|E |+� ·x ·lo� (|E |)).

QUALITY OF EMBEDDINGS
Measures
Let hi denote the embedding of instance i and ci 2 C its class according to
the ground truth. Let NNx (i) denote the set of x nearest neighbors of i
in the embedding space. Denote with occx (c, i) the number of times the
class c occurs in the neighborhood of node i (including the node itself), i.e.

occx (c, i) = | {j 2 NNx (i) [{i } | c j = c } |
�en the purity is given by

purx (i) =
1

x + 1
max
c2C occx (c, i)

PU R (x) =
1
N

NX

i=1
purx (i)

Denote with Cc = {i | ci = c } the set of all instances from class c . Let
Pc,c0 denote the list of all pairwise distances between instances from class
c to c0, i.e.

Pc,c0 = [dist (hi , hj)]i2Cc , j2Cc0
Denote with a��x (L) the average over the (x · 100)% smallest elements in
a list. �en

Pc,c0 (x) = a��x (Pc,c0)

and

GSc (x) =
Pc,c0 (x) � Pc,c (x)

max{Pc,c0 (x), Pc,c (x) }
where c0 = argminc0,c Pc,c0 (x).

Results for Global Separation
Due to space limitations, we could present in the paper the plots for two
exemplary classes only. Here, we report the plots for all classes. As shown,
for many classes, RSC performs very well. As already mentioned in the
paper, naturally not every class is perfect as re�ected by NMI scores of
around 0.61 and 0.85.

Figure 12: Banknote data (2 classes)

Figure 13: USPS data (10 classes)

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Spectral Clustering

	3 Related Work
	4 Robust Spectral Clustering
	4.1 Algorithmic Solution

	5 RSC: Normalized Laplacians
	5.1 Random Walk Laplacian
	5.2 Symmetric Laplacian

	6 Experiments
	7 Conclusion
	References

