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Abstract. Increasing concern about insider threats, cyber-espionage,
and other types of attacks which involve a high degree of stealthiness
has renewed the desire to better understand the timing of actions to au-
dit, clean, or otherwise mitigate such attacks. However, to the best of
our knowledge, the modern literature on games shares a common lim-
itation: the assumption that the cost and effectiveness of the players’
actions are time-independent. In practice, however, the cost and suc-
cess probability of attacks typically vary with time, and adversaries may
only attack when an opportunity is present (e.g., when a vulnerability
has been discovered).
In this paper, we propose and study a model which captures dynamic en-
vironments. More specifically, we study the problem faced by a defender
who has deployed a new service or resource, which must be protected
against cyber-attacks. We assume that adversaries discover vulnerabili-
ties according to a given vulnerability-discovery process which is modeled
as an arbitrary function of time. Attackers and defenders know that each
found vulnerability has a basic lifetime, i.e., the likelihood that a vul-
nerability is still exploitable at a later date is subject to the efforts by
ethical hackers who may rediscover the vulnerability and render it useless
for attackers. At the same time, the defender may invest in mitigation
efforts to lower the impact of an exploited vulnerability. Attackers there-
fore face the dilemma to either exploit a vulnerability immediately, or
wait for the defender to let its guard down. The latter choice leaves the
risk to come away empty-handed.
We develop two versions of our model, i.e., a continuous-time and a
discrete-time model, and conduct an analytic and numeric analysis to
take first steps towards actionable guidelines for sound security invest-
ments in dynamic contested environments.

Keywords: Security, Game Theory, Games of Timing, Vulnerability
Discovery

1 Introduction

Since at least the Cold War era there has been a considerable interest in the
study of games of timing to understand when to act in security-relevant decision-
making scenarios [1]. The recent rise of insider threats, cyber-espionage, and



other types of attacks which involve a high degree of stealthiness has renewed
the desire to better understand the timing of actions to audit, clean, or otherwise
mitigate such attacks. However, to the best of our knowledge, the modern lit-
erature on games and decision-theoretic approaches (including the FlipIt model
[3,31]) shares a common limitation: the assumption that the cost and effective-
ness of the players’ actions are time-independent. For example, in the FlipIt
model and its derivatives (see section on related work), an adversary may make
a move at any time for exactly the same fixed cost, and these moves always
succeed.

In practice, the cost and success probability of attacks typically vary with
time. Moreover, an adversary may only attack when an opportunity is present
(e.g., when a vulnerability has been discovered). These observations motivate the
development of games of timing which take into account the dynamic environ-
ment of contested computing resources. Defenders need to develop an optimal
defensive strategy which considers the nature of vulnerability discovery by ad-
versaries. At the same time, the attacker faces the decision-making dilemma on
when to exploit an identified vulnerability.

For example, the black hat community knew already for a long time that
Microsoft would stop supporting Windows XP in April 2014, which would sig-
nificantly lower the defense and mitigation effort for this software product.4

Security professionals conjectured that attackers would begin stockpiling vul-
nerabilities to exploit them more profitably. However, under what circumstances
is such behavior optimal for the attacker, when there is a risk that the vulner-
ability is rediscovered by an internal security team or external ethical hackers
before the planned time of exploitation [22,35]?

In this paper, we propose and study a model which captures dynamic en-
vironments. More specifically, we study the problem faced by a defender who
has deployed a new service or resource, which must be protected against cyber-
attacks. We assume that adversaries discover vulnerabilities according to a given
vulnerability-discovery process which is modeled as an arbitrary function of time.
Attackers and defenders know that each found vulnerability has a basic lifetime,
i.e., the likelihood that a vulnerability is still exploitable at a later date is sub-
ject to the efforts by ethical hackers who may rediscover the vulnerability and
render it useless for attackers. At the same time, the defender may invest in
mitigation efforts to lower the impact of an exploited vulnerability. Attackers
therefore face the dilemma to either exploit a vulnerability immediately, or wait
for the defender to let its guard down. The latter choice leaves the risk to come
away empty-handed.

We develop two versions of our model, i.e., a continuous-time and a discrete-
time model, to increase the applicability of our work. We provide fundamental
constraints on the shape of equilibria for both models, and give necessary and
sufficient conditions for the existence of non-waiting equilibria in terms of the

4 In July 2011, Microsoft made the announcement that support for the operating
system will end in 2014. Note that previously Microsoft already stopped the so-
called full mainstream support for Windows XP in April 2009.



shape of the vulnerability discovery function. We further provide numerical re-
sults to illustrate important properties of our findings.

The remainder of this paper is organized as follows. In Section 2, we sum-
marize related theoretical and behavioral work on security games of timing.
In Section 3, we introduce our game-theoretic model including players and the
decision-making environment. In Section 4, we derive theoretical results for our
model. In Section 5, we present numerical examples. Finally, in Section 6, we
discuss our results and offer concluding remarks.

2 Related Work

2.1 Security Economics and Games of Timing

The economics of security decision-making is a rapidly expanding field covering
theoretical, applied, and behavioral research. Theoretical work utilizes diverse
game-theoretic and decision-theoretic approaches, and addresses abstract as well
as applied scenarios. A central research question has been how to optimally deter-
mine security investments [7,32,11,25], e.g., by selecting from different canonical
defense actions (i.e., protection, mitigation, risk-transfer) [12,19], and how such
investments are influenced by the actions of strategic attackers [6,30]. Another
frequently addressed aspect has been the consideration of interdependence of se-
curity decision-making and the propagation of risks [4,8,13,14]. Recent surveys
summarize these research efforts in great detail [2,15,20].

An often overlooked but critical decision dimension for successfully secur-
ing resources is the consideration of when to act to successfully thwart attacks.
Scholars have studied such time-related aspects of tactical security choices since
the cold-war era by primarily focusing on zero-sum games called games of tim-
ing [1]. The theoretical contributions on some subclasses of these games have
been surveyed by [27].

Recently, the question of the optimal timing of security decisions has again
become a lively research topic with the development of the FlipIt game [3,31]. In
the following, we discuss FlipIt as well as theoretical and behavioral follow-up
research.

2.2 Theoretical Analyses of FlipIt

The FlipIt model identifies optimal timing-related security choices under tar-
geted attacks [3,31]. In FlipIt, two players compete for a resource that generates
a payoff to the current owner. Players can make costly moves (i.e., “flips”) to
take ownership of the resource, however, they have to make moves under incom-
plete information about the current state of possession. In the original FlipIt
papers, equilibria and dominant strategies for simple cases of interaction are
studied [3,31].

In follow-up research, Pham and Cid studied a version of FlipIt with periodic
strategies with random phase. They also considered the impact of a move to
check the state of the game (i.e., audit) [26].



Laszka et al. study games of timing with non-covert defender moves. They
consider also non-instantaneous attacker moves, and different types of adver-
saries, e.g., targeting and non-targeting attackers [18]. A follow-up paper further
generalizes the results of this line of research [17].

The previous papers considered FlipIt with one resource. This limitation has
been addressed with the strategic analysis of the game with multiple contested
resources [16]. Similarly, an extension of the game has been proposed with mul-
tiple defenders [24].

Feng et al. [5] and Hu et al. [10] study games with multiple layers in which
in addition to external adversaries the actions of insiders (who may trade infor-
mation to the attacker for a profit) need to be considered. Hu et al. [10] study
the scenario in a dynamic game framework.

Zhang et al. [34] study the FlipIt game with resource constraints on both
players.

Drawing on the setup of FlipIt, Wellman and Prakash develop a discrete-
time model with multiple, ordered states in which attackers may compromise
a server through cumulative acquisition of knowledge rather than in a one-shot
takeover [33].

2.3 Behavioral Studies of FlipIt

Nochenson and Grossklags describe and analyze two experiments which draw
from the theoretical model of the FlipIt game [21]. They conduct a Mechanical
Turk experiment with over 300 participants in which each participant is matched
with a computerized opponent in several fast-paced rounds of the FlipIt game.
Preliminary analysis of this experiment shows that participant performance im-
proves over time (however, older participants improve less than younger ones).
They also found significant performance differences with regards to gender and
a measure of the desire for deep reasoning about a problem (i.e., need for cogni-
tion).

In follow-up work, Reitter et al. contrast two experiments where the feedback
to the human decision maker in the decision-environment is varied between vi-
sual feedback with history, and temporal feedback without history. The authors
study the human strategies and develop a model backed by a cognitive architec-
ture, which described human heuristics that practically implement risk-taking
preference in timing decisions [28].

Grossklags and Reitter extend these preliminary works with an in-depth anal-
ysis of the experimental data of these previous studies [9]. In particular, they
study the interaction effects between the psychometric measures including also
the general propensity of risk taking with task experience and how those factors
explain task performance.

The behavioral studies will help to develop theoretical models which take
the imperfections of human decision-making into account. Likewise, theoreti-
cal studies of rational behavior serve as an important comparison baseline for
experimentally generated human data or measurements from the field.



3 Model

Our model captures the motivational aspects of timing, as it pertains to the
discovery, repair, and exploitation of software vulnerabilities. The salient features
of our model may be enumerated as follows.

1. The life cycle of a software product is finite with a known end time t = T .
2. The rate of vulnerability discovery V (t) is an arbitrary function of time,

specified as an exogenous parameter. We make this modeling choice to max-
imize applicability for varieties of software products and services that may
differ in quality, attention, and life cycle.5

3. The lifetime of a vulnerability decays at a fixed rate λ without action by
either player. This choice is made to account for the fact that unknown vul-
nerabilities are often repaired by chance only, so that one might reasonably
assume they die with some fixed probability in a unit of time.6

4. The defender’s security investment d(t) is a function of time, and serves to
mitigate losses when a vulnerability is exploited.

5. The timing of vulnerability exploitation a(t) is chosen by an attacker for
optimal exploitation dependent on the defender’s security investments.

To further extend the applicability of our model, we describe and analyze
two distinct versions – one with continuous time, and one with discrete time. In
the continuous version of the model, attackers and defenders choose strategies
as continuous functions of time, and the payoffs are determined by integrating
expected losses over the range of all time. In the discrete version, time is di-
vided into a finite number of steps; attackers and defenders choose an action at
each time step, and the payoffs are determined by summing the expected out-
comes over all time periods. Both versions of the game adhere to the paradigms
described above.

We begin by describing the game’s players and their respective choices. We
then proceed to describe the environment. Finally we discuss the consequences
from a configuration of choices. Whenever applicable, we separate the specifica-
tion and discussion according to either the continuous or the discrete model. For
reference, a list of symbols used in this paper may be found in Table 1.

5 A small number of studies investigate the social utility of vulnerability discovery.
On the one hand, Rescorla studied the ICAT dataset of 1,675 vulnerabilities and
found very weak or no evidence of vulnerability depletion. He thus suggested that
the vulnerability discovery efforts might not provide much social benefit [29]. On
the other hand, this conclusion is challenged by Ozment and Schechter, who showed
that the pool of vulnerabilities in the foundational code of OpenBSD is being de-
pleted [22,23]. Zhao et al. present evidence that the number of discovered vulner-
abilities is declining for a majority of public company-specific vulnerability bounty
programs on HackerOne [36].

6 Unsurprisingly, statistical evidence is lacking regarding how often defenders and
attackers discover the same vulnerabilities. However, empirical research by Ozment
about the ethical hacker community found that vulnerability rediscovery is common
in the OpenBSD vulnerability discovery history [22].



Table 1: List of Symbols

Symbol Description

R scaling factor between security costs and losses

λ vulnerability repair rate

Continuous-time Model

T end time

V (t) vulnerability discovery rate at time t

d(t) defender’s security investment at time t

a(t) attacker’s waiting time before exploiting a vulnerability discovered at
time t

Discrete-time Model

K number of time periods

V (k) expected number of vulnerabilities discovered in time period k

d(k) defender’s security investment in time period k

a(k) attacker’s waiting time before exploiting a vulnerability discovered in
time period k

3.1 Players and Choices

Our game has two players, a defender and an attacker. The defender’s objective is
to mitigate damages from vulnerability exploitation through security investment,
while the attacker’s objective is to maximally exploit vulnerabilities as they are
discovered. Neither the attacker nor the defender control the rate of vulnerability
discovery V (t), which is an exogenous function of time.

We may construe the defender’s investments quite broadly, in ways other than
monetary investments. For example, we may understand them as a measure of
strictness in policy enforcement, which can be optimized to minimize usability
loss.

On the attacker side, it is interesting to note that we would obtain the same
results if we modeled the game as one containing several attackers, where each
attacker randomly finds vulnerabilities according to a given rate, and then inde-
pendently chooses the timing of their exploitation. However, for the sake of clear
exposition, we frame the interaction as a two-player game with a single attacker.

Continuous-time Model In the continuous-time model over a time interval
[0, T ], the defender chooses a continuous function d(t) : [0, T ] → R≥0 which
specifies the level of her security investment at each time t. The attacker chooses
a continuous function a(t) : [0, T ]→ R≥0 which specifies how long to wait before
exploiting a vulnerability discovered at time t.

Discrete-time Model In the discrete-time model with discrete time periods
0, 1, . . . ,K, the defender chooses a function d(k) : {0, 1, . . . ,K} → R≥0 spec-
ifying her security investment level at each distinct time period. The attacker



chooses a function a(k) : {0, 1, . . . ,K} → Z≥0 specifying how many discrete time
steps to wait before launching an attack using a vulnerability discovered in the
kth time period.

3.2 Environment

Here we construe the environment primarily as the security state of a software
system over a finite period of time. More specifically, the rate of vulnerability
discovery by attackers, V (t), is a function of time, specified as an exogenous
parameter. We anticipate that this modeling choice increases the applicability
for different types of software products and services that may differ in quality,
attention, and life cycle.

The fixing of vulnerabilities, on the other hand, follows a random process
as defenders eventually rediscover vulnerabilities which have been found by the
attacker. More specifically, we assume that the lifetime of a vulnerability follows
an exponential distribution (parameterized by λ) without action by either player.
The net effect of this eventual rediscovery is that an attacker who learns of
a vulnerability at one time, cannot simply wait indefinitely for the defender’s
security investment to lapse.

Continuous-time Model In the continuous-time model, the vulnerability
function has the form V (t) : [0, T ]→ R≥0. The interpretation is that V (t) gives
the precise rate at which vulnerabilities are being discovered by the attacker for
each moment of time. In terms of our analysis and computation, we will obtain
the expected number of vulnerabilities discovered during any fixed time interval
by integrating V (t) with respect to t over that time interval.

The vulnerability repair process is determined by an exponential decay func-
tion of the form e−λτ . This function determines the probability that a vulnerabil-
ity still remains exploitable τ time after its discovery. The structured formulation
guarantees that this exploit probability decays at a constant rate of λ. An ap-
proximate interpretation is that in each unit of time, a constant fraction of its
exploit probability is lost.

Discrete-time Model In the discrete-time model, the vulnerability function
has the form V (k) : {0, 1, . . . ,K} → R≥0. Here, V (k) gives directly the expected
number of vulnerabilities discovered during the time period k. Computation-
ally, we may obtain the expected number of vulnerabilities discovered over any
sequence of time periods by summing V (k) over those periods.

To capture the analogous fixed rate reduction phenomenon for vulnerability
repair in the discrete-time model, we use a geometric distribution function of the
form (1−λ)τ , which gives us the probability that a vulnerability is not repaired
in τ number of time periods after its discovery. The interpretation is that a λ
fraction of a vulnerability’s exploit potential is lost in each time period.



3.3 Consequences

Suppose that both defender and attacker have simultaneously chosen their strate-
gies for defense d and wait times a, respectively. The consequences for the de-
fender involve both the defense costs and the loss from vulnerability exploitation.
We construe the defense function in terms of direct costs, while the amount of
loss resulting from an attack is inversely proportional to the defense rate, scaled
by a fixed constant R.

On the attacker’s side, we are only concerned with the gain from maximally
exploiting the vulnerabilities. Thus, the overall structure is that the defender’s
payoff is always negative, while the attacker’s payoff is always positive. The sum
of payoffs related to vulnerability exploitation is zero; but the game itself is not
zero-sum, unless the defender abstains from any defensive investment (i.e., when
d ≡ 0).

Continuous-time Model In the continuous-time model, the defender’s objec-
tive is to minimize her total losses over the course of the time interval [0, T ]. The
defender’s costs over this time interval may be easily computed as∫ T

t=0

d(t)dt,

while her losses depend in part on the waiting time of an attacker. If the attacker
immediately exploits a vulnerability discovered at time t, the expected loss per
unit time due to vulnerabilities discovered around time t may be expressed as

R

d(t)
.

On the other hand, if the attacker instead waits for some time a(t) before
exploiting a vulnerability discovered at time t, then we must account for both
the decay in vulnerability exploitability as well as adjust the timing relative to
the defense investment. In this case, the expected loss per unit of time due to
vulnerabilities discovered around time t will be given by

e−λa(t)
R

d(t+ a(t))
.

Putting everything together along with the vulnerability discovery function,
the defender’s total payoff in the continuous-time model is given by

Ud = −
∫ T

t=0

(
d(t) + V (t)e−λa(t)R

1

d(t+ a(t))

)
dt; (1)

while the attacker’s payoff is given by

Ua =

∫ T

t=0

V (t)e−λa(t)R
1

d(t+ a(t))
dt. (2)



Discrete-time Model In the discrete-time model, the defender’s objective is
to minimize her total losses over the course of the time stages {0, 1, . . . ,K}. The
defender’s costs are computed as a sum

K∑
k=0

d(k),

while losses depend on the waiting time of an attacker. Suppose that an attacker
waits for a(k) time periods before exploiting a vulnerability discovered in time
period k; then, the defender’s losses due to vulnerabilities discovered in time
step k will be given by

(1− λ)a(k)
R

d(k + a(k))
.

Assembling everything together, the payoff for the defender in the discrete-
time model is given by

Ud = −
K∑
k=0

(
d(k) + V (k)(1− λ)a(k)

R

d(k + a(k))

)
; (3)

while the payoff for the attacker is given by

Ua =

K∑
k=0

V (k)(1− λ)a(k)
R

d(k + a(k))
. (4)

4 Analysis

In this section, we analyze the model to find applicable consequences for the
software vulnerability scenario. We will primarily focus on Nash equilibrium
configurations, in which each player is responding optimally in the current con-
text.

We begin by giving a result in the continuous-time model that constrains the
attacker’s strategy at the temporal boundaries.

Proposition 1. If V (0) > 0, then every equilibrium in the continuous-time
model satisfies a(0) = 0 and a(T ) = 0. In words, the attacker should never wait
to attack at either the beginning or the end of the game.

Proof. Suppose a(0) > 0. Since there is no previous time at which the attacker
may have discovered a vulnerability, the defender may safely choose d(0) = 0
as an optimal investment. However, if the attacker knew d(0) = 0, she would
rather prefer not to wait, in order to cause maximum damage in case a vulnera-
bility were found at that time. This contradiction shows a(0) > 0 cannot be an
equilibrium if V (0) > 0.

The second part of the proposition is more trivially deduced since it would
not benefit the attacker to wait longer because there is no time remaining at the
end of the game. In fact, for this reason more generally, the attacker’s strategy
in equilibrium must satisfy the constraint a(t) ≤ T − t. ut



Our second result constrains the attacker’s strategy in any pure-strategy
equilibrium. These conditions are considerably more restrictive than those in
the continuous-time case. They tell us that if there is an ubiquitous risk of
vulnerability discovery, then there can be no pure-strategy equilibrium in which
the attacker uses any positive wait times.

Proposition 2. If V (k) > 0 for each time period k, then for every pure-strategy
equilibrium in the discrete-time game, we have a(k) = 0 for each k = 0, 1, . . . ,K.
In words, if the attacker uses any positive wait time in the discrete-time game,
then it must be part of a mixed strategy.

Proof. We prove the result by induction on the number of time periods. When
k = 0, the claimed result is perfectly analogous to the continuous-time model’s
result from the previous proposition. Obviously, there can be no previous vulner-
ability discovery. If the attacker waits to attack in round 0, then the defender can
optimally save herself the trouble of making any security investment in round 0
(i.e., d(0) = 0). But if V (0) > 0, then this configuration is clearly not an optimal
response configuration for the attacker.

But now that we know a(0) = 0, a very similar argument also holds for
k = 1. We do not have any vulnerabilities from the one earlier round, because
the attacker did not wait in round 0. If the attacker now waits in round 1, the
defender may optimally choose not to invest in security protection in this round
(i.e., d(1) = 0). But this configuration is not optimal for the attacker and so
cannot be part of an equilibrium. The argument can now be iterated inductively
for k = 2, . . . ,K. ut

The crux of these two results is that the attacker may only optimally wait to
attack in a given time period if there is some attack probability arising from a
previous time period. In the continuous case, this implies only that the attacker
cannot wait at the beginning of the game, because continuously increasing the
wait time from t = 0 can still lead to positive attack probability at every point
in time. On the discrete side, however, this observation precludes having any
simple optimal attack strategy in which the attacker waits at all.

The next two propositions give necessary and sufficient conditions for “never
waiting” to be the attacker’s strategy in an equilibrium. In both the continuous-
time model and the discrete-time model, the conditions involve only a simple
relation between the vulnerability discovery function V and the discovery rate λ.

Proposition 3. In the continuous-time model, there exists an equilibrium in
which the attacker never waits before attacking if the vulnerability function sat-
isfies

V (t+ a)

V (t)
≥ e−2λa (5)

for every t ∈ [0, T ] and a ∈ [0, T − t].

Proof. Suppose that the attacker never waits. Let us consider the defender’s best
response to this strategy. Simplifying Equation(1), the defender’s utility function



becomes

−
∫ T

0

(
d(t) + V (t)

R

d(t)

)
dt.

This utility is maximized by choosing d(t) at each time t to minimize the
cost plus risk. Setting

d

dx

(
x+ V (t)

R

x

)
= 0

and solving for x, we obtain the optimal d(t) as

d(t) =
√
V (t)R. (6)

Now, the part of the equilibrium condition that says a(t) = 0 is the attacker’s
best response function implies that for every t and a, we have

V (t)R

d(t)
≥ V (t)Re−λa

d(t+ a)
.

Incorporating the defender’s strategy and simplifying, we obtain

d(t+ a)

d(t)
≥ e−λa√

V (t+ a)R√
V (t)R

≥ e−λa

V (t+ a)

V (t)
≥ e−2λa.

Now conversely, suppose that

V (t+ a)

V (t)
≥ e−2λa.

Let d(t) =
√
V (t)R be the defender’s investment strategy. Because the se-

quence of inequalities above is reversible, we have that a(t) is a best response to
d(t); and we have already showed that d(t) is a best response to a(t). So there
exists an equilibrium in which the attacker never waits. ut

The following proposition gives an analogous result for the discrete-time
model.

Proposition 4. In the discrete-time model, there is an equilibrium in which the
attacker never waits before attacking if the vulnerability function satisfies

V (k + a)

V (k)
≥ (1− λ)2a (7)

for every k ∈ {0, . . . ,K − 1} and a ∈ {1, . . . ,K − k}.



Proof. Suppose that the attacker never waits. Let us consider the defender’s best
response to this strategy. Simplifying Equation(3), the defender’s utility function
becomes

−
K∑
k=0

(
d(k) + V (k)

R

d(k)

)
.

This utility is maximized by choosing d(k) at each step k to minimize the
cost plus risk, giving

d(k) =
√
V (k)R. (8)

To say that a(k) = 0 is the attacker’s best response function now implies
that for every k and a, we have

V (k)R

d(k)
≥ V (k)R(1− λ)a

d(k + a)
.

Incorporating the defender’s strategy and simplifying, we obtain

d(k + a)

d(k)
≥ (1− λ)a√

V (k + a)R√
V (k)R

≥ (1− λ)a

V (k + a)

V (k)
≥ (1− λ)2a.

The argument that the condition implies existence of an equilibrium is anal-
ogous to the continuous version. ut

5 Numerical Examples

In this section, we present numerical examples to illustrate our model and our
theoretical results, focusing on the vulnerability-discovery function and the de-
fender’s equilibrium strategy. For these numerical examples, we use the discrete-
time version of our model.

First, in Figures 1 and 2, we study two example vulnerability functions with
the corresponding equilibrium defense strategies. In the first example (Figure 1),
the vulnerability discovery rate grows and decays exponentially. More formally,
the vulnerability discovery rate in this example is given by the following formula:

V (k) = e−
(k−33)2

200 . (9)

In the second example (Figure 2), the vulnerability discovery rate grows and
decays linearly (i.e., according to an affine function). In both cases, we let R = 1,
K = 100, and λ = 0.3.
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Fig. 1: Example based on exponentially growing and decaying vulnerability dis-
covery rate with the corresponding equilibrium defense strategy.
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(b) Defender’s equilibrium security in-
vestment as a function of time

Fig. 2: Example based on linearly growing and decaying vulnerability discovery
rate with the corresponding equilibrium defense strategy.

We can see that, in both examples, the rise and fall of the defender’s security
investment is dampened compared to those of the vulnerability functions. How-
ever, the security investments are very far from being constant, which indicates
that dynamic environments play an important role in determining equilibrium
investments.

Second, in Figure 3, we study the condition given by Proposition 4. Recall
that Proposition 4 establishes a threshold on the maximum rate of decrease in
vulnerability discovery such that the attacker never waiting is an equilibrium. In
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(c) λ = 0.02
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(d) λ = 0.05

Fig. 3: Threshold vulnerability functions V (k) for Proposition 4 with various
values of λ.

Figure 3, for various values of λ, we plot vulnerability discovery functions that
decrease with this maximum rate.

Firstly, in Figure 3(a), we can see that if λ = 0, then the vulnerability
discovery rate has to be constant in order for the attacker not waiting to be an
equilibrium. The explanation for this corner case is that λ = 0 means that the
attacker can stockpile vulnerabilities without taking any risk; hence, the attacker
will wait only if security investments are constant over time, which implies that
the vulnerability discovery rate must also be constant for the equilibrium to
exist. Secondly, in Figures 3(b), 3(c), and 3(d), we see that the higher the value
of λ, the more steeply the vulnerability discovery rate may decrease. Again, the
explanation for this is that higher values of λ mean higher risk for stockpiling
vulnerabilities; hence, the higher λ is, the more steeply the discovery rate can
decrease without the attacker opting to wait.



6 Conclusion

The recent rise of attacks involving a high degree of stealthiness has sparked
considerable interest in games of timing for security. However, to the best of
our knowledge, the previously proposed models in the recent literature share a
common limitation: the assumption that the cost and effectiveness of the at-
tackers’ actions are time-independent. In this paper, we proposed and studied a
model which captures dynamic environments, i.e., in which the attackers’ actions
depend on the availability of exploitable vulnerabilities. More specifically, we as-
sumed that attackers discover vulnerabilities according to a given vulnerability-
discovery process, which we modeled as an arbitrary function of time. Based on
this assumption, we formulated a two-player game of timing between a defender,
who tries to protect a service or resource through security investments, and an
attacker, who can choose when to exploit a vulnerability. The most interesting
novel feature of our model is the attacker’s dilemma: whether to wait in hope
of exploiting the vulnerability at a time when security is lower, but risking that
the vulnerability is rediscovered and fixed in the meantime.

In our theoretical analysis, we primarily focused on characterizing equilibria
in which the attacker does not stockpile vulnerabilities (i.e., never waits to ex-
ploit a vulnerability). The question of vulnerability stockpiling is interesting in
many practical scenarios, most importantly in the case of software products that
are widely used even after their end of official support. Our results relate the
vulnerability discovery process to the rate of repairing vulnerabilities, and hence
provide guidelines for finding vulnerability repair rates that will not lead to a
vulnerability stockpiling equilibrium in practice. In our numerical examples, we
considered multiple specific vulnerability functions, and studied the correspond-
ing equilibrium strategies.

There are multiple directions for extending our current work. Firstly, we
plan to provide a theoretical characterization of the game’s equilibria in the case
when the attacker does not stockpile vulnerabilities (i.e., when never waiting is
not an equilibrium). Secondly, we plan to study and characterize the Stackelberg
equilibria of our game. In our current work, we assume that the defender and
the attacker choose their strategies at the same time, which captures scenarios
with uninformed players. However, in [17], it was shown – for a different timing-
game model – that a defender can substantially decrease its losses by publicly
committing to a strategy and letting the attacker choose its strategy in response.
We expect that a similar result holds for the model presented in this paper as
well.
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