Physically-based Simulation of Cuts in Deformable Bodies

Jun Wu, Rüdiger Westermann, Christian Dick

Computer Graphics & Visualization Group TU München, Germany

Virtual Cutting in Computer Animation

Applications: computer games, visual effects ۲

Video available at http://graphics.ethz.ch/research/geometry/ modeling/splitMergeCut.php

Meshfree method

[Steinemann et al. 2006]

Virtual Cutting in Computer Animation

Applications: computer games, visual effects ۲

Video available at http://graphics.ethz.ch/publications/papers/ papers.php

Polyhedral finite element method

[Wicke et al. 2007]

Virtual Cutting in Surgery Simulation

• Applications: surgery skill training, pre-operative planning

Surgery simulation on a patient data set

[Courtecuisse et al. 2010] SHACRA team at INRIA

Provide an overview of recent virtual cutting techniques

Reference	Geometry	Deformation	Solver	Scenario	Remark
Bielser et al. [BMG99, BG00, BGTG04]	Tet., refinement	Mass-spring	Explicit/Semi-implicit	Interactive	Basic tet. refinement
Cotin et al. [CDA00]	Tet., deletion	Tensor-mass	Explicit	Interactive	Hybrid elastic model
Mor & Kanade [MK00]	Tet., refinement	FEM	Explicit	Interactive	Progressive cutting
Nienhuys et al. [NFvdS00, NFvdS01]	Tet., boundary splitting/snapping	FEM	Static (CG solver)	Interactive	FEM with a CG solver
Bruyns et al. [BSM*02]	Tet., refinement	Mass-spring	Explicit	Interactive	An early survey
Steinemann et al. [SHGS06]	Tet., refinement + snapping	Mass-spring	Explicit	Interactive (Fig. 13 a)	Hybrid cutting
Chentanez et al. [CAR*09]	Tet., refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 d)	Needle insertion
Courtecuisse et al. [CJA*10, CAK*14]	Tet., deletion/refinement	FEM	Implicit (CG solver)	Interactive (Fig. 13 c,e)	Surgery applications
Molino et al. [MBF04]	Tet., duplication	FEM	Mixed explicit/implicit	Offline	Basic virtual node algorithm
Sifakis et al. [SDF07]	Tet., duplication	FEM		Offline (Fig. 12 a)	Arbitrary cutting
Jeřábková & Kuhlen [JK09]	Tet.	XFEM	Implicit (CG solver)	Interactive	Introduction of XFEM
Turkiyyah et al. [TKAN09]	Tri.	2D-XFEM	Static (direct solver)	Interactive	XFEM with a direct solver
Kaufmann et al. [KMB*09]	Tri./Quad.	2D-XFEM	Semi-implicit	Offline (Fig. 12 c)	Enrichment textures
Frisken-Gibson [FG99]	Hex., deletion	ChainMail	Local relaxation	Interactive	Linked volume
Jeřábková et al. [JBB*10]	Hex., deletion	CFEM		Interactive	CFEM
Dick et al. [DGW11a]	Hex., refinement	FEM	Implicit (multigrid)	Offline/Interactive (Fig. 12 d)	Linked octree, multigrid solver
Seiler et al. [SSSH11]	Hex., refinement	FEM	Implicit	Interactive	Octree, surface embedding
Wu et al. [WDW11, WBWD12, WDW13]	Hex., refinement	CFEM	Implicit (multigrid)	Interactive (Fig. 13 b, f)	Collision detection for CFEM
Wicke et al. [WBG07]	Poly., splitting	PFEM	Implicit	Offline (Fig. 12 b)	Basic polyhedral FEM
Martin et al. [MKB*08]	Poly., splitting	PFEM	Semi-implicit	Offline	Harmonic basis functions
Pauly et al. [PKA*05]	Particles, transparency	Meshfree	Explicit	Offline	Fracture animation
Steinemann et al. [SOG06]	Particles, diffraction	Meshfree		Offline/Interactive (Fig. 12 e)	Splitting fronts propagation
Pietroni et al. [PGCS09]	Particles, visibility	Meshfree		Interactive	Splitting cubes algorithm

Motivation of the Report

- Provide an overview of recent virtual cutting techniques
- Share our experience and understanding on this topic

Video available at http://wwwcg.in.tum.de/research/research/p ublications/2011/a-hexahedral-multigridapproach-for-simulating-cuts-in-deformableobjects.html Hexahedral finite element method on an octree grid

Armadillo: 500k elements, 10 seconds per frame

[Dick et al. 2011]

Motivation of the Report

- Streeburg 2014
- Provide an overview of recent virtual cutting techniques
- Share our experience and understanding on this topic

Haptic cutting of high-resolution soft tissues

Liver: 15 fps 3k DOFs (170k elements)

[Wu et al. 2014]

Motivation of the Report

- Provide an overview of recent virtual cutting techniques
- Share our experience and understanding on this topic
- Discuss and identify future research problems
 - How to realistically simulate various cutting effects?

Cutting in hospitals

Cutting in kitchens

Images removed due to copyright

- Incorporation of cuts into the computational model
- Deformable body simulation

Virtual Cutting from a Computational Point of View

- Incorporation of cuts into the computational model
- Deformable body simulation
- Detection and handling of collisions
 - Collision detection: STAR by Teschner et al. 2005
 - Realistic contact handling between a scalpel and a soft object: Open question

2D illustration of cutting process

Mesh-based modeling of cuts

FE simulation of deformation

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Cutting & Fracturing

- Cutting
 - Controlled separation of a physical object
 - As a result of an acutely directed force, exerted through sharp tools
- Fracturing
 - Cracking / breakage of (hard) objects
 - Under the action of stress

Fracturing example

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

tm_{3D}

Cutting & Fracturing

• from a computational point of view

Challenges

- Physical accuracy
 - Ability to represent arbitrarily-shaped cuts in geometry and topology
 - Ability to predicate the dynamic behavior
- Solutions:
 - Dynamic local refinement of different spatial discretizations
 - Various finite element methods

Examples of complicated cuts

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Challenges

- Physical accuracy
- Robustness
 - Numerical stability in complicated scenarios, e.g., repeated cutting, thin slicing
- Solution: to avoid ill-shaped elements, e.g., by virtual node algorithm, hexahedral discretization

Repeated cutting

Thin slicing

Physically-based Simulation of Cuts in Deformable Bodies: A Survey

Challenges

- Physical accuracy
- Robustness
- Computation efficiency
- Solutions: reducing #DOFs, efficient solvers, parallelization

Surgery simulation with haptic feedback

[Courtecuisse et al. 2010]

follows the structure of the report

- Introduction
- Mesh-based Modeling of Cuts
- Finite Element Simulation of Virtual Cutting
- Numerical Solvers
- Meshfree Methods
- Summary & Application Study
- Discussion & Conclusion

Principles and differences, not the implementation details
2D illustrations, but applicable to 3D volumetric cutting

