Praktikum on 3D Computer Vision

F. Tombari N. Brasch, M. Saleh, P. Wang, K. Li, A. Savkin, J. Huang, F. Tristram, L. Bastian, S. Wang, M. Kiray, C. Li, N. Morbitzer, S.R. Vutukur

Introduction

3D Computer Vision Scene understanding

- 6D object pose estimation
- SLAM, Structure from Motion
- 3D reconstruction
- Camera pose / re-localization
- Nerf, 3D rendering
- Semantic segmentation / understanding
- Depth prediction, stereo

Human understanding

- \circ 3D body / hand / face pose estimation
- 3D Head / body modeling

- Application in Robotics
 - Grasping and Manipulation
 - Navigation
 - Obstacle avoidance

- Augmented Reality
 - Render virtual/augmented content on real objects of known shape or pose

Ο.

3D Object Detection and tracking

AR

Depth Prediction, Semantics and SLAM

Robotics

Goals of the Praktikum

- Learn about the state of the art in 3D computer vision
- Familiarize with practical aspects and use cases of typical 3D perception tasks (3D feature extraction and learning, surface matching and 3D reconstruction, 3D object localization and pose estimation, SLAM, ..)
- **Develop an end-to-end project in a team** aiming to solve a relevant and challenging problem in 3DCV
- Learn to explain and disseminate your work in tech talks

Teams

Setup

- Around 24 students are grouped into teams of 4-5 students
- Each team will be assigned to a project
- Each project has multiple tutors that act as expert advisors to assist the team during the project

Student-to-Project Matching

- Registered students can **indicate project preference** after project announcements
- Students will be assigned to a team and project that best fits the indicated preference & background

Tentative schedule

Lecture period: 14.10.2024 - 07.02.2025

25.10. 01.11.		Introductory talk & Project presenta Project assignments	Time: Fridays 14.00 - 15.30 ti971sce: Seminar Room 03.13.010
08.11.		Project KickOffs	to some standards in each
	CVPR Break		in-person attendance in each
22.11.		Project Update I	session is mandatory. Missing
29.11.		Lecture I & Lecture II	valid excuse can lead to failing
06.12.		Lecture III & Lecture IV	the course.
13.12.		Mid-term Presentations	· · · · · · · · · · · · · · · · · · ·
	Christmas Break		
17.01.		Project Update II	
07.02.	Final Work	shop	

- . .

44.00 45.00

Evaluation

Project work (75 %)

- Project management
- Teamwork & communication
- Scientific understanding & depth
- Methodology, implementation & evaluation

Presentations (25%)

- Presentation style
- Structure of the presentation
- Quality of slides
- Scientific understanding & explanations
- Q&A

Prerequisites

- Required: 1+ computer vision-related course
 - Tracking and Detection in CV (IN2357)
 - Computer Vision I: Variational Methods,
 - Computer Vision II: Multiple View Geometry (IN2228)
 - Robotic 3D Vision, Convex Optimization for ML and CV, Probabilistic Graphical Models in CV

0 ...

- Required: 1+ deep-learning-related course
 - Introduction to Deep Learning (I2DL) (IN2346)
 - Machine Learning (IN2064)
 - Machine Learning for 3D Geometry (IN2392)

0 ...

- Suggested:
 - 1+ projects in the domain of CV/ML

Registration

TUM Matching System

- Send motivation letter, CV & transcript (not mandatory, but highly recommended) to: p3dcv@mailnavab.informatik.tu-muenchen.de (until 14.07)
- Register in Matching-System: <u>https://matching.in.tum.de</u> (until 16.07.)

Questions?

Web. https://www.cs.cit.tum.de/camp/teaching/practical-courses/praktikum-on-3d-computer-vision-ws-2023-24/ E-Mail us: tombari@in.tum.de, b.busam@tum.de, nikolas.brasch@tum.de