Stefan Heidekrüger, M.Sc.
E-Mail: stefan dot heidekrueger at in.tum.de
Phone: +49 (0) 89 289 - 17530
Fax: +49 (0) 89 289 - 17535
Office: Room 01.10.056
Boltzmannstr. 3
85748 Munich, Germany
Hours: by arrangement
Short Bio
I'm a PhD student at the DSS chair supervised by Prof. Bichler. I'm interested in using math, data and algorithms to enable smart decision making. My dissertation research focusses on computation of equilibria in incomplete information games, especially markets and auctions and using multi-agent reinforcement learning methods. You can find more information about me on GitHub or LinkedIn.
Since 2018 | Doctoral Student and Research Associate, Decision Sciences & Systems, TUM |
2016 - 2018 | Data Scientist, Business Analytics and Artificial Intelligence, Telefónica Germany |
2014 - 2016 | M.Sc. Mathematics in Operations Research, Technische Universität München |
2014 | Erasmus+ student at KTH Royal Institute of Technology (Stockholm, Sweden) |
2013 - 2016 | internships at a.hartrodt (2013) and zeb Consulting (2015) working student positions at a.hartrodt (2013-14), Telefónica Germany (2016), and SAP (2016) student research assistant positions at TUM (2014, 2015) and HelmholtzZentrum München (2015-16) |
2012 - 2013 | Visiting Student at The Hong Kong University of Science and Technology |
2010 - 2014 | B.Sc. Mathematics, TUM |
Publications
Journal Papers
Learning Equilibria in Asymmetric Auction Games.
M. Bichler, S. Heidekrüger, and N. Kohring. (August 2022), INFORMS Journal on Computing, to appear.
Learning equilibria in symmetric auction games using artificial neural networks.
M. Bichler, M. Fichtl, S. Heidekrüger, N. Kohring, and P. Sutterer. Nature Machine Intelligence, 3, 687–695 (2021). [link | unedited authors' manuscript | supplement ]
A previous version was presented at the 2020 annual meeting of the NBER Working Group on Market Design: [pdf ]
Conference Proceedings
Approaching the Overbidding Puzzle in All-Pay Auctions: Explaining Human Behavior through Bayesian Optimization and Equilibrium Learning
M. Ewert, S. Heidekrüger, and M. Bichler. Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Learning, May 2022. (AAMAS-22). Extended Abstract: https://dl.acm.org/doi/abs/10.5555/3535850.3536043
Equilibrium Learning in Auction Markets.
S. Heidekrüger, Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI-22) https://doi.org/10.1609/aaai.v36i11.21578
Presented at the Twenty-Seventh AAAI/SIGAI Doctoral Consortium (AAAI-DC-22), February 2022
Peer-Reviewed Workshop Papers
Equilibrium Computation for Auction Games via Multi-Swarm Optimization
N. Kohring, C. Froehlich, S. Heidekrüger, and M. Bichler
presented at the 2022 AAAI Workshop on Reinforcement Learning in Games (AAAI-RLG-22)
Equilibrium Learning in Combinatorial Auctions: Computing Approximate Bayesian Nash Equilibria via Pseudogradient Dynamics
S. Heidekrüger, P. Sutterer, N. Kohring, M. Fichtl, and M. Bichler
presented at the 2021 AAAI Workshop on Reinforcement Learning in Games (AAAI-RLG-21) [pdf],
and at the 2020 Workshop on Information Technology and Systems (WITS20)
Multiagent Learning for Equilibrium Computation in Auction Markets,
S. Heidekrüger, P. Sutterer, N. Kohring, and M. Bichler,
AAAI Spring Symposium on Challenges and Opportunities for Multi-Agent Reinforcement Learning (COMARL-21), March 2021 [pdf ]
Learning bayesian nash equilibria in auction games.
S. Heidekrüger, P. Sutterer, N. Kohring, and M. Bichler.
INFORMS Workshop on Data Science, Online, 2020.
Computing approximate Bayes-Nash Equilibria through Neural Self-Play.
S. Heidekrüger, P. Sutterer, and M. Bichler
Workshop on Information Technology and Systems (WITS19), Munich, Germany, 2019.
Teaching
Courses
- Business Analytics and Machine Learning, Teaching Assistant (Winter Terms 18/19, 19/20, 20/21, 21/22)
- Seminar "Learning in Games" (Summer Term 2022, Link)
- Seminar "Data Mining", (Summer Terms 2019, 2020, 2021)
- Seminar "IT and Management Consulting", (Winter Term 19/20, 20/21, 21/22)
Supervised Student Projects
Helena Schelling | A Large-Scale Econometric Model on The Value of Delivery Speed MSc Thesis; Consumer Science (2022) |
Emanuel Deisler | Smart Beta Investment Strategy Optimization with Deep Reinforcement Learning, MSc Thesis; Robotics, Cognition, Intelligence (2022) |
Manuel Schweitzer | Supervised Federated Topic Modelling with User-Generated Labels, MSc Thesis, Management and Technology (2022) |
Calin Buzetelu | Interactive Data Vizualisation for Equilibrium Computation in continuous Bayesian Games, BSc Thesis, Information systems (2021) |
Mitesh Mutha | Cooperative Multi-Agent Reinforcement Learning for Train Scheduling, MSc Thesis, Informatics (2021) |
Irina Broda | A Game-Theoretic Analysis of Election Campaign Spending, BSc Thesis, Informatics (2021) |
Iheb Belgacem | Improving Sample Efficiency in Multiagent Equilibrium learning settings via Advanced Monte-Carlo Methods, Research Internship, EEIT, (2021) |
Daniel Schroter | Reinforcement Learning in the MIT Beer Distribution Game, BSc Thesis, Informatics (2020) |
Markus Ewert | Efficient Query Strategies in Preference Elicitation via Deep Learning, MSc Thesis, Information Systems (2020) |
Anne Christopher | Fast Solvers for Batched Constrained Optimization Problems, MSc Thesis, Mathematics in Data Science (2020) |
Lukas Feye | Confidence-Moderated Policy Advice in Multi-Agent Reinforcement Learning, BSc Thesis, Information Systems (2020) |
Florian Ziesche | Human Interpretable Machine Learning: A Machine Learning Approach for Risk Scoring, MSc Thesis, Mgmt & Technology (2019) |
Sebastian Rief | Detection of anomalies in large-scale accounting data using unsupervised machine learning, MSc Thesis, Mgmt & Technology (2019) |