Skip to content
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Team
  3. Yan Scholten

Yan Scholten

Technical University of Munich
Department of Computer Science - I26
Boltzmannstr. 3
85748 Garching b. München
Germany

Room: 00.11.065
E-Mail: y.scholten [at] tum.de
Website: yascho.github.io

Research Interests

  • Reliable machine learning
  • Conformal prediction
  • Machine unlearning
  • Machine learning on graphs

Selected Publications

Full list on Google Scholar

  • Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning
    Yan Scholten, Stephan Günnemann
    International Conference on Learning Representations, ICLR 2025 (Spotlight)
    [PDF | Project page | Code]
     
  • A Probabilistic Perspective on Unlearning and Alignment for Large Language Models
    Yan Scholten, Stephan Günnemann, Leo Schwinn
    International Conference on Learning Representations, ICLR 2025 (Oral)
    [PDF | Project page | LLM framework (Code) | Confidence bounds (Code)]
     
  • Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives
    Leo Schwinn, Yan Scholten, Tom Wollschläger, Sophie Xhonneux, Stephen Casper, 
    Stephan Günnemann, Gauthier Gidel
    [Preprint], 2025.
     
  • Hierarchical Randomized Smoothing
    Yan Scholten, Jan Schuchardt, Aleksandar Bojchevski, Stephan Günnemann
    Advances in Neural Information Processing Systems (NeurIPS), 2023
    [PDF | Project page | Code]
     
  • (Provable) Adversarial Robustness for Group Equivariant Tasks:
    Graphs, Point Clouds, Molecules, and More
    Jan Schuchardt, Yan Scholten, Stephan Günnemann
    Advances in Neural Information Processing Systems (NeurIPS), 2023
    [PDF | Project page | Code]
     
  • Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks
    Yan Scholten, Jan Schuchardt, Simon Geisler, Aleksandar Bojchevski, Stephan Günnemann
    Advances in Neural Information Processing Systems (NeurIPS), 2022
    [ PDF | Project page | Code ]
     

Education

  • 2022-now: PhD student in Computer Science, Technical University of Munich
  • 2019-2022: M.Sc. Informatics - Technical University of Munich (passed with high distinction)
  • 2015-2019: B.Sc. Computer Science (Math Minor) - Paderborn University (passed with distinction)

Academic Honors and Awards

  • 2023: Admission to the Konrad Zuse School of Excellence in Reliable AI
  • 2019: Deutschlandstipendium awarded by the Technical University of Munich
  • 2018: RISE worldwide scholarship awarded by DAAD
  • 2018: Deutschlandstipendium awarded by Studienfonds OWL
  • 2017: Admission to elite program of the EIM-faculty at Paderborn University
To top

Informatik 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technische Universität München
TUM School of Computation, Information and Technology
Department of Computer Science
Boltzmannstr. 3
85748 Garching 

Sekretariat:
Raum 00.11.057
Tel.: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility