Skip to content
  • de
  • en
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Teaching
  3. Wintersemester 2015/16
  4. Mining Massive Datasets

Lecture: Mining Massive Datasets

Overview

Please note the new location for the tutorial (room MW 0001)! Data has supported research since the dawn of time, but recently there has been a paradigm shift in the way data is used. Today researchers and practitioners are mining data for patterns and trends that lead to new hypotheses. This shift is caused by the huge volumes of data available from, e.g., social media websites, web query logs, sensors, and medical devices. "Big Data" has been established as an umbrella term to cover such high-volume and complex data. In this course, you will learn data mining and machine learning techniques to process large datasets and extract valuable knowledge from them. We will study modern computing frameworks for large-scale data analytics (e.g., Apache Hadoop/Spark) as well as models and algorithms for pattern detection in large data. In particular, we will discuss principles that are designed for today's complex data such as networks or temporal data. The practical relevance of these methods will be highlighted by multiple important applications such as fraud detection, recommendation, or community detection. The preliminary syllabus of the course is as follows:

  • Introduction
    • Data Mining and Knowledge Discovery Process, Machine Learning
    • Applications, Tasks
  • Hashing & Sketches
    • Similarity search
    • Min-Hashing, Locality Sensitive Hashing
    • Bloom Filter
  • Dimensionality Reduction & Matrix Factorization
    • Feature Selection & Random Projections
    • PCA / SVD
    • Non-Negative Matrix Factorization and Extensions
  • (Distributed) Optimization
    • Unconstrained / Constrained Optimization
    • Convex Optimization
    • (Stochastic) Gradient descent
  • Network Data
    • Laws/Patterns and Generators
    • PageRank and Extensions, HITS
    • Clustering/Community Detection, Spectral Clustering
    • Probabilistic Models: Inference, Distributed Learning, Models for Network Data
  • Temporal Data & Streaming
    • Sampling Techniques
    • Counting Distinct Elements
    • Estimating moments
  • Systems & Tools
    • MapReduce and Extensions (e.g. Spark)
    • Big Learning Systems
    • Graph Processing Systems

Information

  • Lecture: Wednesdays, 12:00pm - 1:40pm, room 00.13.009A
  • Exercise: Tuesdays, 2:00pm - 3:30pm, room MW 0001
  • For more details see TUMonline
  • All course material will be made available via Moodle

Literature

  • Mining of Massive Datasets. Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman. Cambridge University Press. 2014
  • Data Mining: The Textbook. Charu Aggarwal. Springer. 2015
  • The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman. Springer. 2013
To top

Informatics 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technical University of Munich
TUM School of Computation, Information and Technology
Department of Computer Science 
Boltzmannstr. 3
85748 Garching
Germany

Secretary's office:
Room 00.11.057
Phone: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility