Skip to content
  • de
  • en
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Teaching
  3. Summer Term 2022
  4. Seminar (Selected Topics)

Seminar - Selected Topics in Machine Learning Research

Seminar - Selected Topics in Machine Learning Research (IN2107, IN4872)

Application

The pre-course meeting with information regarding the course format, possible topics etc. is scheduled for Feb 7, 2022 4pm on zoom (Passcode: 281710).

Note that you have to register via the matching system and fill out our application form to apply for a spot!

Schedule

  • Pre-course meeting: Feb 7, 2022 4pm - slides
  • Kick-off meeting: Apr 25, 2022 4pm
  • Final presentations: Jul 21 & 22, 2022

Prerequisites

This seminar is intended for Master's students only. You should have attended (and passed) the Machine Learning lecture (IN2064). Having attended Machine Learning for Graphs and Sequential Data (IN2323) or other advanced ML/DL lectures (IN2332, IN2346, etc.) is a plus.

Description

The amount of research in machine learning has grown exponentially in the last couple of years, uncovering many promising and successful research directions. In this seminar we will select and discuss a diverse set of topics of current research. This seminar will let students get acquainted with current machine learning research, let them explore new fields and ideas and let them analyze and criticize recent publications.

To do so, each student will receive 2-5 research papers which they should carefully read and analyze. Starting from these they should explore the surrounding literature and summarize their findings, criticism, and research ideas in a 4-page paper (double column). The students will then review each other's work to give valuable feedback and criticism. Finally, all students will prepare 25-minute presentations and present their work during a block seminar at the end of the semester.

Possible topics

  • Robustness
    • Robust Fine Tuning
    • Robustness Against Synthetic and Natural Perturbations
    • Attack Strategies
    • Certified Robustness of L-infinity Distance Nets
    • Computing Bounds on Network's Local Lipschitz Constant
    • Certifiably Robust Training using Lipschitz constants
    • A Data-Centric View On Robustness
  • Vision & NLP
    • Connecting Text and Images
    • Zero-shot Models \& Pre-training
  • Deep Learning Techniques
    • Equivariant Deep Learning
    • Knowledge Distillation
    • Quantization in Deep Learning
  • Physics & Simulation
    • Learning in Function Space with Neural Operators
    • Hamiltonian Neural Networks
  • Uncertainty Estimation
    • Uncertainty in Reinforcement Learning
To top

Informatics 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technical University of Munich
TUM School of Computation, Information and Technology
Department of Computer Science 
Boltzmannstr. 3
85748 Garching
Germany

Secretary's office:
Room 00.11.057
Phone: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility