Skip to content
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Teaching
  3. Winter Term 2020/21
  4. Machine Learning

Machine Learning

This award-winning introductory Machine Learning lecture teaches the foundations of and concepts behind a wide range of common machine learning models. It uses a combination of engaging lectures, challenging mathematical exercises, practically-oriented programming tasks, and insightful tutorials. The lecture was awarded with the TeachInf 2020 award.

Tentative list of topics

  • Introduction
    • What is machine learning?
    • Typical tasks in ML
  • k-Nearest neighbors
    • kNN for classification and regression
    • Distance functions
    • Curse of dimensionality
  • Decision trees
    • Constructing & pruning decision trees
    • Basics of information theory
  • Probabilistic inference
    • Parameter estimation
    • Maximum likelihood principle
    • Maximum a posteriori
    • Full Bayesian approach
  • Linear regression
    • Linear basis function models
    • Overfitting
    • Bias-variance tradeoff
    • Model selection
    • Regularization
  • Linear classification
    • Perceptron algorithm
    • Generative / discriminative models for classification
    • Linear discriminant analysis
    • Logistic regression
  • Optimization
    • Gradient-based methods
    • Convex optimization
    • Stochastic gradient descent
  • Deep learning
    • Feedforward neural networks
    • Backpropagation
    • Structured data: CNNs, RNNs
    • Training strategies
    • Frameworks
    • Advanced architectures
  • Support vector machines
    • Maximum margin classification
    • Soft-margin SVM
  • Kernel methods
    • Kernel trick
    • Kernelized linear regression
  • Dimensionality reduction
    • Principal component analysis
    • Singular value decomposition
    • Probabilistic PCA
    • Matrix factorization
    • Autoencoders
  • Clustering
    • k-means
    • Gaussian mixture models
    • EM algorithm

Literature

  • Pattern Recognition and Machine Learning. Christopher Bishop. Springer-Verlag New York. 2006.
  • Machine Learning: A Probabilistic Perspective. Kevin Murphy. MIT Press. 2012

Prerequisites

  • Good understanding of Linear Algebra, Analysis, Probability and Statistics.
  • Programming experience (preferably in Python).

Schedule

  • Due to the current situation, we cannot offer in-person lectures. We will upload videos of lectures and tutorials, and provide pointers to other reference materials. Additionally, we will offer slots for online, live Q&A sessions (timeslots will be provided later).
  • Please also note the new lecture period for this semester (02.11.2020 – 12.02.2021)
  • All material will be provided via Moodle.
  • Discussions will take place via Piazza. Please also use Piazza to ask questions, we won't answer questions sent by email.
  • Registration for the course will open soon (most likely in early October).

Organizational details

  • Language: English
  • Intended audience:
    • Master students of the Informatics department (Including Data Engineering & Analytics program).
    • Not available for Information Systems (Wirtschaftsinformatik) students.
    • Only TUM students are allowed to write the exam.
  • Please note that you can only include one of IN2064 / IN2332 in your curriculum
  • 8 ECTS
  • Grade bonus of 0.3 will be awarded to students who show sufficient work for at least 75% of the homework exercises. Note, that the grades 1.0, 4.3, 4.7 and 5.0 can't be improved.
To top

Informatik 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technische Universität München
TUM School of Computation, Information and Technology
Department of Computer Science
Boltzmannstr. 3
85748 Garching 

Sekretariat:
Raum 00.11.057
Tel.: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility