Skip to content
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Teaching
  3. Winter Term 2017/2018
  4. Machine Learning

Lecture: Machine Learning

Announcements

You have an opportunity to review your exams on the following dates:

  • Friday 02.03.2018 13:00 - 14:00
  • Friday 02.03.2018 14:00 - 15:00
  • Friday 02.03.2018 15:00 - 16:00

and

  • Friday 09.03.2018 13:00 - 14:00
  • Friday 09.03.2018 14:00 - 15:00
  • Friday 09.03.2018 15:00 - 16:00

These are the only dates that we will be offering. If you cannot make it you can optionally ask one of your fellow colleagues to attend the review for you. For this you'll need to sign an authorization form. Here is a simple template that you can use.

To be able to efficiently process all the requests and avoid long queues, in order to review your exam you must sign up using this Moodle form.

The grades (including the homework bonus) will be published in a few days.

Tentative list of topics

  • Introduction
    • What is machine learning?
    • Typical tasks in ML
  • k-Nearest neighbors
    • kNN for classification and regression
    • Distance functions
    • Curse of dimensionality
  • Decision trees
    • Constructing & pruning decision trees
    • Basics of information theory
  • Probabilistic inference
    • Parameter estimation
    • Maximum likelihood principle
    • Maximum a posteriori
    • Full Bayesian approach
  • Linear regression
    • Linear basis function models
    • Overfitting
    • Bias-variance tradeoff
    • Model selection
    • Regularization
  • Linear classification
    • Perceptron algorithm
    • Generative / discriminative models for classification
    • Linear discriminant analysis
    • Logistic regression
  • Optimization
    • Gradient-based methods
    • Convex optimization
    • Stochastic gradient descent
  • Support vector machines
    • Maximum margin classification
    • Soft-margin SVM
    • Constrained optimization
  • Kernel methods
    • Kernel trick
    • Kernelized linear regression
  • Deep learning
    • Feedforward neural networks
    • Backpropagation
    • Advanced architectures
    • Adaptive step-size selection
  • Dimensionality reduction
    • Principal component analysis
    • Singular value decomposition
    • Probabilistic PCA
  • Mixture models
    • Gaussian mixture models
    • K-means
    • Topic models
    • EM algorithm
  • Variational inference
    • Posterior inference in latent variable models
    • Mean-field approximation
    • Evidence lower bound

Literature

  • Pattern Recognition and Machine Learning. Christopher Bishop. Springer-Verlag New York. 2006.
  • Machine Learning: A Probabilistic Perspective. Kevin Murphy. MIT Press. 2012

Schedule

  • Lecture:
    • Monday 10:00 - 12:00, room MW 0001
  • Practical session:
    • Tuesday 12:00 - 14:00, room MW 0001
      (occasionally used as a lecture slot)
    • Wednesday 16:00 - 18:00, room MI HS1
  • Homework discussion: Thursday 8:00 - 10:00, room 00.08.059

Organizational details

  • Language: English
  • Intended audience:
    • Master students of the Informatics department (Including Data Engineering & Analytics program)
    • Not available for Information Systems (Wirtschaftsinformatik) students
  • New regulation: Please note that you can only include one of IN2064 / IN2332 in your curriculum
  • 8 ECTS
  • Grade bonus of 0.3 will be awarded to students who show sufficient work for at least 75% of the homework sheets. Note, that the grades 1.0, 4.3, 4.7 and 5.0 can't be improved.
  • All course material will be made available via Piazza
To top

Informatik 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technische Universität München
TUM School of Computation, Information and Technology
Department of Computer Science
Boltzmannstr. 3
85748 Garching 

Sekretariat:
Raum 00.11.057
Tel.: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility