Skip to content
  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich
Technical University of Munich
  • Home
  • Team
    • Stephan Günnemann
    • Sirine Ayadi
    • Tim Beyer
    • Jonas Dornbusch
    • Eike Eberhard
    • Dominik Fuchsgruber
    • Nicholas Gao
    • Simon Geisler
    • Lukas Gosch
    • Filippo Guerranti
    • Leon Hetzel
    • Niklas Kemper
    • Amine Ketata
    • Marcel Kollovieh
    • Anna-Kathrin Kopetzki
    • Arthur Kosmala
    • Aleksei Kuvshinov
    • Richard Leibrandt
    • Marten Lienen
    • David Lüdke
    • Aman Saxena
    • Sebastian Schmidt
    • Yan Scholten
    • Jan Schuchardt
    • Leo Schwinn
    • Johanna Sommer
    • Tom Wollschläger
    • Alumni
      • Amir Akbarnejad
      • Roberto Alonso
      • Bertrand Charpentier
      • Marin Bilos
      • Aleksandar Bojchevski
      • Johannes Klicpera
      • Maria Kaiser
      • Richard Kurle
      • Hao Lin
      • John Rachwan
      • Oleksandr Shchur
      • Armin Moin
      • Daniel Zügner
  • Teaching
    • Sommersemester 2025
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Wintersemester 2024/25
      • Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Current Topics in Machine Learning
    • Sommersemester 2024
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
    • Wintersemester 2023/24
      • Machine Learning
      • Applied Machine Learning
      • Seminar: Selected Topics in Machine Learning Research
      • Seminar: Machine Learning for Sequential Decision Making
    • Sommersemester 2023
      • Machine Learning for Graphs and Sequential Data
      • Advanced Machine Learning: Deep Generative Models
      • Large-Scale Machine Learning
      • Seminar
    • Wintersemester 2022/23
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2022
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar (Selected Topics)
      • Seminar (Time Series)
    • Winter Term 2021/22
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2021
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2020/21
      • Machine Learning
      • Large-Scale Machine Learning
      • Seminar
    • Summer Term 2020
      • Machine Learning for Graphs and Sequential Data
      • Large-Scale Machine Learning
      • Seminar
    • Winter Term 2019/2020
      • Machine Learning
      • Large-Scale Machine Learning
    • Summer Term 2019
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2018/2019
      • Machine Learning
      • Large-Scale Machine Learning
      • Oberseminar
    • Summer Term 2018
      • Mining Massive Datasets
      • Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2017/2018
      • Machine Learning
      • Oberseminar
    • Summer Term 2017
      • Robust Data Mining Techniques
      • Efficient Inference and Large-Scale Machine Learning
      • Oberseminar
    • Winter Term 2016/2017
      • Mining Massive Datasets
    • Sommersemester 2016
      • Large-Scale Graph Analytics and Machine Learning
    • Wintersemester 2015/16
      • Mining Massive Datasets
    • Sommersemester 2015
      • Data Science in the Era of Big Data
    • Machine Learning Lab
  • Research
    • Robust Machine Learning
    • Machine Learning for Graphs/Networks
    • Machine Learning for Temporal and Dynamical Data
    • Bayesian (Deep) Learning / Uncertainty
    • Efficient ML
    • Code
  • Publications
  • Open Positions
    • FAQ
  • Open Theses
  1. Home
  2. Research

GemNet: Universal Directional Graph Neural Networks for Molecules

This page is about our papers

GemNet: Universal Directional Graph Neural Networks for Molecules
by Johannes Gasteiger, Florian Becker and Stephan Günnemann
Published at the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), 2021

and

How Robust are Modern Graph Neural Network Potentials in Long and Hot Molecular Dynamics Simulations?
by Sina Stocker*, Johannes Gasteiger*, Florian Becker, Stephan Günnemann and Johannes T. Margraf
2022
Published in Machine Learning: Science and Technology, 2022

* Both authors contributed equally to this research. Note that the author's name has changed from Johannes Klicpera to Johannes Gasteiger.

GemNet: Universal Directional Graph Neural Networks for Molecules

by Johannes Gasteiger, Florian Becker and Stephan Günnemann
Published at the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), 2021

Abstract

Effectively predicting molecular interactions has the potential to accelerate molecular dynamics by multiple orders of magnitude and thus revolutionize chemical simulations. Graph neural networks (GNNs) have recently shown great successes for this task, overtaking classical methods based on fixed molecular kernels. However, they still appear very limited from a theoretical perspective, since regular GNNs cannot distinguish certain types of graphs. In this work we close this gap between theory and practice. We show that GNNs with directed edge embeddings and two-hop message passing are indeed universal approximators for predictions that are invariant to translation, and equivariant to permutation and rotation. We then leverage these insights and multiple structural improvements to propose the geometric message passing neural network (GemNet). We demonstrate the benefits of the proposed changes in multiple ablation studies. GemNet outperforms previous models on the COLL, MD17, and OC20 datasets by 34%, 41%, and 20%, respectively, and performs especially well on the most challenging molecules. Our implementation is available online.

Links

[Paper | GitHub (PyTorch) | GitHub (TensorFlow)]

Cite

Please cite our paper if you use the model, experimental results, or our code in your own work:

@inproceedings{gasteiger_gemnet_2021,
title = {GemNet: Universal Directional Graph Neural Networks for Molecules},
author = {Gasteiger, Johannes and Becker, Florian and G{\"u}nnemann, Stephan},
booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
year = {2021}
}

How Robust are Modern Graph Neural Network Potentials in Long and Hot Molecular Dynamics Simulations?

by Sina Stocker*, Johannes Gasteiger*, Florian Becker, Stephan Günnemann and Johannes T. Margraf
Published in Machine Learning: Science and Technology, 2022

* Both authors contributed equally to this research.

Abstract

Graph neural networks (GNNs) have emerged as a powerful machine learning approach for the prediction of molecular properties. In particular, recently proposed advanced GNN models promise quantum chemical accuracy at a fraction of the computational cost. While the capabilities of such advanced GNNs have been extensively demonstrated on benchmark datasets, there have been few applications in real atomistic simulations. Here, we therefore put the robustness of GNN interatomic potentials to the test, using the recently proposed GemNet architecture as a testbed. Models are trained on the QM7-x database of organic molecules and used to perform extensive MD simulations. We find that low test set errors are not sufficient for obtaining stable dynamics and that severe pathologies sometimes only become apparent after hundreds of ps of dynamics. Nonetheless, highly stable and transferable GemNet potentials can be obtained with sufficiently large training sets.

Links

[Paper | GitHub (PyTorch) | GitHub (TensorFlow)]

Cite

Please cite our paper if you use the model, experimental results, or our code in your own work:

@article{stocker_robust_2022,
title = {How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?},
author = {Stocker, Sina and Gasteiger, Johannes and Becker, Florian and G{\"u}nnemann, Stephan and Margraf, Johannes T.},
volume = {3},
doi = {10.1088/2632-2153/ac9955},
number = {4},
journal = {Machine Learning: Science and Technology},
year = {2022},
pages = {045010},
}

To top

Informatik 26 - Data Analytics and Machine Learning


Prof. Dr. Stephan Günnemann

Technische Universität München
TUM School of Computation, Information and Technology
Department of Computer Science
Boltzmannstr. 3
85748 Garching 

Sekretariat:
Raum 00.11.057
Tel.: +49 89 289-17256
Fax: +49 89 289-17257

  • Privacy
  • Imprint
  • Accessibility