Advanced Seminar Large-Scale Graph Processing and Graph Partitioning (IN2107, IN4435)
| Lecturer (assistant) | |
|---|---|
| Number | 0000086868 | 
| Type | seminar | 
| Duration | 2 SWS | 
| Term | Wintersemester 2021/22 | 
| Language of instruction | English | 
| Position within curricula | See TUMonline | 
| Dates | See TUMonline | 
Dates
- 21.10.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 28.10.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 04.11.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 11.11.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 18.11.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 25.11.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 09.12.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 16.12.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 23.12.2021 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 13.01.2022 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 20.01.2022 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 27.01.2022 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 03.02.2022 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
- 10.02.2022 14:00-16:00 01.06.011, Unterrichtsraum ohne Infrastruktur
Admission information
Objectives
Modulkatalog: IN2107
                        
                    
            
                
                        
                            Description
Graphs are a fundamental data structure and are commonly used to model relationships between data points, e.g., links between web pages, friendships between users in a social network, etc. In the past decade, a large number of specialized distributed systems have emerged that are optimized for managing and processing graph-structured data. To analyze large graphs, such as web graphs or social networks, distributed graph processing systems are used, where a number of compute nodes execute a graph processing algorithm in a distributed fashion in parallel on different partitions of the graph. As a preprocessing step, the graph must be partitioned into several disjoint parts that are distributed across the compute nodes. 
In this seminar we will study several large-scale (distributed) graph processing systems for static and dynamic graphs and graph neural networks. Furthermore, we study streaming and in-memory graph partitioners.
More information: https://docs.google.com/presentation/d/18tz8mf1JIuoFPLeeLLcDZ9S_AR3n742pSBcI6mMRD3Y/edit?usp=sharing
Preliminary meeting at 09.07.2021 2pm via zoom
Link: https://tum-conf.zoom.us/j/61241702728
Meeting-ID: 612 4170 2728
Code: 430026
                        
                    
            
                
                        
                            In this seminar we will study several large-scale (distributed) graph processing systems for static and dynamic graphs and graph neural networks. Furthermore, we study streaming and in-memory graph partitioners.
More information: https://docs.google.com/presentation/d/18tz8mf1JIuoFPLeeLLcDZ9S_AR3n742pSBcI6mMRD3Y/edit?usp=sharing
Preliminary meeting at 09.07.2021 2pm via zoom
Link: https://tum-conf.zoom.us/j/61241702728
Meeting-ID: 612 4170 2728
Code: 430026
Prerequisites
Basic knowledge of distributed systems.
                        
                    
            
                
                        
                            Teaching and learning methods
Modulkatalog: IN2107
- Presentations
- Written report with figures (ACM proceedings style), to submit 2 weeks after the presentation
                        
                    
            
                
                        
                            - Presentations
- Written report with figures (ACM proceedings style), to submit 2 weeks after the presentation
Examination
Grade is based on written report with figures (ACM proceedings style) (50%) and presentation (50%)
                        
                    
            
                
                        
                    
            
                
            
                
            
            
                