Bertrand Charpentier
Technical University of Munich
Department of Informatics - I26
Boltzmannstr. 3
85748 Garching b. München
Germany
Room: 00.11.062
E-Mail: charpent [at] in.tum.de
Website: sharpenb.github.io
Research Focus
- Uncertainty Estimation in Deep Learning
- Causality and Hierarchy in Machine Learning
- Efficient Machine Learning
- Machine Learning for Graphs and Sequential Data
Publications
- Emanuele Rossi, Bertrand Charpentier, Francesco di Giovianni, Stephan Günnemann, Michael Bronstein
Edge Directionality Improves Learning on Heterophilic Graphs
Mining and Learning on Graphs (MLG - ECML PKDD), 2023.
[Paper|Github|Publisher|Video] - Tom Wollschlager, Nicholas Gao, Bertrand Charpentier, Mohamed Amine Ketata, Stephan Gunnemann
Uncertainty Estimation for Molecules: Desiderata and Methods
International Conference on Machine Learning (ICML), 2023.
[Paper|Github|Publisher|Video] - Joahnnes Getzner, Bertrand Charpentier, Stephan Günnemann
Accuracy is not the only Metric that matters: Estimating the Energy Consumption of Deep Learning Models
Tackling Climate Change with Machine Learning: Global Perspectives and Local Challenges Workshop (TCCML - ICLR), 2023. Spotlight talk.
[Paper|Github|Publisher|Video] - Bertrand Charpentier, Chenxiang Zhang, Stephan Günnemann
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Pitfalls of limited data and computation for Trustworthy ML Workshop (TrustML - ICLR), 2023
[Paper|Github|Publisher|Video] - Bertrand Charpentier, Ransalu Senanayake, Mykel Kochenderfer, Stephan Günnemann
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
Distribution-Free Uncertainty Quantification Workshop (DFUQ - ICML), 2022
[Paper|Github|Publisher|Video] - John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, Stephan Günnemann
Winning the Lottery Ahead of Time: Efficient Early Network Pruning
International Conference on Machine Learning (ICML), 2022. Spotlight talk.
[Paper|Github|Publisher|Video] - Morgane Ayle, Bertrand Charpentier, John Rachwan, Daniel Zügner, Simon Geisler, Stephan Günnemann
On the Robustness and Anomaly Detection of Sparse Neural Networks
Sparsity in Neural Networks Workshop (SNN), 2022
[Paper|Github] - Bertrand Charpentier*, Oliver Borchert*, Daniel Zügner, Simon Geisler, Stephan Günnemann
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions
International Conference on Learning Representations (ICLR), 2022. Spotlight talk.
[Paper|Github|Publisher|Video] - Bertrand Charpentier, Simon Kibler, Stephan Günnemann
Differentiable DAG Sampling
International Conference on Learning Representations (ICLR), 2022.
[Paper|Github|Publisher|Video] - Daniel Zügner, Bertrand Charpentier, Morgane Ayle, Sascha Geringer, Stephan Günnemann
End-to-End Learning of Probabilistic Hierarchies on Graphs
International Conference on Learning Representations (ICLR), 2022.
[Paper|Github|Publisher|Video] - Maximilian Stadler*, Bertrand Charpentier*, Simon Geisler, Daniel Zügner, Stephan Günnemann
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Conference on Neural Information Processing Systems (NeurIPS), 2021.
[Paper|Github|Publisher|Video] - Anna-Kathrin Kopetzki*, Bertrand Charpentier*, Daniel Zügner, Sandhya Giri, Stephan Günnemann
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?
International Conference on Machine Learning (ICML), 2021. Spotlight talk.
[Paper|Github|Publisher] - Sven Elflein, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann
On Out-of-distribution Detection with Energy-Based Models
Uncertainty and Robustness in Deep Learning Workshop (UDL - ICML), 2021.
[Paper|Github] - Bertrand Charpentier, Daniel Zügner, Stephan Günnemann
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Conference on Neural Information Processing Systems (NeurIPS), 2020.
[Paper|GitHub|Publisher|Video] - Thomas Bonald, Nathan de Lara, Quentin Lutz, Bertrand Charpentier
Scikit-network: Graph Analysis in Python
Journal of Machine Learning Research (JMLR), 2020.
[Paper|GitHub|Docs|Publisher] - Marin Bilos*, Bertrand Charpentier*, Stephan Günnemann
Uncertainty on Asynchronous Time Event Prediction
Conference on Neural Information Processing Systems (NeurIPS), 2019. Spotlight talk.
[Paper|GitHub|Publisher] - Bertrand Charpentier, Thomas Bonald
Tree Sampling Divergence: An Information-Theoretic Metric for Hierarchical Graph Clustering
International Joint Conferences on Artificial Intelligence (IJCAI), 2019.
[Paper|GitHub|Publisher] - Bertrand Charpentier
Multi-scale Clustering in Graphs using Modularity
KTH Publication Library (DiVA), 2019.
[Paper|GitHub|Publisher] - Thomas Bonald , Bertrand Charpentier, Alexis Galland, Alexandre Hollocou
Hierarchical Graph Clustering using Node Pair Sampling
Mining and Learning with Graphs Workshop (MLG - KDD), 2018.
[Paper|GitHub|Publisher]
Education
- 2016 - 2018: M.Sc. in Machine Learning (passed with high distinction), KTH Royal Institute of Technology
- 2014 - 2018: M.Sc. & B.Sc. in Mathematics and Computer Science (passed with high distinction), Ensimag
- 2012 - 2014: CPGE in Mathematics and Physics, Lycee Henri IV
Software
- Scikit-Network (co-creator): Simple and efficient tools for the analysis of large graphs
[GitHub|Documention]